1. Planet Occurrence within 0.25 AU of Solar-type Stars from Kepler
- Author
-
Andrew W. Howard, Geoffrey W. Marcy, Stephen T. Bryson, Jon M. Jenkins, Jason F. Rowe, Natalie M. Batalha, William J. Borucki, David G. Koch, Edward W. Dunham, Thomas N. Gautier, Jeffrey Van Cleve, William D. Cochran, David W. Latham, Jack J. Lissauer, Guillermo Torres, Timothy M. Brown, Ronald L. Gilliland, Lars A. Buchhave, Douglas A. Caldwell, Jørgen Christensen-Dalsgaard, David Ciardi, Francois Fressin, Michael R. Haas, Steve B. Howell, Hans Kjeldsen, Sara Seager, Leslie Rogers, Dimitar D. Sasselov, Jason H. Steffen, Gibor S. Basri, David Charbonneau, Jessie Christiansen, Bruce Clarke, Andrea Dupree, Daniel C. Fabrycky, Debra A. Fischer, Eric B. Ford, Jonathan J. Fortney, Jill Tarter, Forrest R. Girouard, Matthew J. Holman, John Asher Johnson, Todd C. Klaus, Pavel Machalek, Althea V. Moorhead, Robert C. Morehead, Darin Ragozzine, Peter Tenenbaum, Joseph D. Twicken, Samuel N. Quinn, Howard Isaacson, Avi Shporer, Philip W. Lucas, Lucianne M. Walkowicz, William F. Welsh, Alan Boss, Edna Devore, Alan Gould, Jeffrey C. Smith, Robert L. Morris, Andrej Prsa, Timothy D. Morton, Martin Still, Susan E. Thompson, Fergal Mullally, Michael Endl, and Phillip J. MacQueen
- Subjects
Earth and Planetary Astrophysics (astro-ph.EP) ,Physics ,FOS: Physical sciences ,Astronomy and Astrophysics ,Radius ,Astrophysics ,Effective temperature ,Orbital period ,Earth radius ,Stars ,Space and Planetary Science ,Planet ,Astrophysics::Solar and Stellar Astrophysics ,Kepler-62 ,Transit (astronomy) ,Astrophysics::Earth and Planetary Astrophysics ,Astrophysics::Galaxy Astrophysics ,Astrophysics - Earth and Planetary Astrophysics - Abstract
We report the distribution of planets as a function of planet radius (R_p), orbital period (P), and stellar effective temperature (Teff) for P < 50 day orbits around GK stars. These results are based on the 1,235 planets (formally "planet candidates") from the Kepler mission that include a nearly complete set of detected planets as small as 2 Earth radii (Re). For each of the 156,000 target stars we assess the detectability of planets as a function of R_p and P. We also correct for the geometric probability of transit, R*/a. We consider first stars within the "solar subset" having Teff = 4100-6100 K, logg = 4.0-4.9, and Kepler magnitude Kp < 15 mag. We include only those stars having noise low enough to permit detection of planets down to 2 Re. We count planets in small domains of R_p and P and divide by the included target stars to calculate planet occurrence in each domain. Occurrence of planets varies by more than three orders of magnitude and increases substantially down to the smallest radius (2 Re) and out to the longest orbital period (50 days, ~0.25 AU) in our study. For P < 50 days, the radius distribution is given by a power law, df/dlogR= k R^��. This rapid increase in planet occurrence with decreasing planet size agrees with core-accretion, but disagrees with population synthesis models. We fit occurrence as a function of P to a power law model with an exponential cutoff below a critical period P_0. For smaller planets, P_0 has larger values, suggesting that the "parking distance" for migrating planets moves outward with decreasing planet size. We also measured planet occurrence over Teff = 3600-7100 K, spanning M0 to F2 dwarfs. The occurrence of 2-4 Re planets in the Kepler field increases with decreasing Teff, making these small planets seven times more abundant around cool stars than the hottest stars in our sample. [abridged], Submitted to ApJ, 22 pages, 10 figures
- Published
- 2011
- Full Text
- View/download PDF