1. CO$_2$ supply modulates lipid remodelling, photosynthetic and respiratory activities in $Chlorella$ species
- Author
-
Michela Cecchin, Matteo Paloschi, Matteo Ballottari, Giovanni Busnardo, Yonghua Li-Beisson, Lutz Wobbe, Stefano Cazzaniga, Stéphan Cuiné, University of Verona (UNIVR), Bioénergie et Microalgues (EBM), Institut de Biosciences et Biotechnologies d'Aix-Marseille (ex-IBEB) (BIAM), Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Aix Marseille Université (AMU)-Centre National de la Recherche Scientifique (CNRS)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Aix Marseille Université (AMU)-Centre National de la Recherche Scientifique (CNRS), Center for Biotechnology (CeBiTec), Universität Bielefeld = Bielefeld University, European Project: 679814,H2020,ERC-2015-STG,SOLENALGAE(2016), Università degli studi di Verona = University of Verona (UNIVR), Environnement, Bioénergie, Microalgues et Plantes (EBMP), Aix Marseille Université (AMU)-Centre National de la Recherche Scientifique (CNRS)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), and Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)
- Subjects
0106 biological sciences ,0301 basic medicine ,Chloroplasts ,Physiology ,[SDV]Life Sciences [q-bio] ,Chlorella vulgaris ,Cell Respiration ,Chlamydomonas reinhardtii ,Plant Science ,Chlorophyta ,Photosynthesis ,01 natural sciences ,carbon assimilation ,lipids ,03 medical and health sciences ,Algae ,triacylglycerols ,chlorella ,Chlorella sorokiniana ,photosynthesis ,biology ,Chemistry ,microalgae ,Carbon Dioxide ,biology.organism_classification ,Lipid Metabolism ,Mitochondria ,Chloroplast ,Chlorella ,030104 developmental biology ,Biochemistry ,13. Climate action ,Oxidation-Reduction ,respiration ,010606 plant biology & botany - Abstract
Microalgae represent a potential solution to reduce CO2 emission exploiting their photosynthetic activity. Here, the physiologic and metabolic responses at the base of CO2 assimilation were investigated in conditions of high or low CO2 availability in two of the most promising algae species for industrial cultivation, Chlorella sorokiniana and Chlorella vulgaris. In both species, high CO2 availability increased biomass accumulation with specific increase of triacylglycerols in C. vulgaris and polar lipids and proteins in C. sorokiniana. Moreover, high CO2 availability caused only in C. vulgaris a reduced NAD(P)H/NADP+ ratio and reduced mitochondrial respiration, suggesting a CO2 dependent increase of reducing power consumption in the chloroplast, which in turn influences the redox state of the mitochondria. Several rearrangements of the photosynthetic machinery were observed in both species, differing from those described for the model organism Chlamydomonas reinhardtii, where adaptation to carbon availability is mainly controlled by the translational repressor NAB1. NAB1 homologous protein could be identified only in C. vulgaris but lacked the regulation mechanisms previously described in C. reinhardtii. Acclimation strategies to cope with a fluctuating inorganic carbon supply are thus diverse among green microalgae, and these results suggest new biotechnological strategies to boost CO2 fixation. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
- Published
- 2021
- Full Text
- View/download PDF