Given a graph $G=(V,E)$, for a vertex set $S\subseteq V$, let $N(S)$ denote the set of vertices in $V$ that have a neighbor in $S$. Extending the concept of binding number of graphs by Woodall~(1973), for a vertex set $X \subseteq V$, we define the binding number of $X$, denoted by $\bind(X)$, as the maximum number $b$ such that for every $S \subseteq X$ where $N(S)\neq V(G)$ it holds that $|N(S)|\ge b {|S|}$. Given this definition, we prove that if a graph $V(G)$ contains a subset $X$ with $\bind(X)= 1/k$ where $k$ is an integer, then $G$ possesses a matching of size at least $|X|/(k+1)$. Using this statement, we derive tight bounds for the estimators of the matching size in planar graphs. These estimators are previously used in designing sublinear space algorithms for approximating the maching size in the data stream model of computation. In particular, we show that the number of locally superior vertices is a $3$ factor approximation of the matching size in planar graphs. The previous analysis by Jowhari (2023) proved a $3.5$ approximation factor. As another application, we show a simple variant of an estimator by Esfandiari \etal (2015) achieves $3$ factor approximation of the matching size in planar graphs. Namely, let $s$ be the number of edges with both endpoints having degree at most $2$ and let $h$ be the number of vertices with degree at least $3$. We prove that when the graph is planar, the size of matching is at least $(s+h)/3$. This result generalizes a known fact that every planar graph on $n$ vertices with minimum degree $3$ has a matching of size at least $n/3$., Comment: 9 pages