1. Investigating a Dual-Channel Network in a Sustainable Closed-Loop Supply Chain Considering Energy Sources and Consumption Tax.
- Author
-
Gharye Mirzaei M, Goodarzian F, Maddah S, Abraham A, and Abdelkareim Gabralla L
- Subjects
- Iran, Renewable Energy, Uncertainty, Algorithms, Fuzzy Logic
- Abstract
This paper proposes a dual-channel network of a sustainable Closed-Loop Supply Chain (CLSC) for rice considering energy sources and consumption tax. A Mixed Integer Linear Programming (MILP) model is formulated for optimizing the total cost, the amount of pollutants, and the number of job opportunities created in the proposed supply chain network under the uncertainty of cost, supply, and demand. In addition, to deal with uncertainty, fuzzy logic is used. Moreover, four multi-objective metaheuristic algorithms are employed to solve the model, which include a novel multi-objective version of the recently proposed metaheuristic algorithm known as Multi-Objective Reptile Search Optimizer (MORSO), Multi-Objective Simulated Annealing (MOSA), Multi-Objective Particle Swarm Optimization (MOPSO), and Multi-Objective Grey Wolf (MOGWO). All the algorithms are evaluated using LP-metric in small sizes and their results and performance are compared based on criteria such as Max Spread (MS), Spread of Non-Dominance Solution (SNS), the number of Pareto solutions (NPS), Mean Ideal Distance (MID), and CPU time. In addition, to achieve better results, the parameters of all algorithms are tuned by the Taguchi method. The programmed model is implemented using a real case study in Iran to confirm its accuracy and efficiency. To further evaluate the current model, some key parameters are subject to sensitivity analysis. Empirical results indicate that MORSO performed very well and by constructing solar panel sites and producing energy out of rice waste up to 19% of electricity can be saved.
- Published
- 2022
- Full Text
- View/download PDF