1. Isolation and evaluation of South African isolates of Beauveria bassiana (Hypocreales: Cordycipitaceae) on Rhipicephalus microplus (Acari: Ixodidae)
- Author
-
Mark Laing and Ghirmay zeina
- Subjects
Veterinary medicine ,Ixodidae ,Ecology ,biology ,Hypocreales ,fungi ,Beauveria bassiana ,General Medicine ,Bassiana ,biology.organism_classification ,Galleria mellonella ,Larva ,Insect Science ,parasitic diseases ,Entomopathogenic fungus ,Rhipicephalus ,Animals ,Rhipicephalus microplus ,Female ,Beauveria ,Pest Control, Biological ,Cordycipitaceae - Abstract
Beauveria bassiana (Hypocreales: Cordycipitaceae) is an entomopathogenic fungus that has shown promising results as a biocontrol agent of ticks. Locally isolated B. bassiana are better acclimatised to the natural conditions of their geographical origin; therefore, they are essential in developing effective biocontrol agents for ticks. The current study aimed to isolate native strains of B. bassiana that are pathogenic to Rhipicephalus microplus ticks. The virulence of the isolates was tested against R. microplus larvae using a formulation containing 15% avocado oil, 0.05% adjuvant and 108 conidia mL-1. The two best strains were further evaluated for various biological parameters on adult engorged female ticks. Breakthru® or Ballista® (adjuvant) was mixed with the formulation to compare their effect on the isolates' virulence. In total 61 entomopathogenic fungi were isolated from the 360 greater wax moth larvae, Galleria mellonella (Lepidoptera: Pyralidae) used. The virulence test identified Bb-40 and Bb-41 to be the most virulent isolates against R. microplus larvae with mortalities of 91 and 93% and LT50 values of 5.8 and 6.2 days, respectively. Compared to the control, both strains significantly affected all the measured biological parameters. The type of adjuvant also considerably affected the susceptibility of ticks to the fungi. In conclusion, the two isolates combined with adjuvants can be used as a biocontrol agent to control R. microplus.
- Published
- 2021
- Full Text
- View/download PDF