26 results on '"Gigl M"'
Search Results
2. Molekularsensorische Studien zum Einfluss von hochmolekularen Inhaltsstoffen auf die Aromawahrnehmung von Lebensmitteln.
- Author
-
Gigl, M., Gabler, A., Kreißl, J., Hofmann, T., Dawid, C., and Frank, O.
- Published
- 2024
- Full Text
- View/download PDF
3. Laminarin-triggered defence responses are geographically dependent for natural populations ofSolanum chilense
- Author
-
Mhaned Oubounyt, Remco Stam, Muser M, Ralph Hückelhoven, Richard Hammerl, Corinna Dawid, Förner A, Jan Baumbach, Gigl M, and Parvinderdeep S Kahlon
- Subjects
Oomycete ,Genetics ,education.field_of_study ,Solanum chilense ,biology ,Population ,food and beverages ,biology.organism_classification ,Intraspecific competition ,Elicitor ,Laminarin ,chemistry.chemical_compound ,chemistry ,Phytophthora infestans ,Wild tomato ,education - Abstract
Natural plant populations are highly polymorphic and often show intraspecific quantitative, variation in resistance properties against pathogens. The activation of the underlying defence responses can depend on the perception of conserved pathogen-associated molecular patterns (PAMPs). To dissect and understand such variation, we evaluated the diversity of responses induced by laminarin (representing a general glucan elicitor of plant immune responses) in the wild tomato species Solanum chilense. We confirm considerable overlap of the plant9s global transcriptional responses to laminarin and to the oomycete pathogen Phytophthora infestans. We further measured key components of basal defence responses such as reactive oxygen species (ROS) production and levels of diverse phytohormones and their derivatives upon elicitation with laminarin in 83 plants originating from nine natural populations of S. chilense from distinct geographic origin. We found high diversity in these components at basal and elicitor-induced levels. We generated generalised linear mixed models (GLMMs) with these components to explain the observed resistance phenotype against P. infestans in the plants and found that additive effects of multiple components best explain resistance at the species level. For individual components, we observed the strongest positive correlation between the resistance phenotype and ethylene (ET) production upon laminarin elicitation. The strength of this correlation differed between individual populations. Chemical inhibition of ET production in individuals from a population, in which ET production was associated with resistance, provoked more severe disease symptoms. Our findings reveal high diversity in the strength of induced defence responses within a species and in the basal levels of other stress-related phytohormones. We show the involvement of multiple components with a quantitatively different contribution of individual components to resistance in geographically separated populations of S. chilense against P. infestans.
- Published
- 2021
- Full Text
- View/download PDF
4. Identifizierung und Quantifizierung von Reaktionsprodukten aus Chinasäure, Chinasäurelacton und Chlorogensäure mit Strecker Aldehyden in geröstetem Kaffee
- Author
-
Gigl, M., primary, Frank, O., additional, Barz, J., additional, Gabler, A., additional, and Hofmann, T., additional
- Published
- 2021
- Full Text
- View/download PDF
5. Skeletal muscle hypertrophy rewires glucose metabolism: An experimental investigation and systematic review.
- Author
-
Baumert P, Mäntyselkä S, Schönfelder M, Heiber M, Jacobs MJ, Swaminathan A, Minderis P, Dirmontas M, Kleigrewe K, Meng C, Gigl M, Ahmetov II, Venckunas T, Degens H, Ratkevicius A, Hulmi JJ, and Wackerhage H
- Subjects
- Animals, Mice, Humans, Hypertrophy, Muscle Fibers, Skeletal metabolism, Insulin-Like Growth Factor I metabolism, Metabolomics methods, Glucose metabolism, Muscle, Skeletal metabolism
- Abstract
Background: Proliferating cancer cells shift their metabolism towards glycolysis, even in the presence of oxygen, to especially generate glycolytic intermediates as substrates for anabolic reactions. We hypothesize that a similar metabolic remodelling occurs during skeletal muscle hypertrophy., Methods: We used mass spectrometry in hypertrophying C2C12 myotubes in vitro and plantaris mouse muscle in vivo and assessed metabolomic changes and the incorporation of the [U-
13 C6 ]glucose tracer. We performed enzyme inhibition of the key serine synthesis pathway enzyme phosphoglycerate dehydrogenase (Phgdh) for further mechanistic analysis and conducted a systematic review to align any changes in metabolomics during muscle growth with published findings. Finally, the UK Biobank was used to link the findings to population level., Results: The metabolomics analysis in myotubes revealed insulin-like growth factor-1 (IGF-1)-induced altered metabolite concentrations in anabolic pathways such as pentose phosphate (ribose-5-phosphate/ribulose-5-phosphate: +40%; P = 0.01) and serine synthesis pathway (serine: -36.8%; P = 0.009). Like the hypertrophy stimulation with IGF-1 in myotubes in vitro, the concentration of the dipeptide l-carnosine was decreased by 26.6% (P = 0.001) during skeletal muscle growth in vivo. However, phosphorylated sugar (glucose-6-phosphate, fructose-6-phosphate or glucose-1-phosphate) decreased by 32.2% (P = 0.004) in the overloaded muscle in vivo while increasing in the IGF-1-stimulated myotubes in vitro. The systematic review revealed that 10 metabolites linked to muscle hypertrophy were directly associated with glycolysis and its interconnected anabolic pathways. We demonstrated that labelled carbon from [U-13 C6 ]glucose is increasingly incorporated by ~13% (P = 0.001) into the non-essential amino acids in hypertrophying myotubes, which is accompanied by an increased depletion of media serine (P = 0.006). The inhibition of Phgdh suppressed muscle protein synthesis in growing myotubes by 58.1% (P < 0.001), highlighting the importance of the serine synthesis pathway for maintaining muscle size. Utilizing data from the UK Biobank (n = 450 243), we then discerned genetic variations linked to the serine synthesis pathway (PHGDH and PSPH) and to its downstream enzyme (SHMT1), revealing their association with appendicular lean mass in humans (P < 5.0e-8)., Conclusions: Understanding the mechanisms that regulate skeletal muscle mass will help in developing effective treatments for muscle weakness. Our results provide evidence for the metabolic rewiring of glycolytic intermediates into anabolic pathways during muscle growth, such as in serine synthesis., (© 2024 The Authors. Journal of Cachexia, Sarcopenia and Muscle published by Wiley Periodicals LLC.)- Published
- 2024
- Full Text
- View/download PDF
6. Diurnal rhythmicity of infant fecal microbiota and metabolites: A randomized controlled interventional trial with infant formula.
- Author
-
Heppner N, Reitmeier S, Heddes M, Merino MV, Schwartz L, Dietrich A, List M, Gigl M, Meng C, van der Veen DR, Schirmer M, Kleigrewe K, Omer H, Kiessling S, and Haller D
- Subjects
- Female, Humans, Infant, Bifidobacterium, Breast Feeding, Circadian Rhythm, Feces microbiology, Milk, Human, Oligosaccharides metabolism, Infant Formula microbiology, Microbiota
- Abstract
Microbiota assembly in the infant gut is influenced by diet. Breastfeeding and human breastmilk oligosaccharides promote the colonization of beneficial bifidobacteria. Infant formulas are supplemented with bifidobacteria or complex oligosaccharides, notably galacto-oligosaccharides (GOS), to mimic breast milk. To compare microbiota development across feeding modes, this randomized controlled intervention study (German Clinical Trial DRKS00012313) longitudinally sampled infant stool during the first year of life, revealing similar fecal bacterial communities between formula- and breast-fed infants (N = 210) but differences across age. Infant formula containing GOS sustained high levels of bifidobacteria compared with formula containing B. longum and B. breve or placebo. Metabolite and bacterial profiling revealed 24-h oscillations and circadian networks. Rhythmicity in bacterial diversity, specific taxa, and functional pathways increased with age and was strongest following breastfeeding and GOS supplementation. Circadian rhythms in dominant taxa were further maintained ex vivo in a chemostat model. Hence, microbiota rhythmicity develops early in life and is impacted by diet., Competing Interests: Declaration of interests The authors declare no competing interests., (Copyright © 2024 The Author(s). Published by Elsevier Inc. All rights reserved.)
- Published
- 2024
- Full Text
- View/download PDF
7. Curry-Odorants and Their Metabolites Transfer into Human Milk and Urine.
- Author
-
Debong MW, Homm I, Gigl M, Lang R, Hofmann T, Buettner A, Dawid C, and Loos HM
- Subjects
- Humans, Female, Adult, Glucuronidase metabolism, Lactation, Acrolein urine, Acrolein metabolism, Monoterpenes urine, Milk, Human chemistry, Odorants analysis, Eugenol urine, Eugenol metabolism, Eugenol analogs & derivatives, Benzaldehydes urine, Acyclic Monoterpenes urine, Acrolein analogs & derivatives
- Abstract
Scope: The excretion of dietary odorants into urine and milk is evaluated and the impact of possible influencing factors determined. Furthermore, the metabolic relevance of conjugates for the excretion into milk is investigated., Methods and Results: Lactating mothers (n = 20) are given a standardized curry dish and donated one milk and urine sample each before and 1, 2, 3, 4.5, 6, and 8 h after the intervention. The concentrations of nine target odorants in these samples are determined. A significant transition is observed for linalool into milk, as well as for linalool, cuminaldehyde, cinnamaldehyde, and eugenol into urine. Maximum concentrations are reached within 1 h after the intervention in the case of milk and within 2-3 h in the case of urine. In addition, the impact of glucuronidase treatment on odorant concentrations is evaluated in a sample subset of twelve mothers. Linalool, eugenol, and vanillin concentrations increased 3-77-fold in milk samples after treatment with β-glucuronidase., Conclusion: The transfer profiles of odorants into milk and urine differ qualitatively, quantitatively, and in temporal aspects. More substances are transferred into urine and the transfer needs a longer period compared with milk. Phase II metabolites are transferred into urine and milk., (© 2024 The Authors. Molecular Nutrition & Food Research published by Wiley‐VCH GmbH.)
- Published
- 2024
- Full Text
- View/download PDF
8. A 14-Day Double-Blind, Randomized, Controlled Crossover Intervention Study with Anti-Bacterial Benzyl Isothiocyanate from Nasturtium ( Tropaeolum majus ) on Human Gut Microbiome and Host Defense.
- Author
-
Pfäffle SP, Herz C, Brombacher E, Proietti M, Gigl M, Hofstetter CK, Mittermeier-Kleßinger VK, Claßen S, Tran HTT, Dawid C, Kreutz C, Günther S, and Lamy E
- Subjects
- Female, Humans, Isothiocyanates pharmacology, Bacteria, Escherichia coli, Metabolome, Gastrointestinal Microbiome, Tropaeolum, Nasturtium
- Abstract
Despite substantial heterogeneity of studies, there is evidence that antibiotics commonly used in primary care influence the composition of the gastrointestinal microbiota in terms of changing their composition and/or diversity. Benzyl isothiocyanate (BITC) from the food and medicinal plant nasturtium ( Tropaeolum majus ) is known for its antimicrobial activity and is used for the treatment of infections of the draining urinary tract and upper respiratory tract. Against this background, we raised the question of whether a 14 d nasturtium intervention (3 g daily, N = 30 healthy females) could also impact the normal gut microbiota composition. Spot urinary BITC excretion highly correlated with a weak but significant antibacterial effect against Escherichia coli . A significant increase in human beta defensin 1 as a parameter for host defense was seen in urine and exhaled breath condensate (EBC) upon verum intervention. Pre-to-post analysis revealed that mean gut microbiome composition did not significantly differ between groups, nor did the circulating serum metabolome. On an individual level, some large changes were observed between sampling points, however. Explorative Spearman rank correlation analysis in subgroups revealed associations between gut microbiota and the circulating metabolome, as well as between changes in blood markers and bacterial gut species., Competing Interests: The study was partly supported by a grant from Repha GmbH, Langenhagen, Germany. Repha GmbH was not involved in the design, conduction, interpretation, or publishing of the results.
- Published
- 2024
- Full Text
- View/download PDF
9. Bacteria and bacteriophage consortia are associated with protective intestinal metabolites in patients receiving stem cell transplantation.
- Author
-
Thiele Orberg E, Meedt E, Hiergeist A, Xue J, Heinrich P, Ru J, Ghimire S, Miltiadous O, Lindner S, Tiefgraber M, Göldel S, Eismann T, Schwarz A, Göttert S, Jarosch S, Steiger K, Schulz C, Gigl M, Fischer JC, Janssen KP, Quante M, Heidegger S, Herhaus P, Verbeek M, Ruland J, van den Brink MRM, Weber D, Edinger M, Wolff D, Busch DH, Kleigrewe K, Herr W, Bassermann F, Gessner A, Deng L, Holler E, and Poeck H
- Subjects
- Humans, Feces microbiology, Bacteria genetics, Bacteria metabolism, Butyric Acid metabolism, Bacteriophages genetics, Hematopoietic Stem Cell Transplantation adverse effects
- Abstract
The microbiome is a predictor of clinical outcome in patients receiving allogeneic hematopoietic stem cell transplantation (allo-SCT). Microbiota-derived metabolites can modulate these outcomes. How bacteria, fungi and viruses contribute to the production of intestinal metabolites is still unclear. We combined amplicon sequencing, viral metagenomics and targeted metabolomics from stool samples of patients receiving allo-SCT (n = 78) and uncovered a microbiome signature of Lachnospiraceae and Oscillospiraceae and their associated bacteriophages, correlating with the production of immunomodulatory metabolites (IMMs). Moreover, we established the IMM risk index (IMM-RI), which was associated with improved survival and reduced relapse. A high abundance of short-chain fatty acid-biosynthesis pathways, specifically butyric acid via butyryl-coenzyme A (CoA):acetate CoA-transferase (BCoAT, which catalyzes EC 2.8.3.8) was detected in IMM-RI low-risk patients, and virome genome assembly identified two bacteriophages encoding BCoAT as an auxiliary metabolic gene. In conclusion, our study identifies a microbiome signature associated with protective IMMs and provides a rationale for considering metabolite-producing consortia and metabolite formulations as microbiome-based therapies., (© 2024. The Author(s), under exclusive licence to Springer Nature America, Inc.)
- Published
- 2024
- Full Text
- View/download PDF
10. Barley shows reduced Fusarium head blight under drought and modular expression of differentially expressed genes under combined stress.
- Author
-
Hoheneder F, Steidele CE, Messerer M, Mayer KFX, Köhler N, Wurmser C, Heß M, Gigl M, Dawid C, Stam R, and Hückelhoven R
- Subjects
- Droughts, Gene Expression Profiling, Transcriptome, Plant Diseases genetics, Plant Diseases microbiology, Hordeum genetics, Hordeum microbiology, Fusarium physiology
- Abstract
Plants often face simultaneous abiotic and biotic stress conditions; however, physiological and transcriptional responses under such combined stress conditions are still not fully understood. Spring barley (Hordeum vulgare) is susceptible to Fusarium head blight (FHB), which is strongly affected by weather conditions. We therefore studied the potential influence of drought on FHB severity and plant responses in three varieties of different susceptibility. We found strongly reduced FHB severity in susceptible varieties under drought. The number of differentially expressed genes (DEGs) and strength of transcriptomic regulation reflected the concentrations of physiological stress markers such as abscisic acid or fungal DNA contents. Infection-related gene expression was associated with susceptibility rather than resistance. Weighted gene co-expression network analysis revealed 18 modules of co-expressed genes that reflected the pathogen- or drought-response in the three varieties. A generally infection-related module contained co-expressed genes for defence, programmed cell death, and mycotoxin detoxification, indicating that the diverse genotypes used a similar defence strategy towards FHB, albeit with different degrees of success. Further, DEGs showed co-expression in drought- or genotype-associated modules that correlated with measured phytohormones or the osmolyte proline. The combination of drought stress with infection led to the highest numbers of DEGs and resulted in a modular composition of the single-stress responses rather than a specific transcriptional output., (© The Author(s) 2023. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.)
- Published
- 2023
- Full Text
- View/download PDF
11. Effect of Rumen-Protected Methionine on Metabolic Profile of Liver, Muscle and Blood Serum Samples of Growing German Simmental Bulls Fed Protein-Reduced Diets.
- Author
-
Inhuber V, Windisch W, Kleigrewe K, Meng C, Bächler B, Gigl M, Steinhoff-Wagner J, and Ettle T
- Abstract
This study aimed to determine the metabolic response of growing German Simmental bulls fed rations low in crude protein (CP) supplemented with rumen-protected methionine (RPMET). In total, 69 bulls (on average 238 ± 11 days of age at start and 367 ± 25 kg of bodyweight) were assigned to three dietary treatments ( n = 23/group): Positive control (CON; 13.7% CP; 2.11 g methionine/kg DM), negative control deficient in CP (RED; 9.04% CP; 1.56 g methionine/kg DM) and crude protein-deficient ration supplemented with RPMET (RED+RPMET; 9.04% CP; 2.54 g methionine/kg DM). At slaughter, samples of liver, muscle and blood serum were taken and underwent subsequent metabolomics profiling using a UHPLC-QTOF-MS system. A total of 6540 features could be detected. Twenty metabolites in the liver, five metabolites in muscle and thirty metabolites in blood serum were affected ( p < 0.05) due to dietary treatments. In total, six metabolites could be reliably annotated and were thus subjected to subsequent univariate analysis. Reduction in dietary CP had minimal effect on metabolite abundance in target tissues of both RED and RED+RPMET bulls as compared to CON bulls. The addition of RPMET altered the hepatic anti-oxidant status in RED+RPMET bulls compared to both RED and CON bulls. Results exemplify nutrient partitioning in growing German Simmental bulls: bulls set maintenance as the prevailing metabolic priority (homeostasis) and nutrient trafficking as the second priority, which was directed toward special metabolic functions, such as anti-oxidant pathways.
- Published
- 2023
- Full Text
- View/download PDF
12. A ketogenic diet substantially reshapes the human metabolome.
- Author
-
Effinger D, Hirschberger S, Yoncheva P, Schmid A, Heine T, Newels P, Schütz B, Meng C, Gigl M, Kleigrewe K, Holdt LM, Teupser D, and Kreth S
- Subjects
- Humans, Chromatography, Liquid, Tryptophan, Prospective Studies, Tandem Mass Spectrometry, Metabolome, Triglycerides, Insulin, Ketone Bodies, Diet, Ketogenic adverse effects
- Abstract
Background: Western dietary habits (WD) have been shown to promote chronic inflammation, which favors the development of many of today's non-communicable diseases. Recently, ketogenic diets (KD) have emerged as an immune-regulating countermeasure for WD-induced metaflammation. To date, beneficial effects of KD have been solely attributed to the production and metabolism of ketone bodies. Given the drastic change in nutrient composition during KD, it is reasonable to assume that there are widespread changes in the human metabolome also contributing to the impact of KD on human immunity. The current study was conducted to gain insight into the changes of the human metabolic fingerprint associated with KD. This could allow to identify metabolites that may contribute to the overall positive effects on human immunity, but also help to recognize potential health risks of KD., Methods: We conducted a prospective nutritional intervention study enrolling 40 healthy volunteers to perform a three-week ad-libitum KD. Prior to the start and at the end of the nutritional intervention serum metabolites were quantified, untargeted mass spectrometric metabolome analyses and urine analyses of the tryptophan pathway were performed., Results: KD led to a marked reduction of insulin (-21.45% ± 6.44%, p = 0.0038) and c-peptide levels (-19.29% ± 5.45%, p = 0.0002) without compromising fasting blood glucose. Serum triglyceride concentration decreased accordingly (-13.67% ± 5.77%, p = 0.0247), whereas cholesterol parameters remained unchanged. LC-MS/MS-based untargeted metabolomic analyses revealed a profound shift of the human metabolism towards mitochondrial fatty acid oxidation, comprising highly elevated levels of free fatty acids and acylcarnitines. The serum amino acid (AA) composition was rearranged with lower abundance of glucogenic AA and an increase of BCAA. Furthermore, an increase of anti-inflammatory fatty acids eicosatetraenoic acid (p < 0.0001) and docosahexaenoic acid (p = 0.0002) was detected. Urine analyses confirmed higher utilization of carnitines, indicated by lower carnitine excretion (-62.61% ± 18.11%, p = 0.0047) and revealed changes to the tryptophan pathway depicting reduced quinolinic acid (-13.46% ± 6.12%, p = 0.0478) and elevated kynurenic acid concentrations (+10.70% ± 4.25%, p = 0.0269)., Conclusions: A KD fundamentally changes the human metabolome even after a short period of only three weeks. Besides a rapid metabolic switch to ketone body production and utilization, improved insulin and triglyceride levels and an increase in metabolites that mediate anti-inflammation and mitochondrial protection occurred. Importantly, no metabolic risk factors were identified. Thus, a ketogenic diet could be considered as a safe preventive and therapeutic immunometabolic tool in modern medicine., Trial Registration: German Clinical Trials Register; DRKS-ID: DRKS00027992 (www.drks.de)., Competing Interests: Conflicts of Interest The authors have no conflicts of interest to declare., (Copyright © 2023 The Author(s). Published by Elsevier Ltd.. All rights reserved.)
- Published
- 2023
- Full Text
- View/download PDF
13. Laminarin-triggered defence responses are geographically dependent in natural populations of Solanum chilense.
- Author
-
Kahlon PS, Förner A, Muser M, Oubounyt M, Gigl M, Hammerl R, Baumbach J, Hückelhoven R, Dawid C, and Stam R
- Subjects
- Ethylenes, Glucans, Plant Diseases, Solanum, Solanum lycopersicum, Phytophthora infestans physiology, Solanum tuberosum
- Abstract
Natural plant populations are polymorphic and show intraspecific variation in resistance properties against pathogens. The activation of the underlying defence responses can depend on variation in perception of pathogen-associated molecular patterns or elicitors. To dissect such variation, we evaluated the responses induced by laminarin (a glucan, representing an elicitor from oomycetes) in the wild tomato species Solanum chilense and correlated this to observed infection frequencies of Phytophthora infestans. We measured reactive oxygen species burst and levels of diverse phytohormones upon elicitation in 83 plants originating from nine populations. We found high diversity in basal and elicitor-induced levels of each component. Further we generated linear models to explain the observed infection frequency of P. infestans. The effect of individual components differed dependent on the geographical origin of the plants. We found that the resistance in the southern coastal region, but not in the other regions, was directly correlated to ethylene responses and confirmed this positive correlation using ethylene inhibition assays. Our findings reveal high diversity in the strength of defence responses within a species and the involvement of different components with a quantitatively different contribution of individual components to resistance in geographically separated populations of a wild plant species., (© The Author(s) 2023. Published by Oxford University Press on behalf of the Society for Experimental Biology.)
- Published
- 2023
- Full Text
- View/download PDF
14. Physiological recovery of tree water relations upon drought release-response of mature beech and spruce after five years of recurrent summer drought.
- Author
-
Hesse BD, Gebhardt T, Hafner BD, Hikino K, Reitsam A, Gigl M, Dawid C, Häberle KH, and Grams TEE
- Subjects
- Trees physiology, Droughts, Water physiology, Seasons, Fagus physiology, Picea physiology
- Abstract
As climate change progresses, the frequency and duration of drought stress events are increasing. While the mechanisms of drought acclimation of trees has received considerable attention in recent years, the recovery processes remain critically understudied. We used a unique throughfall exclusion experiment in a mature temperate mixed forest consisting of the more isohydric Norway spruce and more anisohydric European beech, to study the recovery and resilience after drought release. We hypothesized that pre-dawn water potential (ΨPD) of both species will increase within 1 day after watering, while the recovery of stomatal conductance (gs) and the reversal of osmoregulation will be significantly delayed in the more isohydric spruce. Furthermore, we hypothesized that the xylem sap flow density (udaily) will not fully recover within the growing season due to the strong drought impact. After 5 years of summer drought, trees showed significantly reduced ΨPD, udaily and increased osmoregulation in leaves, but only isohydric spruce displayed increased leaf abscisic acid concentrations. In line with our hypothesis, ΨPD and gs recovered within 1 day in beech. Conversely, isohydric spruce showed delayed increases in ΨPD and gs. The delay in recovery of spruce was partially related to the replenishment of the stem water reservoir, as indicated by the missing response of udaily at the crown base compared with DBH level upon watering. However, udaily fully recovered only in the next growing season for beech and was still reduced in spruce. Nevertheless, in both species, osmotic acclimations of leaves were reversed within several weeks. While both species displayed full resilience to drought stress in water-related physiology, the recovery time was in several cases, e.g., udaily, ΨPD and gs, shorter for beech than for spruce. With future increases in the frequency of drought events under ongoing climate change, tree species that recover more quickly will be favored., (© The Author(s) 2022. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permission@oup.com.)
- Published
- 2023
- Full Text
- View/download PDF
15. Proteomics- and Metabolomics-Based Analysis of Metabolic Changes in a Swine Model of Pulmonary Hypertension.
- Author
-
Sen P, Shashikadze B, Flenkenthaler F, Van de Kamp E, Tian S, Meng C, Gigl M, Fröhlich T, and Merkus D
- Subjects
- Swine, Animals, Proteomics, Lung metabolism, Metabolomics, Hypertension, Pulmonary metabolism, Pulmonary Veins metabolism
- Abstract
Pulmonary vein stenosis (PVS) causes a rare type of pulmonary hypertension (PH) by impacting the flow and pressure within the pulmonary vasculature, resulting in endothelial dysfunction and metabolic changes. A prudent line of treatment in this type of PH would be targeted therapy to relieve the pressure and reverse the flow-related changes. We used a swine model in order to mimic PH after PVS using pulmonary vein banding (PVB) of the lower lobes for 12 weeks to mimic the hemodynamic profile associated with PH and investigated the molecular alterations that provide an impetus for the development of PH. Our current study aimed to employ unbiased proteomic and metabolomic analyses on both the upper and lower lobes of the swine lung to identify regions with metabolic alterations. We detected changes in the upper lobes for the PVB animals mainly pertaining to fatty acid metabolism, reactive oxygen species (ROS) signaling and extracellular matrix (ECM) remodeling and small, albeit, significant changes in the lower lobes for purine metabolism.
- Published
- 2023
- Full Text
- View/download PDF
16. Genetic and environmental circadian disruption induce weight gain through changes in the gut microbiome.
- Author
-
Altaha B, Heddes M, Pilorz V, Niu Y, Gorbunova E, Gigl M, Kleigrewe K, Oster H, Haller D, and Kiessling S
- Subjects
- Mice, Animals, Dysbiosis, RNA, Ribosomal, 16S, ARNTL Transcription Factors, Weight Gain genetics, Obesity genetics, Body Weight, Gastrointestinal Microbiome genetics, Diabetes Mellitus, Type 2
- Abstract
Objective: Internal clocks time behavior and physiology, including the gut microbiome, in a circadian (∼24 h) manner. Mismatch between internal and external time, e.g. during shift work, disrupts circadian system coordination promoting the development of obesity and type 2 diabetes (T2D). Conversely, body weight changes induce microbiota dysbiosis. The relationship between circadian disruption and microbiota dysbiosis in metabolic diseases, however, remains largely unknown., Methods: Core and accessory clock gene expression in different gastrointestinal (GI) tissues were determined by qPCR in two different models of circadian disruption - mice with Bmal1 deficiency in the circadian pacemaker, the suprachiasmatic nucleus (Bmal1
SCNfl/- ), and wild-type mice exposed to simulated shift work (SSW). Body composition and energy balance were evaluated by nuclear magnetic resonance (NMR), bomb calorimetry, food intake and running-wheel activity. Intestinal permeability was measured in an Ussing chamber. Microbiota composition and functionality were evaluated by 16S rRNA gene amplicon sequencing, PICRUST2.0 analysis and targeted metabolomics. Finally, microbiota transfer was conducted to evaluate the functional impact of SSW-associated microbiota on the host's physiology., Results: Both chronodisruption models show desynchronization within and between peripheral clocks in GI tissues and reduced microbial rhythmicity, in particular in taxa involved in short-chain fatty acid (SCFA) fermentation and lipid metabolism. In Bmal1SCNfl/- mice, loss of rhythmicity in microbial functioning associates with previously shown increased body weight, dysfunctional glucose homeostasis and adiposity. Similarly, we observe an increase in body weight in SSW mice. Germ-free colonization experiments with SSW-associated microbiota mechanistically link body weight gain to microbial changes. Moreover, alterations in expression of peripheral clock genes as well as clock-controlled genes (CCGs) relevant for metabolic functioning of the host were observed in recipients, indicating a bidirectional relationship between microbiota rhythmicity and peripheral clock regulation., Conclusions: Collectively, our data suggest that loss of rhythmicity in bacteria taxa and their products, which likely originates in desynchronization of intestinal clocks, promotes metabolic abnormalities during shift work., (Copyright © 2022 The Authors. Published by Elsevier GmbH.. All rights reserved.)- Published
- 2022
- Full Text
- View/download PDF
17. Key odorant melanoidin interactions in aroma staling of coffee beverages.
- Author
-
Gigl M, Frank O, Gabler A, Koch T, Briesen H, and Hofmann T
- Subjects
- Beverages, Hot Temperature, Polymers chemistry, Coffee chemistry, Odorants
- Abstract
Fractionation of high molecular weight (HMW) coffee melanoidins of varying roasting intensity and evaluation of aroma binding activity via nuclear magnetic resonance spectroscopy revealed two fractions 5-10 kDa and > 50 kDa with high and selective binding affinity toward key coffee odorants. Quantification of monosaccharides, amino acids and phenolic acids, as well as aliphatic organic acids in hydrolysates of HMW material indicated the importance of aromatic residues in the form of hydroxycinnamic acids for the formation of non-covalent interactions with odorants. Caffeic acid concentrations were up to four times higher in fractions 5-10 kDa and > 50 kDa compared to 30-50 kDa and 10-30 kDa fractions. A minimization strategy was developed involving alkaline treatment of the most affine HMW fractions followed by reconstitution at typical coffee concentrations. These reconstituted HMW fractions exhibited up to 25% less aroma binding compared to native fractions of coffee., (Copyright © 2022 Elsevier Ltd. All rights reserved.)
- Published
- 2022
- Full Text
- View/download PDF
18. Species-Specific Variation in Abscisic Acid Homeostasis and Responses Impacts Important Traits in Crassocephalum Orphan Crops.
- Author
-
Adedeji-Badmus AN, Schramm S, Gigl M, Iwebema W, Albertos P, Dawid C, Sieberer T, and Poppenberger B
- Abstract
Crassocephalum rubens and Crassocephalum crepidioides are plant species native to Africa, but grow in most tropical and subtropical regions of the world. They are rich in vitamins, minerals, and essential oils and are traditional leafy vegetables and medicinal plants in Sub-Saharan Africa. The plants are still mainly collected from the wild but shall be taken into cultivation and an important aim in the domestication of these species is to improve traits that are relevant for crop production. Here, seed formation and germination capacities in C. crepidioides and C. rubens were investigated, and it was found that C. crepidioides exhibits a higher level of seed dormancy, which could be broken with light, and was correlated with higher amounts of abscisic acid (ABA), a plant hormone that promotes seed dormancy. ABA is also very well-known for its role in abiotic stress tolerance, and it is shown that tetraploid C. crepidioides exhibits a higher level of resistance against drought and heat stress than diploid C. rubens , traits that will benefit the cultivation of these plants, particularly in rain-fed cropping systems. The potential of Crassocephalum to improve nutrition and increase the resilience of marginal cropping systems in Africa is discussed., Competing Interests: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest., (Copyright © 2022 Adedeji-Badmus, Schramm, Gigl, Iwebema, Albertos, Dawid, Sieberer and Poppenberger.)
- Published
- 2022
- Full Text
- View/download PDF
19. Ring Trial on Quantitative Assessment of Bile Acids Reveals a Method- and Analyte-Specific Accuracy and Reproducibility.
- Author
-
Haange SB, Till A, Bergh PO, Fauler G, Gigl M, Löfgren-Sandblom A, Schaap FG, Clavel T, Trautwein C, Fenske W, Kleigrewe K, Marschall HU, Olde Damink SWM, Moustafa T, von Bergen M, and Rolle-Kampczyk U
- Abstract
Bile acids are a key mediator of the molecular microbiome-host interaction, and various mass spectrometry-based assays have been developed in the recent decade to quantify a wide range of bile acids. We compare existing methodologies to harmonize them. Methodology for absolute quantification of bile acids from six laboratories in Europe were compared for the quantification of the primary bile acids cholic acid (CA) and chenodeoxycholic acid (CDCA) and conjugated products glycocholic acid (GCA) and taurocholic acid (TCA). For the bacterially modified secondary bile acids, the quantification of deoxycholic acid (DCA) and lithocholic acid (LCA) was compared. For the murine bile acids, we used the primary muricholic acids (α-MCA and, β-MCA) and the intestinally produced secondary bile acid muricholic (ω-MCA). The standards were spiked into methanol:water (1:1) mix as well as in human and murine serum at either low concentration range (150-3000 nM) or high concentration range (1500-40,000 nM). The precision was better for higher concentrations. Measurements for the hydrophobic unconjugated bile acids LCA and ω-MCA were the most challenging. The quality assessments were generally very similar, and the comprehensive analyses demonstrated that data from chosen locations can be used for comparisons between studies.
- Published
- 2022
- Full Text
- View/download PDF
20. Identification and Quantitation of Reaction Products from Chlorogenic Acid, Caffeic Acid, and Their Thermal Degradation Products with Odor-Active Thiols in Coffee Beverages.
- Author
-
Gigl M, Frank O, Irmer L, and Hofmann T
- Subjects
- Caffeic Acids, Odorants analysis, Sulfhydryl Compounds chemistry, Tandem Mass Spectrometry, Chlorogenic Acid chemistry, Coffee chemistry
- Abstract
A holistic ultraperformance liquid chromatography (UPLC)-time of flight (TOF)-mass spectrometry-based approach was used to screen for storage-induced reaction products consisting of the volatile key coffee thiols methanethiol, 2-furfurylthiol, 2-methyl-3-furanthiol, 3-mercapto-3-methylbutanol, and 3-mercapto-2-butanone and low-molecular weight phenolic constituents of coffee beverages including chlorogenic acid, caffeic acid, and their thermal degradation products hydroxyhydroquinone, catechol, and 4-ethylcatechol. Multiple marker compounds could be detected in thiol-enriched coffee brews after UPLC-TOF-MS profiling and statistical data analysis. Subsequently, marker compounds were synthesized and structurally characterized via high-resolution mass spectrometry and 1D- and 2D-NMR experiments. Quantification of these reaction products in fresh and stored coffee beverages was realized in native coffee and after stir bar sorptive extraction with liquid desorption by means of UHPLC-MS/MS. The quantitative data revealed the biggest influence of storage time on the formation of reaction products between hydroxyhydroquinone and methanethiol and 2-furfurylthiol, while other reaction products were only slightly affected by storage and thus most likely formed during the roasting process.
- Published
- 2022
- Full Text
- View/download PDF
21. PHOSPHATE STARVATION RESPONSE transcription factors enable arbuscular mycorrhiza symbiosis.
- Author
-
Das D, Paries M, Hobecker K, Gigl M, Dawid C, Lam HM, Zhang J, Chen M, and Gutjahr C
- Subjects
- Signal Transduction, Soil chemistry, Transcription Factors genetics, Gene Expression Regulation, Plant, Mycorrhizae metabolism, Oryza metabolism, Phosphates deficiency, Plant Roots metabolism, Symbiosis, Transcription Factors metabolism
- Abstract
Arbuscular mycorrhiza (AM) is a widespread symbiosis between roots of the majority of land plants and Glomeromycotina fungi. AM is important for ecosystem health and functioning as the fungi critically support plant performance by providing essential mineral nutrients, particularly the poorly accessible phosphate, in exchange for organic carbon. AM fungi colonize the inside of roots and this is promoted at low but inhibited at high plant phosphate status, while the mechanistic basis for this phosphate-dependence remained obscure. Here we demonstrate that a major transcriptional regulator of phosphate starvation responses in rice PHOSPHATE STARVATION RESPONSE 2 (PHR2) regulates AM. Root colonization of phr2 mutants is drastically reduced, and PHR2 is required for root colonization, mycorrhizal phosphate uptake, and yield increase in field soil. PHR2 promotes AM by targeting genes required for pre-contact signaling, root colonization, and AM function. Thus, this important symbiosis is directly wired to the PHR2-controlled plant phosphate starvation response., (© 2022. The Author(s).)
- Published
- 2022
- Full Text
- View/download PDF
22. NMR-Based Studies on Odorant-Melanoidin Interactions in Coffee Beverages.
- Author
-
Gigl M, Hofmann T, and Frank O
- Subjects
- Beverages analysis, Humans, Polymers, Coffee, Odorants analysis
- Abstract
A quantitative
1 H NMR-based approach was established, which allowed the direct and noninvasive analysis of molecular interactions between key coffee odorants and high-molecular-weight (HMW) melanoidin polymers. A clear distinction between covalent and noncovalent interactions was achieved by monitoring the time dependency of odorant-polymer interactions, resulting in four scenarios: covalent, π-π, covalent and π-π-, as well as no interactions. Evaluation of temperature influence on e.g. 2-furfurylthiol (FFT), revealed an altered behavior with increased π-π stacking at lower temperatures and accelerated covalent interactions at higher temperatures. Human sensory experiments with HMW material and a coffee aroma reconstitution model showed a drastic reduction of "roasty/sulfury" aroma notes, as well as an increased "sweetish/caramel-like" flavor. The lack of interactions between the "sweetish/caramel" smelling 4-hydroxy-2,5-dimethyl-3(2 H )-furanone with the HMW melanoidins in combination with the high binding affinity of coffee thiols explains the sensory evaluation and is obviously the reason for the fast disappearance of the typical "roasty/sulfury" aroma impressions of a freshly prepared coffee brew.- Published
- 2021
- Full Text
- View/download PDF
23. High-Fructose Diet Alters Intestinal Microbial Profile and Correlates with Early Tumorigenesis in a Mouse Model of Barrett's Esophagus.
- Author
-
Proaño-Vasco A, Baumeister T, Metwaly A, Reitmeier S, Kleigrewe K, Meng C, Gigl M, Engleitner T, Öllinger R, Rad R, Steiger K, Anand A, Strangmann J, Thimme R, Schmid RM, Wang TC, and Quante M
- Abstract
Esophageal adenocarcinoma (EAC) is mostly prevalent in industrialized countries and has been associated with obesity, commonly linked with a diet rich in fat and refined sugars containing high fructose concentrations. In meta-organisms, dietary components are digested and metabolized by the host and its gut microbiota. Fructose has been shown to induce proliferation and cell growth in pancreas and colon cancer cell lines and also alter the gut microbiota. In a previous study with the L2-IL-1B mouse model, we showed that a high-fat diet (HFD) accelerated EAC progression from its precursor lesion Barrett's esophagus (BE) through changes in the gut microbiota. Aiming to investigate whether a high-fructose diet (HFrD) also alters the gut microbiota and favors EAC carcinogenesis, we assessed the effects of HFrD on the phenotype and intestinal microbial communities of L2-IL1B mice. Results showed a moderate acceleration in histologic disease progression, a mild effect on the systemic inflammatory response, metabolic changes in the host, and a shift in the composition, metabolism, and functionality of intestinal microbial communities. We conclude that HFrD alters the overall balance of the gut microbiota and induces an acceleration in EAC progression in a less pronounced manner than HFD.
- Published
- 2021
- Full Text
- View/download PDF
24. E. coli enhance colonization resistance against Salmonella Typhimurium by competing for galactitol, a context-dependent limiting carbon source.
- Author
-
Eberl C, Weiss AS, Jochum LM, Durai Raj AC, Ring D, Hussain S, Herp S, Meng C, Kleigrewe K, Gigl M, Basic M, and Stecher B
- Subjects
- Animals, Carbon, Escherichia coli, Galactitol, Mice, Microbiota, Salmonella typhimurium genetics
- Abstract
The composition of intrinsic microbial communities determines if invading pathogens will find a suitable niche for colonization and cause infection or be eliminated. Here, we investigate how commensal E. coli mediate colonization resistance (CR) against Salmonella Typhimurium (S. Tm). Using synthetic bacterial communities, we show that the capacity of E. coli Mt1B1 to block S. Tm colonization depends on the microbial context. In an infection-permissive context, E. coli utilized a high diversity of carbon sources and was unable to block S. Tm invasion. In mice that were stably colonized by twelve phylogenetically diverse murine gut bacteria (OMM
12 ), establishing a protective context, E. coli depleted galactitol, a substrate otherwise fueling S. Tm colonization. Here, Lachnospiraceae, capable of consuming C5 and C6 sugars, critically contributed to CR. We propose that E. coli provides CR by depleting a limited carbon source when in a microbial community adept at removing simple sugars from the intestine., Competing Interests: Declaration of interests The authors declare no competing interests., (Copyright © 2021 Elsevier Inc. All rights reserved.)- Published
- 2021
- Full Text
- View/download PDF
25. In Vitro Effect of Taraxacum officinale Leaf Aqueous Extract on the Interaction between ACE2 Cell Surface Receptor and SARS-CoV-2 Spike Protein D614 and Four Mutants.
- Author
-
Tran HTT, Gigl M, Le NPK, Dawid C, and Lamy E
- Abstract
To date, there have been rapidly spreading new SARS-CoV-2 "variants of concern". They all contain multiple mutations in the ACE2 receptor recognition site of the spike protein, compared to the original Wuhan sequence, which is of great concern, because of their potential for immune escape. Here we report on the efficacy of common dandelion ( Taraxacum officinale ) to block protein-protein interaction of SARS-COV-2 spike to the human ACE2 receptor. This could be shown for the wild type and mutant forms (D614G, N501Y, and a mix of K417N, E484K, and N501Y) in human HEK293-hACE2 kidney and A549-hACE2-TMPRSS2 lung cells. High-molecular-weight compounds in the water-based extract account for this effect. Infection of the lung cells using SARS-CoV-2 spike D614 and spike Delta (B.1.617.2) variant pseudotyped lentivirus particles was efficiently prevented by the extract and so was virus-triggered pro-inflammatory interleukin 6 secretion. Modern herbal monographs consider the usage of this medicinal plant as safe. Thus, the in vitro results reported here should encourage further research on the clinical relevance and applicability of the extract as prevention strategy for SARS-CoV-2 infection in terms of a non-invasive, oral post-exposure prophylaxis.
- Published
- 2021
- Full Text
- View/download PDF
26. Identification and Quantitation of Reaction Products from Quinic Acid, Quinic Acid Lactone, and Chlorogenic Acid with Strecker Aldehydes in Roasted Coffee.
- Author
-
Gigl M, Frank O, Barz J, Gabler A, Hegmanns C, and Hofmann T
- Subjects
- Adult, Chromatography, High Pressure Liquid, Coffee chemistry, Cooking, Female, Hot Temperature, Humans, Male, Molecular Structure, Seeds chemistry, Tandem Mass Spectrometry, Taste, Young Adult, Aldehydes chemistry, Chlorogenic Acid chemistry, Coffea chemistry, Lactones chemistry, Quinic Acid chemistry
- Abstract
To gain comprehensive insight into the interactions of key coffee odorants, like the Strecker aldehydes, acetaldehyde, propanal, methylpropanal, 2- and 3-methylbutanal, and methional, and the nonvolatile fraction of coffee, an untargeted metabolomics approach was applied. Ultra performance liquid chromatography (UPLC)-time of flight (TOF)-mass spectrometry (ESI
- ) profiling followed by statistical data analysis revealed a marker substance for a coffee beverage spiked with acetaldehyde with an accurate mass of 217.0703 [M - H]- . This compound could be identified as a reaction product of quinic acid (QA) and acetaldehyde linked by acetalization at the cis -diol function of QA. Consequently, the acetalization of aldehydes, QA, 5- O -caffeoyl quinic acid (CQA), and quinic acid γ-lactone (QAL) was investigated by means of model reactions, followed by synthesis, isolation, and structure elucidation via UPLC-TOF-MS and 1D and 2D NMR techniques. UHPLC-MS/MSMRM screening and the quantification of aldehyde adducts in coffee beverages revealed the presence of QA/acetaldehyde, -/propanal, -/methylpropanal, and -/methional reaction products and CQA/acetaldehyde, -/propanal, -/methylpropanal, -/2- and 3-methylbutanal, and -/methional and QAL/acetaldehyde adducts for the first time, in concentrations of 12-270 μg/L for QA/aldehydes, 5-225 μg/L for CQA/aldehydes, and 62-173 μg/L for QAL/acetaldehyde. The sensory characterization of the identified compounds showed bitter taste recognition thresholds of 48-297 μmol/L for CQA adducts and 658 μmol/L for QAL/acetaldehyde, while the QA adducts showed no bitter taste (<2000 μmol/L).- Published
- 2021
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.