17 results on '"Gil-Garcia, Marcos"'
Search Results
2. Cryo-EM structure of hnRNPDL-2 fibrils, a functional amyloid associated with limb-girdle muscular dystrophy D3
- Author
-
Garcia-Pardo, Javier, Bartolomé-Nafría, Andrea, Chaves-Sanjuan, Antonio, Gil-Garcia, Marcos, Visentin, Cristina, Bolognesi, Martino, Ricagno, Stefano, and Ventura, Salvador
- Published
- 2023
- Full Text
- View/download PDF
3. Multifunctional antibody-conjugated coiled-coil protein nanoparticles for selective cell targeting
- Author
-
Gil-Garcia, Marcos and Ventura, Salvador
- Published
- 2021
- Full Text
- View/download PDF
4. Protein-only Nanoparticles for T Cell Expansion and Activation
- Author
-
Fornt-Suñé, Marc, primary, Bermejo, Gonzalo Lázaro, additional, Gil-Garcia, Marcos, additional, Aran, Andrea, additional, Garcia-Pardo, Javier, additional, Martí, Mercè, additional, and Ventura, Salvador, additional
- Published
- 2024
- Full Text
- View/download PDF
5. MED15 prion-like domain forms a coiled-coil responsible for its amyloid conversion and propagation
- Author
-
Batlle, Cristina, Calvo, Isabel, Iglesias, Valentin, J. Lynch, Cian, Gil-Garcia, Marcos, Serrano, Manuel, and Ventura, Salvador
- Published
- 2021
- Full Text
- View/download PDF
6. Coiled-coil inspired functional inclusion bodies
- Author
-
Gil-Garcia, Marcos, Navarro, Susanna, and Ventura, Salvador
- Published
- 2020
- Full Text
- View/download PDF
7. Cryo-EM Structure of a Mammalian-specific Alternative Amyloid Exon
- Author
-
Garcia-Pardo, Javier, primary, Bartolomé-Nafría, Andrea, additional, Chaves-Sanjuan, Antonio, additional, Gil-Garcia, Marcos, additional, Visentin, Cristina, additional, Bolognesi, Martino, additional, Ricagno, Stefano, additional, and Ventura, Salvador, additional
- Published
- 2022
- Full Text
- View/download PDF
8. Design of improved therapeutic proteins and novel protein-based nanomaterials
- Author
-
Gil-Garcia, Marcos and Ventura Zamora, Salvador
- Subjects
Proteïna terapèutica ,Ciències Experimentals ,Protein-based nanomaterial ,Proteína terapéutica ,Diseño de proteínas ,Disseny de proteïnes ,Nanomaterial proteic ,Protein design ,Therapeutic protein ,Nanomaterial proteico - Abstract
Les proteïnes estan involucrades en innombrables processos biològics com catàlisis, transport, regulació, defensa i estructura cel·lular. Per a poder dur a terme aquestes funcions, la gran majoria d’elles necessiten plegar-se en una estructura 3D definida. No obstant això, aquest procés energèticament favorable pot ser pertorbat cinèticament, donant lloc a la formació d’ensamblatges supramoleculars formats per proteïnes desplegades, els agregats proteics. L’agregació de proteïnes consisteix en l’establiment d’interaccions intermoleculars aberrants, estant estretament relacionada amb l’aparició de diverses malalties degeneratives. A més, aquesta reacció no desitjada limita el desenvolupament de proteïnes amb interès biotecnològic, afectant els processos de producció, emmagatzematge i la seva posterior comercialització. D’aquesta manera, les estratègies dirigides a disminuir l’impacte dels processos d’agregació en proteïnes terapèutiques són imprescindibles per a assegurar el correcte desenvolupament d’aquestes com a fàrmacs segurs i actius. En la present tesi doctoral, vam demostrar que un predictor d’agregació basat en estructura, i que a més té en compte l’estabilitat proteica, assisteix amb èxit el redisseny de dues proteïnes sense relació estructural, millorant la seva solubilitat sense comprometre la seva conformació activa. Aquesta estratègia podria reemplaçar els costosos assajos de prova-i-error duts a terme per la indústria farmacèutica, proporcionant una alternativa econòmica destinada a accelerar el desenvolupament de proteïnes terapèutiques. Les proteïnes són comunament conegudes per ser els fonaments de la vida, podent actuar com a entitats capaces d’autoensamblar-se, donant lloc a la formació de diverses estructures supramoleculars. Per això, hi ha un gran interès en l’ús de polipèptids per a crear nanomaterials funcionals i biocompatibles, entre els quals destaquen els cossos d’inclusió proteics (IBs). Encara que aquests IBs han estat tradicionalment considerats com a dipòsits de proteïnes inservibles, les dades més recents indiquen que els IBs actuen com a dipòsits de proteïna activa i estable. Aquestes partícules submicromètriques són produïdes de manera eficient i barata, i normalment estan sostingudes per un esquelet amiloide en el qual resideix la proteïna d’interès. No obstant això, aquesta conformació amiloide té un impacte en l’activitat de la proteïna d’interès i pot ser potencialment citotòxica. Per a superar aquestes limitacions, la nostra estratègia va consistir en la creació de nous IBs funcionals fent servir l’estructura d’hèlix-α, característica dels coiled-coils. D’aquesta manera, usant un domini coiled-coil natural com a bastida, es van obtenir IBs funcionals, biocompatibles, rics en hèlix-α i llestos per a ser usats. De manera interessant, els IBs formats per coiled-coils tenen una major activitat específica comparat amb els seus homòlegs amiloides, ja que el seu ensamblatge ve guiat per interaccions natives que no interfereixen en el correcte plegament de les parts funcionals. En aquesta tesi doctoral, vam demostrar que les nanopartícules proteiques inspirades en l’estructura coiled-coil poden albergar fluorescència i tenen la capacitat d’unir anticossos de manera simultània, sent estables i biocompatibles, i podent dirigir-se cap a antígens específics quan són decorades amb un anticòs o una combinació d’aquests, sent per tant una tecnologia prometedora en biomedicina. En resum, el treball descrit en la present tesi tracta de proporcionar estratègies útils destinades a (I) redissenyar proteïnes terapèutiques amb propietats biofísiques millorades mitjançant l’ús d’eines in silico i (II) desenvolupar nanomaterials proteics versàtils i multifuncionals, basats en interaccions entre hèlixs-α. Las proteínas están involucradas en innumerables procesos biológicos como catálisis, transporte, regulación, defensa y estructura celular. Para poder llevar a cabo estas funciones, la gran mayoría de ellas necesitan plegarse en una estructura 3D definida. Sin embargo, este proceso energéticamente favorable puede ser perturbado cinéticamente, dando lugar a la formación de ensamblajes supramoleculares formados por proteínas desplegadas, los agregados proteicos. La agregación de proteínas consiste en el establecimiento de interacciones intermoleculares aberrantes, estando estrechamente relacionada con la aparición de varias enfermedades degenerativas. Además, esta reacción indeseada limita el desarrollo de proteínas con interés biotecnológico, afectando los procesos de producción, almacenamiento y su posterior comercialización. De este modo, las estrategias dirigidas a disminuir el impacto de los procesos de agregación en proteínas terapéuticas son imprescindibles para asegurar el correcto desarrollo de éstas como fármacos seguros y activos. En la presente tesis doctoral, demostramos que un predictor de agregación basado en estructura, y que además tiene en cuenta la estabilidad proteica, asiste de manera exitosa el rediseño de dos proteínas sin relación estructural, mejorando su solubilidad sin comprometer su conformación activa. Esta estrategia podría reemplazar los costosos ensayos de prueba-y-error llevados a cabo por la industria farmacéutica, proporcionando una alternativa económica destinada a acelerar el desarrollo de proteínas terapéuticas. Las proteínas son comúnmente conocidas por ser los cimientos de la vida, pudiendo actuar como entidades capaces de autoensamblarse, dando lugar a la formación de varias estructuras supramoleculares. Por ello, hay un gran interés en el uso de polipéptidos para crear nanomateriales funcionales y biocompatibles; entre los que destacan los cuerpos de inclusión proteicos (IBs). Aunque estos IBs han sido tradicionalmente considerados como depósitos de proteínas inservibles, los datos más recientes indican que los IBs actúan como reservorios de proteína activa y estable. Estas partículas submicrométricas son producidas de manera eficiente y barata, y normalmente están sostenidas por un esqueleto amiloide en el cual reside la proteína de interés. Sin embargo, esta conformación amiloide tiene un impacto en la actividad de la proteína de interés y puede ser potencialmente citotóxica. Para superar estas limitaciones, nuestra estrategia consistió en la creación de nuevos IBs funcionales usando la estructura de hélice-α, característica de los coiled-coils. De este modo, usando un dominio coiled-coil natural como andamio, se obtuvieron IBs funcionales, biocompatibles, ricos en hélice-α y listos para ser usados. De manera interesante, los IBs formados por coiled-coils tienen una actividad específica mayor que sus homólogos amiloides, ya que su ensamblaje viene guiado por interacciones nativas que no interfieren en el correcto plegamiento de las partes funcionales. En esta tesis doctoral, demostramos que las nanopartículas proteicas inspiradas en la estructura coiled-coil pueden albergar fluorescencia y tener la capacidad de unir anticuerpos de manera simultánea, siendo estables y biocompatibles, y pudiendo dirigirse hacia antígenos específicos cuando son decoradas con un anticuerpo o una combinación de éstos, siendo por lo tanto una tecnología prometedora en biomedicina. En resumen, el trabajo descrito en la presente tesis trata de proporcionar estrategias útiles destinadas a (I) rediseñar proteínas terapéuticas con propiedades biofísicas mejoradas mediante el uso de herramientas in silico y (II) desarrollar nanomateriales proteicos versátiles y multifuncionales, basados en interacciones entre hélices-α. Proteins are involved in a myriad of biological processes such as catalysis, transport, regulation, defense, and providing structure to the cell. Most proteins need to fold into a defined 3D structure to perform such functions. However, this energetically directed process can be kinetically disturbed, resulting in the formation of stable misfolded supramolecular assemblies, including different types of protein aggregates. Protein aggregation stems from the establishment of aberrant intermolecular interactions and has been associated with the onset of several degenerative diseases. In addition, this unwanted reaction limits the development of proteins of biotechnological interest, impacting the production, storage, and commercialization of protein-based drugs. In this regard, strategies aimed to diminish the impact of protein aggregation on therapeutic proteins are pivotal to ensure their correct development as safe and active drugs. In the present doctoral thesis, we demonstrate that a structure-based aggregation predictor, which considers protein stability, successfully assists the redesign of two structurally unrelated proteins, improving their solubility without compromising their active conformation. This approach might replace the expensive trial-and-error assays employed by the pharmaceutical industry, providing an economical alternative for accelerating the development of protein-based drugs. Proteins are widely understood as the building blocks of life and can act as self-assembling entities involved in the creation of different supramolecular structures. Hence, there is an increasing interest in using polypeptides to build up functional and biocompatible nanomaterials; among them, protein inclusion bodies (IBs) have emerged as an attractive architecture. Traditionally considered useless protein deposits formed by misfolded conformations, recent data converge to indicate that IBs act as reservoirs of stable and active protein. These submicrometric particles are produced efficiently and cost-effectively, and are usually sustained by an amyloid-like scaffold where the protein of interest is trapped. Nevertheless, this amyloid conformation necessarily impacts the activity of the protein of interest and can be potentially cytotoxic. To overcome these drawbacks, we aimed at generating novel and improved functional IBs based on the α-helical architecture characteristic of coiled-coils. Using a naturally encoded coiled-coil domain as the scaffolding entity, α-helix-rich and biocompatible functional IBs were obtained in a ready-to-use form. Interestingly, coiled-coil-based IBs present a higher specific activity than their amyloid-like counterparts, since their assembly is guided by native interactions that do not interfere with the folding of the functional moieties. We demonstrate that these coiled-coil-inspired protein nanoparticles can display fluorescent and antibody-capturing activities simultaneously, being biocompatible, stable, and targeting specific antigens when decorated with a single or a combination of antibodies; thus, emerging as a promising technology for biomedical applications. Overall, the work described in the present thesis attempts to provide useful strategies aimed at (I) redesigning therapeutic proteins with enhanced biophysical properties employing in silico tools and (II) developing versatile and tunable multifunctional protein-based nanomaterials sustained by α-helical interactions. Universitat Autònoma de Barcelona. Programa de Doctorat en Bioquímica, Biologia Molecular i Biomedicina
- Published
- 2022
9. Coiled-Coil Based Inclusion Bodies and Their Potential Applications
- Author
-
Gil-Garcia, Marcos, primary and Ventura, Salvador, additional
- Published
- 2021
- Full Text
- View/download PDF
10. Prion‐like proteins: from computational approaches to proteome‐wide analysis
- Author
-
Gil‐Garcia, Marcos, primary, Iglesias, Valentín, additional, Pallarès, Irantzu, additional, and Ventura, Salvador, additional
- Published
- 2021
- Full Text
- View/download PDF
11. MED15 prion-like domain forms a coiled-coil responsible for its amyloid conversion and propagation
- Author
-
Batlle Carreras, Cristina, Calvo, Isabel, Iglesias, Valentin, J. Lynch, Cian, Gil-Garcia, Marcos, Serrano, Manuel, Ventura, Salvador, and Universitat Autònoma de Barcelona. Departament de Bioquímica i de Biologia Molecular
- Subjects
Prions ,Protein aggregation - Abstract
Altres ajuts: "la Caixa" Foundation i ICREA-Academia 2016 A disordered to β-sheet transition was thought to drive the functional switch of Q/N-rich prions, similar to pathogenic amyloids. However, recent evidence indicates a critical role for coiled-coil (CC) regions within yeast prion domains in amyloid formation. We show that many human prion-like domains (PrLDs) contain CC regions that overlap with polyQ tracts. Most of the proteins bearing these domains are transcriptional coactivators, including the Mediator complex subunit 15 (MED15) involved in bridging enhancers and promoters. We demonstrate that the human MED15-PrLD forms homodimers in solution sustained by CC interactions and that it is this CC fold that mediates the transition towards a β-sheet amyloid state, its chemical or genetic disruption abolishing aggregation. As in functional yeast prions, a GFP globular domain adjacent to MED15-PrLD retains its structural integrity in the amyloid state. Expression of MED15-PrLD in human cells promotes the formation of cytoplasmic and perinuclear inclusions, kidnapping endogenous full-length MED15 to these aggregates in a prion-like manner. The prion-like properties of MED15 are conserved, suggesting novel mechanisms for the function and malfunction of this transcription coactivator.
- Published
- 2021
12. Dual Antibody-Conjugated Amyloid Nanorods to Promote Selective Cell-Cell Interactions
- Author
-
Wang, Weiqiang, Gil-Garcia, Marcos, Ventura, Salvador, Wang, Weiqiang, Gil-Garcia, Marcos, and Ventura, Salvador
- Abstract
Grafting biomolecules on nanostructures' surfaces is an increasingly used strategy to target pathogenic cells, with both diagnostic and therapeutic applications. However, nanomaterials monofunctionalized by conjugating a single type of ligand find limited uses in pathologies/therapies that require two or more targets/receptors to be targeted and/or activated with a single molecular entity simultaneously. Therefore, multivalent nanomaterials for dual- or multitargeting are attracting significant interest. This study provides a proof of concept of such nanostructures. We have recently developed a modular methodology that allows obtaining amyloid-based materials decorated with active globular domains. Here, this approach is exploited to generate functional amyloid fibrils displaying antibody capture moieties. A high antibody binding affinity and capacity for the resulting nanofibrils, whose size can be manipulated to obtain homogeneous nanorods with high biocompatibility, are demonstrated. These nanorods are then used for specific antibody-mediated targeting of different cell types. Simultaneous conjugation of these nanorods with different antibodies allows obtaining a mimic of a bispecific antibody that redirects T lymphocytes to tumoral cells, holding high potential for immunotherapy. Overall, the work illustrates a modular and straightforward strategy to obtain preparative quantities of multivalent antibody-functionalized nanomaterials with multitargeting properties without the need for covalent modification.
- Published
- 2021
13. Dual Antibody-Conjugated Amyloid Nanorods to Promote Selective Cell–Cell Interactions
- Author
-
Wang, Weiqiang, primary, Gil-Garcia, Marcos, additional, and Ventura, Salvador, additional
- Published
- 2021
- Full Text
- View/download PDF
14. Additional file 1 of Coiled-coil inspired functional inclusion bodies
- Author
-
Gil-Garcia, Marcos, Navarro, Susanna, and Ventura, Salvador
- Abstract
Additional file 1: Figure S1. Coiled-coil predictions for ZapB. Figure S2. Coiled-coil predictions for 3HAMP. Figure S3. Coiled-coil predictions for TDoT. Figure S4. Secondary structure prediction by PSIPRED server. Figure S5. Secondary structure prediction by GOR server. Figure S6. AGGRESCAN3D structural aggregation propensity predictions for ZapB, TDoT and 3HAMP. Figure S7. Net charge per residue (NCPR) of the different tags. Figure S8. SDS-PAGE of the cellular distribution of ZapB. Figure S9. SDS-PAGE of ZapB purification by IMAC. Figure S10. SDS-PAGE of purified ZapB IBs. Figure S11. SDS-PAGE of the cellular distribution of GFP. Figure S12. SDS-PAGE of the cellular distribution of mCherry. Figure S13. AGGRESCAN3D structural aggregation propensity predictions for GFP and mCherry. Figure S14. SDS-PAGE of purified ZapB-GFP IBs. Figure S15. SDS-PAGE of purified ZapB-mCherry IBs. Figure S16. Characterization of the non-amyloid nature of ZapB-mCherry IBs. Figure S17. SDS-PAGE of the cellular distribution of Aβ42-GFP. Figure S18. SDS-PAGE of purified Aβ42-GFP IBs. Figure S19. DLS spectra of ZapB-GFP and Aβ42-GFP IBs. Figure S20. Epifluorescence microscopy images of ZapB-GFP and Aβ42-GFP IBs. DNA and amino acid sequences of ZapB protein.
- Published
- 2020
- Full Text
- View/download PDF
15. Combining Structural Aggregation Propensity and Stability Predictions To Redesign Protein Solubility
- Author
-
Gil-Garcia, Marcos, primary, Bañó-Polo, Manuel, additional, Varejão, Nathalia, additional, Jamroz, Michal, additional, Kuriata, Aleksander, additional, Díaz-Caballero, Marta, additional, Lascorz, Jara, additional, Morel, Bertrand, additional, Navarro, Susanna, additional, Reverter, David, additional, Kmiecik, Sebastian, additional, and Ventura, Salvador, additional
- Published
- 2018
- Full Text
- View/download PDF
16. Disulfide driven folding for a conditionally disordered protein
- Author
-
Fraga, Hugo, primary, Pujols, Jordi, additional, Gil-Garcia, Marcos, additional, Roque, Alicia, additional, Bernardo-Seisdedos, Ganeko, additional, Santambrogio, Carlo, additional, Bech-Serra, Joan-Josep, additional, Canals, Francesc, additional, Bernadó, Pau, additional, Grandori, Rita, additional, Millet, Oscar, additional, and Ventura, Salvador, additional
- Published
- 2017
- Full Text
- View/download PDF
17. Prion-like proteins, phase separation and neurodegenerative disorders
- Author
-
Gil-Garcia, Marcos, Universitat Autònoma de Barcelona. Facultat de Biociències, and Ventura, Salvador
- Subjects
Prion-like proteins ,Malalties neurodegeneratives ,Neurodegenerative disorders ,Phase separation ,Domini formador de prió ,Fase de separació - Published
- 2016
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.