185 results on '"Geron, C."'
Search Results
2. Ecosystem-scale volatile organic compound fluxes during an extreme drought in a broadleaf temperate forest of the Missouri Ozarks (central USA)
- Author
-
Seco, R, Karl, T, Guenther, A, Hosman, KP, Pallardy, SG, Gu, L, Geron, C, Harley, P, and Kim, S
- Subjects
Environmental Sciences ,Biological Sciences ,Ecology - Abstract
Considerable amounts and varieties of biogenic volatile organic compounds (BVOCs) are exchanged between vegetation and the surrounding air. These BVOCs play key ecological and atmospheric roles that must be adequately represented for accurately modeling the coupled biosphere-atmosphere-climate earth system. One key uncertainty in existing models is the response of BVOC fluxes to an important global change process: drought. We describe the diurnal and seasonal variation in isoprene, monoterpene, and methanol fluxes from a temperate forest ecosystem before, during, and after an extreme 2012 drought event in the Ozark region of the central USA. BVOC fluxes were dominated by isoprene, which attained high emission rates of up to 35.4 mg m-2 h-1 at midday. Methanol fluxes were characterized by net deposition in the morning, changing to a net emission flux through the rest of the daylight hours. Net flux of CO2 reached its seasonal maximum approximately a month earlier than isoprenoid fluxes, which highlights the differential response of photosynthesis and isoprenoid emissions to progressing drought conditions. Nevertheless, both processes were strongly suppressed under extreme drought, although isoprene fluxes remained relatively high compared to reported fluxes from other ecosystems. Methanol exchange was less affected by drought throughout the season, confirming the complex processes driving biogenic methanol fluxes. The fraction of daytime (7-17 h) assimilated carbon released back to the atmosphere combining the three BVOCs measured was 2% of gross primary productivity (GPP) and 4.9% of net ecosystem exchange (NEE) on average for our whole measurement campaign, while exceeding 5% of GPP and 10% of NEE just before the strongest drought phase. The meganv2.1 model correctly predicted diurnal variations in fluxes driven mainly by light and temperature, although further research is needed to address model BVOC fluxes during drought events.
- Published
- 2015
3. Overview of the Manitou experimental forest observatory: Site description and selected science results from 2008 to 2013
- Author
-
Ortega, J, Turnipseed, A, Guenther, AB, Karl, TG, Day, DA, Gochis, D, Huffman, JA, Prenni, AJ, Levin, EJT, Kreidenweis, SM, Demott, PJ, Tobo, Y, Patton, EG, Hodzic, A, Cui, YY, Harley, PC, Hornbrook, RS, Apel, EC, Monson, RK, Eller, ASD, Greenberg, JP, Barth, MC, Campuzano-Jost, P, Palm, BB, Jimenez, JL, Aiken, AC, Dubey, MK, Geron, C, Offenberg, J, Ryan, MG, Fornwalt, PJ, Pryor, SC, Keutsch, FN, Digangi, JP, Chan, AWH, Goldstein, AH, Wolfe, GM, Kim, S, Kaser, L, Schnitzhofer, R, Hansel, A, Cantrell, CA, Mauldin, RL, and Smith, JN
- Subjects
Meteorology & Atmospheric Sciences ,Atmospheric Sciences ,Astronomical and Space Sciences - Abstract
The Bio-hydro-atmosphere interactions of Energy, Aerosols, Carbon, H 2O, Organics & Nitrogen (BEACHON) project seeks to understand the feedbacks and inter-relationships between hydrology, biogenic emissions, carbon assimilation, aerosol properties, clouds and associated feedbacks within water-limited ecosystems. The Manitou Experimental Forest Observatory (MEFO) was established in 2008 by the National Center for Atmospheric Research to address many of the BEACHON research objectives, and it now provides a fixed field site with significant infrastructure. MEFO is a mountainous, semi-arid ponderosa pine-dominated forest site that is normally dominated by clean continental air but is periodically influenced by anthropogenic sources from Colorado Front Range cities. This article summarizes the past and ongoing research activities at the site, and highlights some of the significant findings that have resulted from these measurements. These activities include, -soil property measurements, -hydrological studies, -measurements of high-frequency turbulence parameters, -eddy covariance flux measurements of water, energy, aerosols and carbon dioxide through the canopy, -determination of biogenic and anthropogenic volatile organic compound emissions and their influence on regional atmospheric chemistry, -aerosol number and mass distributions, -chemical speciation of aerosol particles, -characterization of ice and cloud condensation nuclei, -trace gas measurements; and- model simulations using coupled chemistry and meteorology In addition to various long-term continuous measurements, three focused measurement campaigns with state-of-the-art instrumentation have taken place since the site was established, and two of these studies are the subjects of this special issue: BEACHON-ROCS (Rocky Mountain Organic Carbon Study, 2010) and BEACHON-RoMBAS (Rocky Mountain Biogenic Aerosol Study, 2011). © 2014 Author(s). CC Attribution 3.0 License.
- Published
- 2014
4. Observed and modeled ecosystem isoprene fluxes from an oak-dominated temperate forest and the influence of drought stress
- Author
-
Potosnak, MJ, LeStourgeon, L, Pallardy, SG, Hosman, KP, Gu, L, Karl, T, Geron, C, and Guenther, AB
- Subjects
Biosphere-atmosphere interactions ,Isoprene ,Eddy covariance ,Ecosystem fluxes ,Drought stress ,Meteorology & Atmospheric Sciences ,Statistics ,Atmospheric Sciences ,Environmental Engineering - Abstract
Ecosystem fluxes of isoprene emissions were measured during the majority of the 2011 growing season at the University of Missouri's Baskett Wildlife Research and Education Area in central Missouri, USA (38.7° N, 92.2° W). This broadleaf deciduous forest is typical of forests common in the Ozarks region of the central United States. The goal of the isoprene flux measurements was to test our understanding of the controls on isoprene emission from the hourly to the seasonal timescale using a state-of-the-art emission model, MEGAN (Model of Emissions of Gases and Aerosols from Nature). Isoprene emission rates from the forest were very high with a maximum of 53.3mgm-2h-1 (217nmolm-2s-1), which to our knowledge exceeds all other reports of canopy-scale isoprene emission. The fluxes showed a clear dependence on the previous temperature and light regimes, which was successfully captured by the existing algorithms in MEGAN. During a period of drought, MEGAN was unable to reproduce the time-dependent response of isoprene emission to water stress. Overall, the performance of MEGAN was robust and could explain 90% of the observed variance in the measured fluxes, but the response of isoprene emission to drought stress is a major source of uncertainty. © 2013 Elsevier Ltd.
- Published
- 2014
5. New particle formation and growth in an isoprene-dominated ozark forest: From sub-5 nm to CCN-active sizes
- Author
-
Yu, H, Ortega, J, Smith, JN, Guenther, AB, Kanawade, VP, You, Y, Liu, Y, Hosman, K, Karl, T, Seco, R, Geron, C, Pallardy, SG, Gu, L, Mikkilä, J, and Lee, SH
- Subjects
Meteorology & Atmospheric Sciences ,Chemical Sciences ,Earth Sciences ,Engineering - Abstract
Particle Investigations at a Northern Ozarks Tower: NOx, Oxidant, Isoprene Research (PINOT NOIR) were conducted in a Missouri forest dominated by isoprene emissions from May to October 2012. This study presents results of new particle formation (NPF) and the growth of new particles to cloud condensation nuclei (CCN)-active sizes (∼100 nm) observed during this field campaign. The measured sub-5 nm particles were up to ∼20,000 cm-3 during a typical NPF event. Nucleation rates J1 were relatively high (11.0 ± 10.6 cm-3 s-1), and one order of magnitude higher than formation rates of 5 nm particles (J5). Sub-5 nm particle formation events were observed during 64% of measurement days, with a high preference in biogenic volatile organic compounds (BVOCs)- and SO2-poor northwesterly (90%) air masses than in BVOCs-rich southerly air masses (13%). About 80% of sub-5 nm particle events led to the further growth. While high temperatures and high aerosol loadings in the southerly air masses were not favorable for nucleation, high BVOCs in the southerly air masses facilitated the growth of new particles to CCN-active sizes. In overall, 0.4-9.4% of the sub-5 nm particles grew to CCN-active sizes within each single NPF event. During a regional NPF event period that took place consecutively over several days, concentrations of CCN size particles increased by a factor of 4.7 in average. This enhanced production of CCN particles from new particles was commonly observed during all 13 regional NPF events during the campaign period.
- Published
- 2014
6. Estimations of isoprenoid emission capacity from enclosure studies: Measurements, data processing, quality and standardized measurement protocols
- Author
-
Niinemets, U, Kuhn, U, Harley, PC, Staudt, M, Arneth, A, Cescatti, A, Ciccioli, P, Copolovici, L, Geron, C, Guenther, A, Kesselmeier, J, Lerdau, MT, Monson, RK, and Peñuelas, J
- Subjects
Meteorology & Atmospheric Sciences ,Earth Sciences ,Environmental Sciences ,Biological Sciences - Abstract
The capacity for volatile isoprenoid production under standardized environmental conditions at a certain time (S, the emission factor) is a key characteristic in constructing isoprenoid emission inventories. However, there is large variation in published E S estimates for any given species partly driven by dynamic modifications in E S due to acclimation and stress responses. Here we review additional sources of variation in E S estimates that are due to measurement and analytical techniques and calculation and averaging procedures, and demonstrate that estimations of E S critically depend on applied experimental protocols and on data processing and reporting. A great variety of experimental setups has been used in the past, contributing to study-to-study variations in E S estimates. We suggest that past experimental data should be distributed into broad quality classes depending on whether the data can or cannot be considered quantitative based on rigorous experimental standards. Apart from analytical issues, the accuracy of E S values is strongly driven by extrapolation and integration errors introduced during data processing. Additional sources of error, especially in meta-database construction, can further arise from inconsistent use of units and expression bases of E S. We propose a standardized experimental protocol for BVOC estimations and highlight basic meta-information that we strongly recommend to report with any E S measurement. We conclude that standardization of experimental and calculation protocols and critical examination of past reports is essential for development of accurate emission factor databases. © 2011 Author(s).
- Published
- 2011
7. Large estragole fluxes from oil palms in Borneo
- Author
-
Misztal, PK, Owen, SM, Guenther, AB, Rasmussen, R, Geron, C, Harley, P, Phillips, GJ, Ryan, A, Edwards, DP, Hewitt, CN, Nemitz, E, Siong, J, Heal, MR, and Cape, JN
- Subjects
Meteorology & Atmospheric Sciences ,Atmospheric Sciences ,Astronomical and Space Sciences - Abstract
During two field campaigns (OP3 and ACES), which ran in Borneo in 2008, we measured large emissions of estragole (methyl chavicol; IUPAC systematic name 1-allyl-4-methoxybenzene; CAS number 140-67-0) in ambient air above oil palm canopies (0.81 mgm-2 h-1 and 3.2 ppbv for mean midday fluxes and mixing ratios respectively) and subsequently from flower enclosures. However, we did not detect this compound at a nearby rainforest. Estragole is a known attractant of the African oil palm weevil (Elaeidobius kamerunicus), which pollinates oil palms (Elaeis guineensis). There has been recent interest in the biogenic emissions of estragole but it is normally not included in atmospheric models of biogenic emissions and atmospheric chemistry despite its relatively high potential for secondary organic aerosol formation from photooxidation and high reactivity with OH radical. We report the first direct canopy-scale measurements of estragole fluxes from tropical oil palms by the virtual disjunct eddy covariance technique and compare them with previously reported data for estragole emissions from Ponderosa pine. Flowers, rather than leaves, appear to be the main source of estragole from oil palms; we derive a global estimate of estragole emissions from oil palm plantations of ∼0.5 Tg y-1. The observed ecosystem mean fluxes (0.44 mgm-2 h-1) and mean ambient volume mixing ratios (3.0 ppbv) of estragole are the highest reported so far. The value for midday mixing ratios is not much different from the total average as, unlike other VOCs (e.g. isoprene), the main peak occurred in the evening rather than in the middle of the day. Despite this, we show that the estragole flux can be parameterised using a modified G06 algorithm for emission. However, the model underestimates the afternoon peak even though a similar approach works well for isoprene. Our measurements suggest that this biogenic compound may have an impact on regional atmospheric chemistry that previously has not been accounted for in models and could become more important in the future due to expansion of the areas of oil palm plantation. © 2010 Author(s).
- Published
- 2010
8. Sesquiterpene emissions from loblolly pine and their potential contribution to biogenic aerosol formation in the Southeastern US
- Author
-
Helmig, D, Ortega, J, Guenther, A, Herrick, JD, and Geron, C
- Subjects
sesquiterpenes ,montoterpenes ,emission factors ,organic secondary aerosol ,Environmental Engineering ,Atmospheric Sciences ,Statistics ,Meteorology & Atmospheric Sciences - Abstract
Sesquiterpene (SQT) and montoterpene (MT) emissions from loblolly pine (Pinus taeda L.) were studied by branch enclosure experiments at Duke Forest in Chapel Hill, NC. Four SQT (β-caryophyllene, α-bergamotene, α-humulene, β-farnesene), five MT (α-pinene, β-pinene, β-myrcene, β-phellandrene, limonene), and the oxygenated MT linalool were identified. Emission rates of both compound classes increased exponentially with temperature, albeit SQT temperature coefficients (0.12-0.18 K-1) were higher than for MT (0.068-0.15 K-1), resulting in an increased contribution of SQT to the overall biogenic volatile organic compound (BVOC) flux during warm temperature conditions. The highly correlated variables of light and temperature conditions preclude a rigorous characterization of their individual roles in driving these emissions. However, the observations indicate that there may be both temperature-only and temperature/light-dependent components contributing to SQT emission variations. When normalized to 30 °C using the best-fit temperature algorithm, total SQT basal emission rate was 450 ng g-1 h-1. The potential contribution of SQT from all pine trees (based on the loblolly pine emission factors) to secondary, biogenic organic aerosol in 12 southeastern US states was estimated to be 7×106 kg for the month of September which constitutes an appreciable portion of the overall PM 2.5 emission budget. © 2006 Elsevier Ltd. All rights reserved.
- Published
- 2006
9. Biogenic volatile organic compound emissions from desert vegetation of the southwestern US
- Author
-
Geron, C, Guenther, A, Greenberg, J, Karl, T, and Rasmussen, R
- Subjects
isoprene ,monoterpene ,biogenic volatile organic compounds ,leaf temperature ,photosynthetically active radiation ,emission factor ,Larrea tridentata ,Ephedra nevadensis ,Ambrosia dumosa ,Ambrosia deltoidea ,Environmental Engineering ,Atmospheric Sciences ,Statistics ,Meteorology & Atmospheric Sciences - Abstract
Thirteen common plant species in the Mojave and Sonoran Desert regions of the western US were tested for emissions of biogenic non-methane volatile organic compounds (BVOCs). Only two of the species examined emitted isoprene at rates of 10 μg C g-1 h-1or greater. These species accounted for
- Published
- 2006
10. Volatile organic compounds from vegetation in southern Yunnan Province, China: Emission rates and some potential regional implications
- Author
-
Geron, C, Owen, S, Guenther, A, Greenberg, J, Rasmussen, R, Hui Bai, J, Li, QJ, and Baker, B
- Subjects
isoprene ,monoterpene ,biogenic volatile organic compounds ,leaf temperature ,photosynthetically active radiation ,emission factor ,Hevea brasiliensis ,Arecaceae ,fern ,Ficus ,Xishuangbanna tropical biological garden ,Environmental Engineering ,Atmospheric Sciences ,Statistics ,Meteorology & Atmospheric Sciences - Abstract
Little information is currently available regarding emissions of biogenic volatile organic compounds (BVOCs) in southern Asia. To address the need for BVOC emission estimates in regional atmospheric chemistry simulations, 95 common plant species were screened for emissions of BVOC in and near the Xishuangbanna Tropical Biological Gardens in southern Yunnan Province, Peoples' Republic of China in February 2003. In situ measurements with leaf cuvettes and branch bag enclosures were used in combination with portable gas chromatography, flame ionization, photoionization, and mass spectral detection to identify and quantify BVOC emissions. Forty-four of the species examined emitted isoprene at rates exceeding 20 μg C g-1 (leaf dry weight) h-1. An emphasis was placed on the genus Ficus, which is important in the region and occupies a wide range of ecological niches. Several species in the footprint of a nearby flux tower were also examined. Several palm species and an abundant fern (Cyclosorus parasiticus) emitted substantial amounts of isoprene, and probably accounted for observed daytime mean isoprene fluxes from the understory of a Hevea brasiliensis plantation of 1.0 and 0.15 mg C m-2 h -1 during the wet and dry seasons, respectively. These measurements verify that both the forest floor and canopy in this region can be sources of isoprene. Monoterpene emissions exceeded 1.0 μg-C g-1 (leaf dry weight) h-1 from only 4 of 38 species surveyed, including some Ficus species and H. brasiliensis. However most of the trees of the latter species were sparsely foliated due to dry season senescence, and emission factors are approximately an order of magnitude lower than those reported during the wet season. BVOC emission rates and physiology of many species are impacted by reduced moisture availability, especially Mangifera indica. South Asia is a region undergoing rapid landuse change and forest plantation establishment, with large increases in area of high BVOC-emitting species in the genera Bambusa, Elaeis, Eucalyptus, Hevea, Pinus, and Populus (among others). This could result in profound changes in atmospheric chemistry in these regions, for instance, terpene emissions from H. brasiliensis could increase wet season biogenic organic aerosol burdens by approximately a factor of 2 in the Xishuangbanna region. Increases in plantation area established with high isoprene emitting species, (e.g. Bambusa spp. and Eucalyptus spp.) are also projected for China and other parts of Southeast Asia in the near future. Thus, landcover change in South Asian landscapes is usually associated with large increases in BVOC flux with the potential to alter the atmospheric chemical composition and air quality over this rapidly developing region. © 2005 Elsevier Ltd. All rights reserved.
- Published
- 2006
11. Estimates of global terrestrial isoprene emissions using MEGAN (Model of Emissions of Gases and Aerosols from Nature)
- Author
-
Guenther, A, Karl, T, Harley, P, Wiedinmyer, C, Palmer, PI, and Geron, C
- Subjects
Meteorology & Atmospheric Sciences ,Atmospheric Sciences ,Astronomical and Space Sciences - Abstract
Reactive gases and aerosols are produced by terrestrial ecosystems, processed within plant canopies, and can then be emitted into the above-canopy atmosphere. Estimates of the above-canopy fluxes are needed for quantitative earth system studies and assessments of past, present and future air quality and climate. The Model of Emissions of Gases and Aerosols from Nature (MEGAN) is described and used to quantify net terrestrial biosphere emission of isoprene into the atmosphere. MEGAN is designed for both global and regional emission modeling and has global coverage with ∼1 km2 spatial resolution. Field and laboratory investigations of the processes controlling isoprene emission are described and data available for model development and evaluation are summarized. The factors controlling isoprene emissions include biological, physical and chemical driving variables. MEGAN driving variables are derived from models and satellite and ground observations. Tropical broadleaf trees contribute almost half of the estimated global annual isoprene emission due to their relatively high emission factors and because they are often exposed to conditions that are conducive for isoprene emission. The remaining flux is primarily from shrubs which have a widespread distribution. The annual global isoprene emission estimated with MEGAN ranges from about 500 to 750 Tg isoprene (440 to 660 Tg carbon) depending on the driving variables which include temperature, solar radiation, Leaf Area Index, and plant functional type. The global annual isoprene emission estimated using the standard driving variables is ∼600Tg isoprene. Differences in driving variables result in emission estimates that differ by more than a factor of three for specific times and locations. It is difficult to evaluate iso prene emission estimates using the concentration distributions simulated using chemistry and transport models, due to the substantial uncertainties in other model components, but at least some global models produce reasonable results when using isoprene emission distributions similar to MEGAN estimates. In addition, comparison with isoprene emissions estimated from satellite formaldehyde observations indicates reasonable agreement. The sensitivity of isoprene emissions to earth system changes (e.g., climate and land-use) demonstrates the potential for large future changes in emissions. Using temperature distributions simulated by global climate models for year 2100, MEGAN estimates that isoprene emissions increase by more than a factor of two. This is considerably greater than previous estimates and additional observations are needed to evaluate and improve the methods used to predict future isoprene emissions.
- Published
- 2006
12. Ozarks Isoprene Experiment (OZIE): Measurements and modeling of the "isoprene volcano"
- Author
-
Wiedinmyer, C, Greenberg, J, Guenther, A, Hopkins, B, Baker, K, Geron, C, Palmer, PI, Long, BP, Turner, JR, Pétron, G, Harley, P, Pierce, TE, Lamb, B, Westberg, H, Baugh, W, Koerber, M, and Janssen, M
- Subjects
Meteorology & Atmospheric Sciences - Abstract
The Ozarks Isoprene Experiment (OZIE) was conducted in July 1998 in Missouri, Illinois, Indiana, and Oklahoma. OZIE was designed to investigate the presumed strong isoprene emission rates from the Missouri Ozarks, where there is a high density of oak trees that are efficient isoprene emitters. Ground, balloon, and aircraft measurements were taken over a three-week study period; 0-D and 3-D chemical models were subsequently used to better understand the observed isoprene emissions from the Ozarks and to investigate their potential regional-scale impacts. Leaf-level measurements for two oak tree species yielded normalized average isoprene emission capacities of 66 mgC g-1 h-1, in good agreement with values used in current biogenic emissions models. However, the emission capacities exhibited a temperature dependence that is not captured by commonly used biogenic emission models. Isoprene mixing ratios measured aloft from tethered balloon systems were used to estimate isoprene fluxes. These measurement-derived fluxes agreed with BEIS3 estimates within the relatively large uncertainties in the estimates. Ground-level isoprene mixing ratios exhibited substantial spatial heterogeneity, ranging from
- Published
- 2005
13. Role of canopy-scale photochemistry in modifying biogenic-atmosphere exchange of reactive terpene species: Results from the CELTIC field study
- Author
-
Stroud, C, Makar, P, Karl, T, Guenther, A, Geron, C, Turnipseed, A, Nemitz, E, Baker, B, Potosnak, M, and Fuentes, JD
- Subjects
Meteorology & Atmospheric Sciences - Abstract
A one-dimensional canopy model was used to quantify the impact of photochemistry in modifying biosphere-atmosphere exchange of trace gases. Canopy escape efficiencies, defined as the fraction of emission that escapes into the well-mixed boundary layer, were calculated for reactive terpene species. The modeled processes of emission, photochemistry, diffusive transport, and deposition were highly constrained based on intensive observations collected in a Loblolly Pine plantation at Duke Forest, North Carolina, during the CELTIC field study. Canopy top fluxes for isoprene and α,β-pinene were not significantly altered by photochemistry as calculated escape efficiencies were greater than 0.90 for both species, β-caryophyllene emission and photochemistry were added to the canopy model as a surrogate for the reactive sesquiterpene class of species, β-caryopyllene escape efficiencies of 0.30 were calculated for midday summertime conditions. Urbanization scenarios were also performed to assess the impact of pollution on modifying biosphere-atmosphere exchange. Modest changes in escape efficiencies were calculated for a wide range of anthropogenic hydrocarbon and NOx mixing ratios suggesting a simple parameterization of escape efficiency in terms of grid cell NOx may be possible for incorporating the impact of canopy scale photochemistry within biogenic emission processing systems for regional air quality and climate models. The inferred magnitude of sesquiterpene ozonolysis reactions has important implications on both daytime and nighttime radical formation in the canopy. Copyright 2005 by the American Geophysical Union.
- Published
- 2005
14. Wet and dry season ecosystem level fluxes of isoprene and monoterpenes from a southeast Asian secondary forest and rubber tree plantation
- Author
-
Baker, B, Bai, JH, Johnson, C, Cai, ZT, Li, QJ, Wang, YF, Guenther, A, Greenberg, J, Klinger, L, Geron, C, and Rasmussen, R
- Subjects
isoprene ,monoterpenes ,biogenic volatile organic compounds ,eddy covariance ,Hevea brasiliensis ,Environmental Engineering ,Atmospheric Sciences ,Statistics ,Meteorology & Atmospheric Sciences - Abstract
Canopy scale fluxes of isoprene and monoterpenes were investigated in both wet and dry seasons above a rubber tree (Hevea brasiliensis)/secondary tropical forest in the Yunnan province of southwestern China. Drought conditions were unusually high during the dry season experiment. The eddy covariance measurement technique was used to measure isoprene fluxes, while monoterpene fluxes were modeled based on leaf level emission measurements. Maximum observed isoprene fluxes occurred during the wet season and daytime average fluxes were about 1 mg C m -2 h -1. Dry season fluxes were much lower with a daytime average of 0.15 mg C m -2 h -1. Wet season isoprene fluxes compare quite well with isoprene fluxes observed from other tropical forests. Monoterpene fluxes came, almost entirely, from Hevea brasiliensis, which is a light-dependent monoterpene emitter. Modeled wet season total monoterpene fluxes were about 2 mg C m -2 h -1 (average for the daytime), and in the dry season were undetectable. Extreme drought conditions, and the drought deciduous nature of Hevea brasiliensis may be the cause of the low dry season fluxes. © 2004 Elsevier Ltd. All rights reserved.
- Published
- 2005
15. Exchange processes of volatile organic compounds above a tropical rain forest: Implications for modeling tropospheric chemistry above dense vegetation
- Author
-
Karl, T, Potosnak, M, Guenther, A, Clark, D, Walker, J, Herrick, JD, and Geron, C
- Subjects
VOC ,flux ,PTRMS ,Meteorology & Atmospheric Sciences - Abstract
Disjunct eddy covariance in conjunction with continuous in-canopy gradient measurements allowed for the first time to quantify the fine-scale source and sink distribution of some of the most abundant biogenic (isoprene, monoterpenes,methanol, acetaldehyde, and acetone) and photooxidized (MVK+MAC, acetone, acetaldehyde, acetic, and formic acid) VOCs in an old growth tropical rain forest. Our measurements revealed substantial isoprene emissions (up to 2.50 mg m-2 h -1) and light-dependent monoterpene emissions (up to 0.33 mg m-2 h-1) at the peak of the dry season (April and May 2003). Oxygenated species such as methanol, acetone, and acetaldehyde were typically emitted during daytime with net fluxes up to 0.50, 0.36, and 0.20 mg m-2 h-1, respectively. When generalized for tropical rain forests, these fluxes would add up to a total emission of 36, 16, 19, 106, and 7.2 Tg/yr for methanol, acetaldehyde, acetone, isoprene, and monoterpenes, respectively. During nighttime we observed strong sinks for oxygenated and nitrogen-containing compounds such as methanol, acetone, acetaldehyde, MVK+MAC, and acetonitrile with deposition velocities close to the aerodynamic limit. This suggests that the canopy resistance (R c) is very small and not the rate-limiting step for the nighttime deposition of many VOCs. Our measured mean dry deposition velocities of methanol, acetone, acetaldehyde, MVK+MAC, and acetonitrile were a factor 10-20 higher than estimated from traditional deposition models. If our measurements are generalized, this could have important implications for the redistribution of VOCs in atmospheric chemistry models. Our observations indicate that the current understanding of reactive carbon exchange can only be seen as a first-order approximation. Copyright 2004 by the American Geophysical Union.
- Published
- 2004
16. Biogenic volatile organic compound emissions from a lowland tropical wet forest in Costa Rica
- Author
-
Geron, C, Guenther, A, Greenberg, J, Loescher, HW, Clark, D, and Baker, B
- Subjects
isoprene ,biogenic volatile organic compounds ,relaxed eddy accumulation ,Pentaclethra macroloba ,Palmae ,La Selva Biological Station ,Environmental Engineering ,Atmospheric Sciences ,Statistics ,Meteorology & Atmospheric Sciences - Abstract
Twenty common plant species were screened for emissions of biogenic volatile organic compounds (BVOCs) at a lowland tropical wet forest site in Costa Rica. Ten of the species examined emitted substantial quantities of isoprene. These species accounted for 35-50% of the total basal area of old-growth forest on the major edaphic site types, indicating that a high proportion of the canopy leaf area is a source of isoprene. A limited number of canopy-level BVOC flux measurements were also collected by relaxed eddy accumulation (REA). These measurements verify that the forest canopy in this region is indeed a significant source of isoprene. In addition, REA fluxes of methanol and especially acetone were also significant, exceeding model estimates and warranting future investigation at this site. Leaf monoterpene emissions were non-detectable or very low from the species surveyed, and ambient concentrations and REA fluxes likewise were very low. Although the isoprene emission rates reported here are largely consistent with phylogenetic relations found in other studies (at the family, genus, and species levels), two species in the family Mimosaceae, a group previously found to consist largely of non-isoprene emitters, emitted significant quantities of isoprene. One of these, Pentaclethra macroloba (Willd.) Kuntze, is by far the most abundant canopy tree species in the forests of this area, composing 30-40% of the total basal area. The other, Zygia longifolia (Humb. & Bonpl.) Britton & Rose is a common riparian species. Our results suggest that the source strength of BVOCs is important not only to tropical atmospheric chemistry, but also may be important in determining net ecosystem carbon exchange.
- Published
- 2002
17. Measurement of oak tree density with Landsat TM data for estimating biogenic isoprene emissions in Tennessee, USA
- Author
-
Baugh, W, Klinger, L, Guenther, A, and Geron, C
- Subjects
Geological & Geomatics Engineering ,Physical Geography and Environmental Geoscience ,Geomatic Engineering - Abstract
Isoprene emissions from oak trees in the eastern USA play an important role in tropospheric ozone pollution. Oak trees (Quercus) emit an order of magnitude more isoprene than most other emitting tree species, and are by far the largest source of biogenic isoprene in the eastern US. We used Landsat TM data to measure oak tree abundance near Oak Ridge. Tennessee, to estimate fluxes of isoprene. The Landsat classification was performed using multi-date data: supervised classification techniques, and an iterative approach. Training sites were selected based on transect data, and ten vegetation classes were mapped. A supervised classification algorithm called the Spectral Angle Mapper was used to classify the data. Empirical vegetation emission data were used to estimate the isoprene flux from each of the vegetation classes. The resultant isoprene flux maps were compared with concentrations measured in the field, and a good correspondence was observed. We also compare the Landsat classification with three other landcover schemes including the USGS's Global Landcover Classification, which is based on AVHRR data. Results from these landcover classifications are used as input for models that predict tropospheric ozone production and are used to investigate ozone control strategies. © 2001 Taylor and Francis Ltd.
- Published
- 2001
18. Isoprene emission capacity for US tree species
- Author
-
Geron, C, Harley, P, and Guenther, A
- Subjects
Liquidambar ,Nyssa ,Populus ,Quercus ,Robinia ,Salix ,oak ,emission factor ,isoprene capacity ,leaf temperature ,photosynthetically active radiation ,Environmental Engineering ,Atmospheric Sciences ,Statistics ,Meteorology & Atmospheric Sciences - Abstract
Isoprene emission capacity measurements are presented from 18 North American oak (Quercus) species and species from six other genera previously found to emit significant quantities of isoprene. Sampling was conducted at physiographically diverse locations in North Carolina, Central California, and Northern Oregon. Emissions from several sun leaves of each species were measured at or near standard conditions (leaf temperature of 30°C and photosynthetically active radiation of 1000 μmol m-2s-1) using environmentally controlled cuvette systems and gas chromatography with reduction gas detectors. Species mean emission capacity ranged from 39 to 158 μg Cg-1h-1 (mean of 86), or 22 to 79 nmol m-2s-1 (mean of 44). These rates are 2-28 times higher than those previously reported from the same species, which were summarized in a recent study where isoprene emission rates were assigned based on published data and taxonomy. These discrepancies were attributed to differences in leaf environment during development, measurement technique (branch or plant enclosure versus leaf enclosure), and lack of environmental measurements associated with some of the earlier branch enclosure measurements. Mass-based emission capacities for 15 of 18 oak species, sweetgum (Liquidambar styraciflua), and poplars (Populus trichocarpa and P. deltoides) were within ranges used in current biogenic volatile organic compound (BVOC) emission models, while measured rates for the remaining three oak species, Nyssa sylvatica, Platanus occidentalis, Robinia pseudoacacia, Salix nigra, and Populus hybrids (Populus trichocarpa × P. deltoides) were considerably higher. In addition, mean specific leaf mass of the oak species was 30% higher than assumed in current emission models. Emission rates reported here and in other recent studies support recent conclusions that isoprene emission capacities for sun leaves of high emitting species may be better represented by a value of 100 ± 50 μg Cg-1h-1 during hot summer conditions. We also find that intermediate isoprene emission rates previously suggested for some tree species may not represent their true emission capacities, and that broadleaf plant species may have either low (< 1.0 μg Cg-1h-1) or very high (∼ 100 μg Cg-1h-1) genetic capacity to emit isoprene when mature foliage is exposed to a high ambient temperature and light environment.
- Published
- 2001
19. Biogenic Hydrocarbons in the Atmospheric Boundary Layer: A Review
- Author
-
Fuentes, JD, Gu, L, Lerdau, M, Atkinson, R, Baldocchi, D, Bottenheim, JW, Ciccioli, P, Lamb, B, Geron, C, Guenther, A, Sharkey, TD, and Stockwell, W
- Subjects
Climate Action ,Astronomical and Space Sciences ,Atmospheric Sciences ,Physical Geography and Environmental Geoscience ,Meteorology & Atmospheric Sciences - Abstract
Nonmethane hydrocarbons are ubiquitous trace atmospheric constituents yet they control the oxidation capacity of the atmosphere. Both anthropogenic and biogenic processes contribute to the release of hydrocarbons to the atmosphere. In this manuscript, the state of the science concerning biosynthesis, transport, and chemical transformation of hydrocarbons emitted by the terrestrial biosphere is reviewed. In particular, the focus is on isoprene, monoterpenes, and oxygenated hydrocarbons. The generated science during the last 10 years is reviewed to explain and quantify hydrocarbon emissions from vegetation and to discern impacts of biogenic hydrocarbons on local and regional atmospheric chemistry. Furthermore, the physiological and environmental processes controlling biosynthesis and production of hydrocarbon compounds are reported on. Many advances have been made on measurement and modeling approaches developed to quantify hydrocarbon emissions from leaves and forest ecosystems. A synthesis of the atmospheric chemistry of biogenic hydrocarbons and their role in the formation of oxidants and aerosols is presented. The integration of biogenic hydrocarbon kinetics and atmospheric physics into mathematical modeling systems is examined to assess the contribution of biogenic hydrocarbons to the formation of oxidants and aerosols, thereby allowing us to study their impacts on the earth's climate system and to develop strategies to reduce oxidant precursors in affected regions.
- Published
- 2000
20. A review and synthesis of monoterpene speciation from forests in the United States
- Author
-
Geron, C, Rasmussen, R, Arnts, RR, and Guenther, A
- Subjects
alpha-pinene ,conifers ,emission model ,biogenic volatile organic compounds ,essential oil ,Environmental Engineering ,Atmospheric Sciences ,Statistics ,Meteorology & Atmospheric Sciences - Abstract
The monoterpene composition (emission and tissue internal concentration) of major forest tree species in the United States is discussed. Of the 14 most commonly occurring compounds (α-pinene, β-pinene, Δ3-carene, d-limonene, camphene, myrcene, α-terpinene, β-phellandrene, sabinene, ρ-cymene, ocimene, α-thujene, terpinolene, and γ-terpinene), the first six are usually found to be most abundant. Expected regional variability based on the monoterpene composition fingerprints and corresponding tree species distribution and abundance is examined. In the southeast, a-pinene and β-pinene seem to dominate monoterpene emissions, while in the northern forests emissions are distributed more evenly among the six major compounds. In some parts of western forests, β-pinene and Δ3-carene can be more abundant than α-pinene. Among the other eight compounds, β-phellandrene and sabinene occasionally are significant percentages of expected local monoterpene emissions. Ocimene and ρ-cymene are estimated to be more common in regions dominated by deciduous broadleaf forests, although total emission rates are generally lower for these forests relative to those dominated by conifers. These percentages are compared with monoterpene composition measured in ambient air at various sites. Estimated monoterpene emission composition based on local forest species composition agrees fairly well with ambient measurements for the six major compounds. The past assumption that α-pinene composes approximately 50% of total monoterpene emissions appears reasonable for many areas, except for possibly the northern coniferous forests and some areas in the west dominated by true firs, spruce, and western pines (lodgepole and ponderosa pines). The oxygenated monoterpenes such as camphor, bornyl acetate, and cineole often compose high percentages of the monoterpenes within plant tissues, but are much less abundant in emission samples. Even after adjusting for lower vapor pressures of these compounds, emission rates relative to the hydrocarbon monoterpenes are often lower than would be expected from their internal concentrations. More study is warranted on monoterpene emission rates and composition, especially from the spruces, true firs, hemlocks, cedars, and some deciduous species such as the maples. Non-invasive canopy level and whole ecosystem flux studies are also needed to establish uncertainty estimates for monoterpene emission models. © 2000 Elsevier Science Ltd. All rights reserved.
- Published
- 2000
21. Natural emissions of non-methane volatile organic compounds, carbon monoxide, and oxides of nitrogen from North America
- Author
-
Guenther, A, Geron, C, Pierce, T, Lamb, B, Harley, P, and Fall, R
- Subjects
isoprene ,monoterpenes ,hydrocarbons ,carbon monoxide ,nitric oxide ,biogenic emissions ,volatile organic compounds ,Environmental Engineering ,Atmospheric Sciences ,Statistics ,Meteorology & Atmospheric Sciences - Abstract
The magnitudes, distributions, controlling processes and uncertainties associated with North American natural emissions of oxidant precursors are reviewed. Natural emissions are responsible for a major portion of the compounds, including non-methane volatile organic compounds (NMVOC), carbon monoxide (CO) and nitric oxide (NO), that determine tropospheric oxidant concentrations. Natural sources include soil microbes, vegetation, biomass burning, and lightning. These sources are strongly influenced by human activities that have led to significant changes in the magnitude and distribution of natural emissions in the past two centuries. The total NMVOC flux of about 84 × 1012 g of carbon (Tg C) is comprised primarily of isoprene (35%), 19 other terpenoid compounds (25%) and 17 non-terpenoid compounds (40%). Vegetation is predicted to contribute about 98% of the total annual natural NMVOC emission. The estimated annual natural NO emission of 2.1 × 1012 g of nitrogen (Tg N) from North America is primarily due to soils and lightning, while the estimated 10 Tg C of CO arises from biomass burning and vegetation. Field measurements of ambient concentrations and above canopy fluxes have validated emission estimates for a few compounds from some important landscapes. The uncertainty associated with natural emission estimates ranges from less than 50% for midday summer isoprene emission from some locations to about a factor of 10 for some compounds and landscapes.
- Published
- 2000
22. Volatile organic compound emission rates from mixed deciduous and coniferous forests in Northern Wisconsin, USA
- Author
-
Isebrands, JG, Guenther, AB, Harley, P, Helmig, D, Klinger, L, Vierling, L, Zimmerman, P, and Geron, C
- Subjects
Climate Action ,tropospheric ozone ,Quercus ,Populus ,Picea ,Salix ,isoprene ,monoterpene ,VOC ,Statistics ,Atmospheric Sciences ,Environmental Engineering ,Meteorology & Atmospheric Sciences - Abstract
Biogenic emissions of volatile organic compounds (VOC) from forests play an important role in regulating the atmospheric trace gas composition including global tropospheric ozone concentrations. However, more information is needed on VOC emission rates from different forest regions of the world to understand regional and global impacts and to implement possible mitigation strategies. The mixed deciduous and coniferous forests of northern Wisconsin, USA, were predicted to have significant VOC emission rates because they are comprised of many genera (i.e. Picea, Populus, Quercus, Salix) known to be high VOC emitters. In July 1993, a study was conducted on the Chequamegon National Forest near Rhinelander, WI, to identify and quantify VOC emitted from major trees, shrubs, and understory herbs in the mixed northern forests of this region. Emission rates were measured at various scales - at the leaf level with cuvettes, the branch level with branch enclosures, the canopy level with a tower based system, and the landscape level with a tethered balloon air sampling system. Area-average emission rates were estimated by scaling, using biomass densities and species composition along transects representative of the study site. Isoprene (C5H8) was the primary VOC emitted, although significant quantities of monoterpenes (C10H16) were also emitted. The highest emission rates of isoprene (at 30°C and photosynthetically active radiation of 1000 μmol m-2 s-1) were from northern red oak (Quercus rubra, > 110 μg(C) g-1 h-1); aspen (Populus tremuloides, > 77); willow (Salix spp., > 54); and black spruce (Picea mariana, > 10). Emission rates of hybrid poplar clones ranged from 40 to 90 μg(C) g-1 h-1 at 25°C; those of Picea provenances were generally < 10, and emission rates of a hybrid between North American and European spruces were intermediate to parental rates. More than 30 species of plants were surveyed from the sites, including several from previously unstudied genera such as Alnus, Chamaedaphne, Ledum, Tilia, Rubus, and Sphagnum. Based on the measured isoprene concentrations in the daytime atmospheric surface layer and mixed layer, area-averaged fluxes of isoprene were estimated to be about 1 mg(C)m-2 h-1. This estimate agrees reasonably well with model predictions. Our results indicate that mixed forests in the Lake States region of the USA are a significant source of reactive VOC to the atmosphere. Accurate estimates of these emissions are required for determining appropriate regulatory air pollution control strategies. Future studies are needed to extrapolate these estimates to other landscapes and to better understand the factors controlling observed variations in VOC emissions.
- Published
- 1999
23. Biogenic volatile organic compound emissions (BVOCs). II. Landscape flux potentials from three continental sites in the U.S.
- Author
-
Helmig, D, Klinger, LF, Guenther, A, Vierling, L, Geron, C, and Zimmerman, P
- Subjects
Plants ,Organic Chemicals ,Ecology ,Environmental Monitoring ,Volatilization ,Reference Values ,Georgia ,Wisconsin ,Colorado ,Environmental Sciences ,Meteorology & Atmospheric Sciences - Abstract
Landscape flux potentials for biogenic volatile organic compounds (BVOCs) were derived for three ecosystems in the continental U.S. (Fernbank Forest, Atlanta, GA; Willow Creek, Rhinelander, WI; Temple Ridge, CO). Analytical data from branch enclosure measurements were combined with ecological survey data for plant species composition and biomass. Other quantitative flux measurements at the leaf and landscape level were incorporated to scale the results from the enclosure measurements to the landscape level. Flux estimates were derived by using a one week ambient temperature and light record (30 min time resolution) and adjusting all emission rates to these conditions with temperature and light correction algorithms.
- Published
- 1999
24. Biogenic volatile organic compound emissions (BVOCs). I. Identifications from three continental sites in the U.S.
- Author
-
Helmig, D, Klinger, LF, Guenther, A, Vierling, L, Geron, C, and Zimmerman, P
- Subjects
Plants ,Organic Chemicals ,Chromatography ,Gas ,Air Pollution ,Environmental Monitoring ,Volatilization ,Georgia ,Wisconsin ,Colorado ,Mass Spectrometry ,Environmental Sciences ,Meteorology & Atmospheric Sciences - Abstract
Vegetation composition and biomass were surveyed for three specific sites in Atlanta, GA; near Rhinelander, WI; and near Hayden, CO. At each research site emissions of biogenic volatile organic compounds (BVOCs) from the dominant vegetation species were sampled by enclosing branches in bag enclosure systems and sampling the equilibrium head space onto multi-stage solid adsorbent cartridges. Analysis was performed using a thermal desorption technique with gas chromatography (GC) separation and mass spectrometry (MS) detection. Identification of BVOCs covering the GC retention index range (stationary phase DB-1) from approximately 400 to 1400 was achieved (volatilities C4-C14).
- Published
- 1999
25. Tethered balloon measurements of biogenic VOCs in the atmospheric boundary layer
- Author
-
Greenberg, JP, Guenther, A, Zimmerman, P, Baugh, W, Geron, C, Davis, K, Helmig, D, and Klinger, LF
- Subjects
biogenic emissions ,isoprene ,terpenes ,tethered balloon ,atmospheric boundary layer ,Statistics ,Atmospheric Sciences ,Environmental Engineering ,Meteorology & Atmospheric Sciences - Abstract
Biogenic volatile organic compounds (BVOCs) were measured on tethered balloon platforms in 11 deployments between 1985 and 1996. A series of balloon sampling packages have been used to describe boundary layer dynamics, BVOC distribution, chemical transformations of BVOCs, and to estimate BVOC emission rates from terrestrial vegetation. Measurements indicated a slow decrease of concentration for BVOCs with altitude in the mixed layer when sampling times were greater than average convective turnover time; surface layer concentrations were more variable because of proximity to various emission sources in the smaller surface layer footprint. Mixed layer concentrations of isoprene remained fairly constant in the middle of the day, in contrast to canopy-level isoprene concentrations, which continued to increase until early evening. Daytime emissions, which increase with temperature and light, appear to be balanced by changes in entrainment and oxidation. Daytime measurements of methacrolein and methyl vinyl ketone, reaction products of the atmospheric oxidation of isoprene, showed fairly constant ratio to each other with altitude throughout the mixed layer. BVOC emission flux estimates using balloon measurements and from the extrapolation of leaf level emissions to the landscape scale were in good agreement.
- Published
- 1999
26. Influence of increased isoprene emissions on regional ozone modeling
- Author
-
Pierce, T, Geron, C, Bender, L, Dennis, R, Tonnesen, G, and Guenther, A
- Subjects
Earth Sciences ,Atmospheric Sciences ,Meteorology & Atmospheric Sciences - Abstract
The role of biogenic hydrocarbons on ozone modeling has been a controversial issue since the 1970s. In recent years, changes in biogenic emission algorithms have resulted in large increases in estimated isoprene emissions. This paper describes a recent algorithm, the second generation of the Biogenic Emissions Inventory System (BEIS2). A sensitivity analysis is performed with the Regional Acid Deposition Model (RADM) to examine how increased isoprene emissions generated with BEIS2 can influence the modeling of elevated ozone concentrations and the response of ozone to changes to volatile organic compound (VOC) and nitrogen oxide (NOx) emissions across much of eastern North America. Increased isoprene emissions are found to produce a predicted shift in elevated ozone concentrations from VOC sensitivity to NOx sensitivity over many areas of eastern North America. Isoprene concentrations measured near Scotia, Pennsylvania, during the summer of 1988 are compared with RADM estimates of isoprene and provide support for the veracity of the higher isoprene emissions in BEIS2, which are about a factor of 5 higher than BEIS1 during warm, sunny conditions. Copyright 1998 by the American Geophysical Union.
- Published
- 1998
27. Volatile organic compounds and isoprene oxidation products at a temperate deciduous forest site
- Author
-
Helmig, D, Greenberg, J, Guenther, A, Zimmerman, P, and Geron, C
- Subjects
Meteorology & Atmospheric Sciences - Abstract
Biogenic volatile organic compounds (BVOCs) and their role in atmospheric oxidant formation were investigated at a forest site near Oak Ridge, Tennessee, as part of the Nashville Southern Oxidants Study (SOS) in July 1995. Of 98 VOCs detected, a major fraction were anthropogenic VOCs such as chlorofluorocarbons (CFCs), alkanes, alkenes and aromatic compounds. Isoprene was the dominant BVOC during daytime. Primary products from BVOC oxidation were methylvinylketone, methacrolein and 3-methylfuran. Other compounds studied include the BVOCs α-pinene, camphene, β-pinene, p-cymene, limonene and cis-3-hexenyl acetate and a series of light alkanes, aromatic hydrocarbons and seven of the CFCs. The correlation of meteorological parameters, with the mixing ratios of these different compounds, reveals information on atmospheric oxidation processes and transport. Long-lived VOCs show very steady mixing ratio time series. Regionally and anthropogenically emitted VOCs display distinct diurnal cycles with a strong mixing ratio decrease in the morning from the breakup of the nocturnal boundary layer. Nighttime mixing ratio increases of CFCs and anthropogenic VOCs are suspected to derive from emissions within the Knoxville urban area into the shallow nocturnal boundary layer. In contrast, the time series of BVOCs and their oxidation products are determined by a combination of emission control, atmospheric oxidation and deposition, and boundary layer dynamics. Mixing ratio tune series data for monoterpenes and cis-3-hexenyl acetate suggest a temporarily emission rate increase during and after heavy rain events. The isoprene oxidation products demonstrate differences in the oxidation pathways during night and day and in their dry and wet deposition rates. Copyright 1998 by the American Geophysical Union.
- Published
- 1998
28. Evaluation of forest canopy models for estimating isoprene emissions
- Author
-
Lamb, B, Pierce, T, Baldocchi, D, Allwine, E, Dilts, S, Westberg, H, Geron, C, Guenther, A, Klinger, L, Harley, P, and Zimmerman, P
- Subjects
Meteorology & Atmospheric Sciences ,Atmospheric Sciences ,Physical Geography and Environmental Geoscience - Abstract
During the summer of 1992, isoprene emissions were measured in a mixed deciduous forest near Oak Ridge, Tennessee. Measurements were aimed at the experimental scale-up of emissions from the leaf level to the forest canopy to the mixed layer. Results from the scale-up study are compared to different canopy models for determining the leaf microclimate as input to isoprene emission algorithms. These include (1) no canopy effects, (2) a simple vertical scaling canopy model with a leaf energy balance, and (3) a numerical canopy model which accounts for leaf-sun geometries, photosynthesis, respiration, transpiration, and gas transport in the canopy. Initial evaluation of the models was based upon a standard emission rate factor of 90 μgC g-1 hr-1 (0.42 nmol g-1 s-1) taken from leaf cuvette measurements and a biomass density factor of 203 g m-2 taken from biomass surveys and a flux footprint analysis. The results indicated that predicted fluxes were consistent among the models to within approximately ±20%, but that the models overestimated the mean flux by about a factor of 2 and overestimated the maximum observed flux by 30 to 50%. Adjusting the standard emission factor and biomass density each downward by 20% yielded predicted means approximately 20% greater than the observed means and predicted maxima approximately 25% less than the observed maxima. Accounting for changes in biomass density as a function of direction upwind of the tower improved the overall model performance.
- Published
- 1996
29. Isoprene fluxes measured by enclosure, relaxed eddy accumulation, surface layer gradient, mixed layer gradient, and mixed layer mass balance techniques
- Author
-
Guenther, A, Baugh, W, Davis, K, Hampton, G, Harley, P, Klinger, L, Vierling, L, Zimmerman, P, Allwine, E, Dilts, S, Lamb, B, Westberg, H, Baldocchi, D, Geron, C, and Pierce, T
- Subjects
Meteorology & Atmospheric Sciences - Abstract
Isoprene fluxes were estimated using eight different measurement techniques at a forested site near Oak Ridge, Tennessee, during July and August 1992. Fluxes from individual leaves and entire branches were estimated with four enclosure systems, including one system that controls leaf temperature and light. Variations in isoprene emission with changes in light, temperature, and canopy depth were investigated with leaf enclosure measurements. Representative emission rates for the dominant vegetation in the region were determined with branch enclosure measurements. Species from six tree genera had negligible isoprene emissions, while significant emissions were observed for Quercus, Liquidambar, and Nyssa species. Abovecanopy isoprene fluxes were estimated with surface layer gradients and relaxed eddy accumulation measurements from a 44-m tower. Midday net emission fluxes from the canopy were typically 3 to 5 mg C m-2 h-1, although net isoprene deposition fluxes of-0.2 to -2 mg C m-2 h-1 were occasionally observed in early morning and late afternoon. Above-canopy CO2 fluxes estimated by eddy correlation using either an open path sensor or a closed path sensor agreed within ±5%. Relaxed eddy accumulation estimates of CO2 fluxes were within 15% of the eddy correlation estimates. Daytime isoprene mixing ratios in the mixed layer were investigated with a tethered balloon sampling system and ranged from 0.2 to 5 ppbv, averaging 0.8 ppbv. The isoprene mixing ratios in the mixed layer above the forested landscape were used to estimate isoprene fluxes of 2 to 8 mg C m-2 h-1 with mixed layer gradient and mixed layer mass balance techniques. Total foliar density and dominant tree species composition for an approximately 8100 km2 region were estimated using high-resolution (30 m) satellite data with classifications supervised by ground measurements. A biogenic isoprene emission model used to compare flux measurements, ranging from leaf scale (10 cm2) to landscape scale (102 km2), indicated agreement to within ±25%, the uncertainty associated with these measurement techniques. Existing biogenic emission models use isoprene emission rate capacities that range from 14.7 to 70 μg C g-1 h-1 (leaf temperature of 30°C and photosynthetically active radiation of 1000 μmol m-2 s-1) for oak foliage. An isoprene emission rate capacity of 100 μg C g-1 h-1 for oaks in this region is more realistic and is recommended, based on these measurements.
- Published
- 1996
30. Leaf, branch, stand and landscape scale measurements of volatile organic compound fluxes from U.S. woodlands
- Author
-
Guenther, A, Greenberg, J, Harley, P, Helmig, D, Klinger, L, Vierling, L, Zimmerman, P, and Geron, C
- Subjects
Climate Change Impacts and Adaptation ,Environmental Sciences ,biogenic emission model ,diurnal variation ,hexenol derivatives ,isoprene ,monoterpenes ,sesquiterpenes ,spatial variation ,Ecology ,Plant Biology ,Forestry Sciences ,Plant Biology & Botany ,Plant biology ,Climate change impacts and adaptation - Abstract
Natural volatile organic compound (VOC) fluxes were measured in three U.S. woodlands in summer 1993. Fluxes from individual leaves and branches were estimated with enclosure techniques and used to initialize and evaluate VOC emission model estimates. Ambient measurements were used to estimate above canopy fluxes for entire stands and landscapes. The branch enclosure experiments revealed 78 VOCs. Hexenol derivatives were the most commonly observed oxygenated compounds. The branch measurements also revealed high rates of isoprene emission from three genera of plants (Albizia, Chusqua and Mahonia) and high rates of monoterpene emission from three genera (Atriplex, Chrysthamnus and Sorbus) for which VOC emission rates have not been reported. Measurements on an additional 34 species confirmed previous results. Leaf enclosure measurements of isoprene emission rates from Quercus were substantially higher than the rates used in existing emission models. Model predictions of diurnal variations in isoprene fluxes were generally within +/- 35% of observed flux variations. Measurements with a fast response analyzer demonstrated that 60 min is a reasonable time resolution for biogenic emission models. Average daytime stand scale (hundreds of m) flux measurements ranged from about 1.3 mg C m(-2) h(-1) for a shrub oak stand to 1.5-2.5 mg C m(-2) h(-1) for a mixed forest stand. Morning, evening and nighttime fluxes were less than 0.1 mg C m(-2) h(-1). Average daytime landscape scale (tens of km) flux measurements ranged from about 3 mg C m(-2) h(-1) for a shrub oak-aspen and rangeland landscape to about 7 mg C m(-2) h(-1) for a deciduous forest landscape. Fluxes predicted by recent versions (BEIS2, BEIS2.1) of a biogenic emission model were within 10 to 50% of observed fluxes and about 300% higher than those predicted by a previous version of the model (BEIS).
- Published
- 1996
31. Estimates of regional natural volatile organic compound fluxes from enclosure and ambient measurements
- Author
-
Guenther, A, Zimmerman, P, Klinger, L, Greenberg, J, Ennis, C, Davis, K, Pollock, W, Westberg, H, Allwine, G, and Geron, C
- Subjects
Meteorology & Atmospheric Sciences ,Atmospheric Sciences ,Physical Geography and Environmental Geoscience - Abstract
Natural volatile organic compound (VOC) emissions were investigated at two forested sites in the southeastern United States. A variety of VOC compounds including methanol, 2-methyl-3-buten-2-ol, 6-methyl-5-hepten-2-one, isoprene and 15 monoterpenes were emitted from vegetation at these sites. Diurnal variations in VOC emissions were observed and related to light and temperature. Variations in isoprene emission from individual branches are well correlated with light intensity and leaf temperature while variations in monoterpene emissions can be explained by variations in leaf temperature alone. Isoprene emission rates for individual leaves tend to be about 75% higher than branch average emission rates due to shading on the lower leaves of a branch. Average daytime mixing ratios of 13.8 and 6.6 ppbv C isoprene and 5.0 and 4.5 ppbv C monoterpenes were observed at heights between 40 m and 1 km above ground level the two sites. Isoprene and monoterpenes account for 30% to 40% of the total carbon in the ambient non-methane VOC quantified in the mixed layer at these sites and over 90% of the VOC reactivity with OH. Ambient mixing ratios were used to estimate isoprene and monoterpene fluxes by applying box model and mixed-layer gradient techniques. Although the two techniques estimate fluxes averaged over different spatial scales, the average fluxes calculated by the two techniques agree within a factor of two. The ambient mixing ratios were used to evaluate a biogenic VOC emission model that uses field measurements of plant species composition, remotely sensed vegetation distributions, leaf level emission potentials determined from vegetation enclosures, and light and temperature dependent emission activity factors. Emissions estimated for a temperature of 30°C and above canopy photosynthetically active radiation flux of 1000 μmol m-2 s-1 are around 4 mg C m-2 h-1 of isoprene and 0.7 mg C m-2 h-1 of monoterpenes at the ROSE site in western Alabama and 3 mg C m-2 h-1 of isoprene and 0.5 mg C m-2 h-1 of monoterpenes at the SOS-M site in eastern Georgia. Isoprene and monoterpene emissions based on land characteristics data and emission enclosure measurements are within a factor of two of estimates based on ambient measurements in most cases. This represents reasonable agreement due to the large uncertainties associated with these models and because the observed differences are at least partially due to differences in the size and location of the source region ("flux footprint") associated with each flux estimate.
- Published
- 1996
32. Global maps of soil temperature
- Author
-
Lembrechts, J. J. (Jonas J.), van den Hoogen, J. (Johan), Aalto, J. (Juha), Ashcroft, M. B. (Michael B.), De Frenne, P. (Pieter), Kemppinen, J. (Julia), Kopecky, M. (Martin), Luoto, M. (Miska), Maclean, I. M. (Ilya M. D.), Crowther, T. W. (Thomas W.), Bailey, J. J. (Joseph J.), Haesen, S. (Stef), Klinges, D. H. (David H.), Niittynen, P. (Pekka), Scheffers, B. R. (Brett R.), Van Meerbeek, K. (Koenraad), Aartsma, P. (Peter), Abdalaze, O. (Otar), Abedi, M. (Mehdi), Aerts, R. (Rien), Ahmadian, N. (Negar), Ahrends, A. (Antje), Alatalo, J. M. (Juha M.), Alexander, J. M. (Jake M.), Allonsius, C. N. (Camille Nina), Altman, J. (Jan), Ammann, C. (Christof), Andres, C. (Christian), Andrews, C. (Christopher), Ardo, J. (Jonas), Arriga, N. (Nicola), Arzac, A. (Alberto), Aschero, V. (Valeria), Assis, R. L. (Rafael L.), Assmann, J. J. (Jakob Johann), Bader, M. Y. (Maaike Y.), Bahalkeh, K. (Khadijeh), Barancok, P. (Peter), Barrio, I. C. (Isabel C.), Barros, A. (Agustina), Barthel, M. (Matti), Basham, E. W. (Edmund W.), Bauters, M. (Marijn), Bazzichetto, M. (Manuele), Marchesini, L. B. (Luca Belelli), Bell, M. C. (Michael C.), Benavides, J. C. (Juan C.), Benito Alonso, J. L. (Jose Luis), Berauer, B. J. (Bernd J.), Bjerke, J. W. (Jarle W.), Bjork, R. G. (Robert G.), Bjorkman, M. P. (Mats P.), Bjornsdottir, K. (Katrin), Blonder, B. (Benjamin), Boeckx, P. (Pascal), Boike, J. (Julia), Bokhorst, S. (Stef), Brum, B. N. (Barbara N. S.), Bruna, J. (Josef), Buchmann, N. (Nina), Buysse, P. (Pauline), Camargo, J. L. (Jose Luis), Campoe, O. C. (Otavio C.), Candan, O. (Onur), Canessa, R. (Rafaella), Cannone, N. (Nicoletta), Carbognani, M. (Michele), Carnicer, J. (Jofre), Casanova-Katny, A. (Angelica), Cesarz, S. (Simone), Chojnicki, B. (Bogdan), Choler, P. (Philippe), Chown, S. L. (Steven L.), Cifuentes, E. F. (Edgar F.), Ciliak, M. (Marek), Contador, T. (Tamara), Convey, P. (Peter), Cooper, E. J. (Elisabeth J.), Cremonese, E. (Edoardo), Curasi, S. R. (Salvatore R.), Curtis, R. (Robin), Cutini, M. (Maurizio), Dahlberg, C. J. (C. Johan), Daskalova, G. N. (Gergana N.), Angel de Pablo, M. (Miguel), Della Chiesa, S. (Stefano), Dengler, J. (Juergen), Deronde, B. (Bart), Descombes, P. (Patrice), Di Cecco, V. (Valter), Di Musciano, M. (Michele), Dick, J. (Jan), Dimarco, R. D. (Romina D.), Dolezal, J. (Jiri), Dorrepaal, E. (Ellen), Dusek, J. (Jiri), Eisenhauer, N. (Nico), Eklundh, L. (Lars), Erickson, T. E. (Todd E.), Erschbamer, B. (Brigitta), Eugster, W. (Werner), Ewers, R. M. (Robert M.), Exton, D. A. (Dan A.), Fanin, N. (Nicolas), Fazlioglu, F. (Fatih), Feigenwinter, I. (Iris), Fenu, G. (Giuseppe), Ferlian, O. (Olga), Fernandez Calzado, M. R. (M. Rosa), Fernandez-Pascual, E. (Eduardo), Finckh, M. (Manfred), Higgens, R. F. (Rebecca Finger), Forte, T. G. (T'ai G. W.), Freeman, E. C. (Erika C.), Frei, E. R. (Esther R.), Fuentes-Lillo, E. (Eduardo), Garcia, R. A. (Rafael A.), Garcia, M. B. (Maria B.), Geron, C. (Charly), Gharun, M. (Mana), Ghosn, D. (Dany), Gigauri, K. (Khatuna), Gobin, A. (Anne), Goded, I. (Ignacio), Goeckede, M. (Mathias), Gottschall, F. (Felix), Goulding, K. (Keith), Govaert, S. (Sanne), Graae, B. J. (Bente Jessen), Greenwood, S. (Sarah), Greiser, C. (Caroline), Grelle, A. (Achim), Guenard, B. (Benoit), Guglielmin, M. (Mauro), Guillemot, J. (Joannes), Haase, P. (Peter), Haider, S. (Sylvia), Halbritter, A. H. (Aud H.), Hamid, M. (Maroof), Hammerle, A. (Albin), Hampe, A. (Arndt), Haugum, S. V. (Siri, V), Hederova, L. (Lucia), Heinesch, B. (Bernard), Helfter, C. (Carole), Hepenstrick, D. (Daniel), Herberich, M. (Maximiliane), Herbst, M. (Mathias), Hermanutz, L. (Luise), Hik, D. S. (David S.), Hoffren, R. (Raul), Homeier, J. (Juergen), Hörtnagl, L. (Lukas), Hoye, T. T. (Toke T.), Hrbacek, F. (Filip), Hylander, K. (Kristoffer), Iwata, H. (Hiroki), Jackowicz-Korczynski, M. A. (Marcin Antoni), Jactel, H. (Herve), Jarveoja, J. (Jarvi), Jastrzebowski, S. (Szymon), Jentsch, A. (Anke), Jimenez, J. J. (Juan J.), Jonsdottir, I. S. (Ingibjorg S.), Jucker, T. (Tommaso), Jump, A. S. (Alistair S.), Juszczak, R. (Radoslaw), Kanka, R. (Robert), Kaspar, V. (Vit), Kazakis, G. (George), Kelly, J. (Julia), Khuroo, A. A. (Anzar A.), Klemedtsson, L. (Leif), Klisz, M. (Marcin), Kljun, N. (Natascha), Knohl, A. (Alexander), Kobler, J. (Johannes), Kollar, J. (Jozef), Kotowska, M. M. (Martyna M.), Kovacs, B. (Bence), Kreyling, J. (Juergen), Lamprecht, A. (Andrea), Lang, S. I. (Simone, I), Larson, C. (Christian), Larson, K. (Keith), Laska, K. (Kamil), Maire, G. I. (Guerric Ie), Leihy, R. I. (Rachel, I), Lens, L. (Luc), Liljebladh, B. (Bengt), Lohila, A. (Annalea), Lorite, J. (Juan), Loubet, B. (Benjamin), Lynn, J. (Joshua), Macek, M. (Martin), Mackenzie, R. (Roy), Magliulo, E. (Enzo), Maier, R. (Regine), Malfasi, F. (Francesco), Malis, F. (Frantisek), Man, M. (Matej), Manca, G. (Giovanni), Manco, A. (Antonio), Manise, T. (Tanguy), Manolaki, P. (Paraskevi), Marciniak, F. (Felipe), Matula, R. (Radim), Clara Mazzolari, A. (Ana), Medinets, S. (Sergiy), Medinets, V. (Volodymyr), Meeussen, C. (Camille), Merinero, S. (Sonia), Guimaraes Mesquita, R. d. (Rita de Cassia), Meusburger, K. (Katrin), Meysman, F. J. (Filip J. R.), Michaletz, S. T. (Sean T.), Milbau, A. (Ann), Moiseev, D. (Dmitry), Moiseev, P. (Pavel), Mondoni, A. (Andrea), Monfries, R. (Ruth), Montagnani, L. (Leonardo), Moriana-Armendariz, M. (Mikel), di Cella, U. M. (Umberto Morra), Moersdorf, M. (Martin), Mosedale, J. R. (Jonathan R.), Muffler, L. (Lena), Munoz-Rojas, M. (Miriam), Myers, J. A. (Jonathan A.), Myers-Smith, I. H. (Isla H.), Nagy, L. (Laszlo), Nardino, M. (Marianna), Naujokaitis-Lewis, I. (Ilona), Newling, E. (Emily), Nicklas, L. (Lena), Niedrist, G. (Georg), Niessner, A. (Armin), Nilsson, M. B. (Mats B.), Normand, S. (Signe), Nosetto, M. D. (Marcelo D.), Nouvellon, Y. (Yann), Nunez, M. A. (Martin A.), Ogaya, R. (Roma), Ogee, J. (Jerome), Okello, J. (Joseph), Olejnik, J. (Janusz), Olesen, J. E. (Jorgen Eivind), Opedal, O. H. (Oystein H.), Orsenigo, S. (Simone), Palaj, A. (Andrej), Pampuch, T. (Timo), Panov, A. V. (Alexey V.), Pärtel, M. (Meelis), Pastor, A. (Ada), Pauchard, A. (Aníbal), Pauli, H. (Harald), Pavelka, M. (Marian), Pearse, W. D. (William D.), Peichl, M. (Matthias), Pellissier, L. (Loïc), Penczykowski, R. M. (Rachel M.), Penuelas, J. (Josep), Petit Bon, M. (Matteo), Petraglia, A. (Alessandro), Phartyal, S. S. (Shyam S.), Phoenix, G. K. (Gareth K.), Pio, C. (Casimiro), Pitacco, A. (Andrea), Pitteloud, C. (Camille), Plichta, R. (Roman), Porro, F. (Francesco), Portillo-Estrada, M. (Miguel), Poulenard, J. (Jérôme), Poyatos, R. (Rafael), Prokushkin, A. S. (Anatoly S.), Puchalka, R. (Radoslaw), Pușcaș, M. (Mihai), Radujković, D. (Dajana), Randall, K. (Krystal), Ratier Backes, A. (Amanda), Remmele, S. (Sabine), Remmers, W. (Wolfram), Renault, D. (David), Risch, A. C. (Anita C.), Rixen, C. (Christian), Robinson, S. A. (Sharon A.), Robroek, B. J. (Bjorn J. M.), Rocha, A. V. (Adrian V.), Rossi, C. (Christian), Rossi, G. (Graziano), Roupsard, O. (Olivier), Rubtsov, A. V. (Alexey V.), Saccone, P. (Patrick), Sagot, C. (Clotilde), Sallo Bravo, J. (Jhonatan), Santos, C. C. (Cinthya C.), Sarneel, J. M. (Judith M.), Scharnweber, T. (Tobias), Schmeddes, J. (Jonas), Schmidt, M. (Marius), Scholten, T. (Thomas), Schuchardt, M. (Max), Schwartz, N. (Naomi), Scott, T. (Tony), Seeber, J. (Julia), Segalin De Andrade, A. C. (Ana Cristina), Seipel, T. (Tim), Semenchuk, P. (Philipp), Senior, R. A. (Rebecca A.), Serra-Diaz, J. M. (Josep M.), Sewerniak, P. (Piotr), Shekhar, A. (Ankit), Sidenko, N. V. (Nikita V.), Siebicke, L. (Lukas), Siegwart Collier, L. (Laura), Simpson, E. (Elizabeth), Siqueira, D. P. (David P.), Sitková, Z. (Zuzana), Six, J. (Johan), Smiljanic, M. (Marko), Smith, S. W. (Stuart W.), Smith-Tripp, S. (Sarah), Somers, B. (Ben), Sørensen, M. V. (Mia Vedel), Souza, J. J. (José João L. L.), Souza, B. I. (Bartolomeu Israel), Dias, A. S. (Arildo Souza), Spasojevic, M. J. (Marko J.), Speed, J. D. (James D. M.), Spicher, F. (Fabien), Stanisci, A. (Angela), Steinbauer, K. (Klaus), Steinbrecher, R. (Rainer), Steinwandter, M. (Michael), Stemkovski, M. (Michael), Stephan, J. G. (Jörg G.), Stiegler, C. (Christian), Stoll, S. (Stefan), Svátek, M. (Martin), Svoboda, M. (Miroslav), Tagesson, T. (Torbern), Tanentzap, A. J. (Andrew J.), Tanneberger, F. (Franziska), Theurillat, J.-P. (Jean-Paul), Thomas, H. J. (Haydn J. D.), Thomas, A. D. (Andrew D.), Tielbörger, K. (Katja), Tomaselli, M. (Marcello), Treier, U. A. (Urs Albert), Trouillier, M. (Mario), Turtureanu, P. D. (Pavel Dan), Tutton, R. (Rosamond), Tyystjärvi, V. A. (Vilna A.), Ueyama, M. (Masahito), Ujházy, K. (Karol), Ujházyová, M. (Mariana), Uogintas, D. (Domas), Urban, A. V. (Anastasiya V.), Urban, J. (Josef), Urbaniak, M. (Marek), Ursu, T.-M. (Tudor-Mihai), Vaccari, F. P. (Francesco Primo), Van De Vondel, S. (Stijn), Van Den Brink, L. (Liesbeth), Van Geel, M. (Maarten), Vandvik, V. (Vigdis), Vangansbeke, P. (Pieter), Varlagin, A. (Andrej), Veen, G. F. (G. F.), Veenendaal, E. (Elmar), Venn, S. E. (Susanna E.), Verbeeck, H. (Hans), Verbrugggen, E. (Erik), Verheijen, F. G. (Frank G. A.), Villar, L. (Luis), Vitale, L. (Luca), Vittoz, P. (Pascal), Vives-Ingla, M. (Maria), Von Oppen, J. (Jonathan), Walz, J. (Josefine), Wang, R. (Runxi), Wang, Y. (Yifeng), Way, R. G. (Robert G.), Wedegärtner, R. E. (Ronja E. M.), Weigel, R. (Robert), Wild, J. (Jan), Wilkinson, M. (Matthew), Wilmking, M. (Martin), Wingate, L. (Lisa), Winkler, M. (Manuela), Wipf, S. (Sonja), Wohlfahrt, G. (Georg), Xenakis, G. (Georgios), Yang, Y. (Yan), Yu, Z. (Zicheng), Yu, K. (Kailiang), Zellweger, F. (Florian), Zhang, J. (Jian), Zhang, Z. (Zhaochen), Zhao, P. (Peng), Ziemblińska, K. (Klaudia), Zimmermann, R. (Reiner), Zong, S. (Shengwei), Zyryanov, V. I. (Viacheslav I.), Nijs, I. (Ivan), Lenoir, J. (Jonathan), Lembrechts, J. J. (Jonas J.), van den Hoogen, J. (Johan), Aalto, J. (Juha), Ashcroft, M. B. (Michael B.), De Frenne, P. (Pieter), Kemppinen, J. (Julia), Kopecky, M. (Martin), Luoto, M. (Miska), Maclean, I. M. (Ilya M. D.), Crowther, T. W. (Thomas W.), Bailey, J. J. (Joseph J.), Haesen, S. (Stef), Klinges, D. H. (David H.), Niittynen, P. (Pekka), Scheffers, B. R. (Brett R.), Van Meerbeek, K. (Koenraad), Aartsma, P. (Peter), Abdalaze, O. (Otar), Abedi, M. (Mehdi), Aerts, R. (Rien), Ahmadian, N. (Negar), Ahrends, A. (Antje), Alatalo, J. M. (Juha M.), Alexander, J. M. (Jake M.), Allonsius, C. N. (Camille Nina), Altman, J. (Jan), Ammann, C. (Christof), Andres, C. (Christian), Andrews, C. (Christopher), Ardo, J. (Jonas), Arriga, N. (Nicola), Arzac, A. (Alberto), Aschero, V. (Valeria), Assis, R. L. (Rafael L.), Assmann, J. J. (Jakob Johann), Bader, M. Y. (Maaike Y.), Bahalkeh, K. (Khadijeh), Barancok, P. (Peter), Barrio, I. C. (Isabel C.), Barros, A. (Agustina), Barthel, M. (Matti), Basham, E. W. (Edmund W.), Bauters, M. (Marijn), Bazzichetto, M. (Manuele), Marchesini, L. B. (Luca Belelli), Bell, M. C. (Michael C.), Benavides, J. C. (Juan C.), Benito Alonso, J. L. (Jose Luis), Berauer, B. J. (Bernd J.), Bjerke, J. W. (Jarle W.), Bjork, R. G. (Robert G.), Bjorkman, M. P. (Mats P.), Bjornsdottir, K. (Katrin), Blonder, B. (Benjamin), Boeckx, P. (Pascal), Boike, J. (Julia), Bokhorst, S. (Stef), Brum, B. N. (Barbara N. S.), Bruna, J. (Josef), Buchmann, N. (Nina), Buysse, P. (Pauline), Camargo, J. L. (Jose Luis), Campoe, O. C. (Otavio C.), Candan, O. (Onur), Canessa, R. (Rafaella), Cannone, N. (Nicoletta), Carbognani, M. (Michele), Carnicer, J. (Jofre), Casanova-Katny, A. (Angelica), Cesarz, S. (Simone), Chojnicki, B. (Bogdan), Choler, P. (Philippe), Chown, S. L. (Steven L.), Cifuentes, E. F. (Edgar F.), Ciliak, M. (Marek), Contador, T. (Tamara), Convey, P. (Peter), Cooper, E. J. (Elisabeth J.), Cremonese, E. (Edoardo), Curasi, S. R. (Salvatore R.), Curtis, R. (Robin), Cutini, M. (Maurizio), Dahlberg, C. J. (C. Johan), Daskalova, G. N. (Gergana N.), Angel de Pablo, M. (Miguel), Della Chiesa, S. (Stefano), Dengler, J. (Juergen), Deronde, B. (Bart), Descombes, P. (Patrice), Di Cecco, V. (Valter), Di Musciano, M. (Michele), Dick, J. (Jan), Dimarco, R. D. (Romina D.), Dolezal, J. (Jiri), Dorrepaal, E. (Ellen), Dusek, J. (Jiri), Eisenhauer, N. (Nico), Eklundh, L. (Lars), Erickson, T. E. (Todd E.), Erschbamer, B. (Brigitta), Eugster, W. (Werner), Ewers, R. M. (Robert M.), Exton, D. A. (Dan A.), Fanin, N. (Nicolas), Fazlioglu, F. (Fatih), Feigenwinter, I. (Iris), Fenu, G. (Giuseppe), Ferlian, O. (Olga), Fernandez Calzado, M. R. (M. Rosa), Fernandez-Pascual, E. (Eduardo), Finckh, M. (Manfred), Higgens, R. F. (Rebecca Finger), Forte, T. G. (T'ai G. W.), Freeman, E. C. (Erika C.), Frei, E. R. (Esther R.), Fuentes-Lillo, E. (Eduardo), Garcia, R. A. (Rafael A.), Garcia, M. B. (Maria B.), Geron, C. (Charly), Gharun, M. (Mana), Ghosn, D. (Dany), Gigauri, K. (Khatuna), Gobin, A. (Anne), Goded, I. (Ignacio), Goeckede, M. (Mathias), Gottschall, F. (Felix), Goulding, K. (Keith), Govaert, S. (Sanne), Graae, B. J. (Bente Jessen), Greenwood, S. (Sarah), Greiser, C. (Caroline), Grelle, A. (Achim), Guenard, B. (Benoit), Guglielmin, M. (Mauro), Guillemot, J. (Joannes), Haase, P. (Peter), Haider, S. (Sylvia), Halbritter, A. H. (Aud H.), Hamid, M. (Maroof), Hammerle, A. (Albin), Hampe, A. (Arndt), Haugum, S. V. (Siri, V), Hederova, L. (Lucia), Heinesch, B. (Bernard), Helfter, C. (Carole), Hepenstrick, D. (Daniel), Herberich, M. (Maximiliane), Herbst, M. (Mathias), Hermanutz, L. (Luise), Hik, D. S. (David S.), Hoffren, R. (Raul), Homeier, J. (Juergen), Hörtnagl, L. (Lukas), Hoye, T. T. (Toke T.), Hrbacek, F. (Filip), Hylander, K. (Kristoffer), Iwata, H. (Hiroki), Jackowicz-Korczynski, M. A. (Marcin Antoni), Jactel, H. (Herve), Jarveoja, J. (Jarvi), Jastrzebowski, S. (Szymon), Jentsch, A. (Anke), Jimenez, J. J. (Juan J.), Jonsdottir, I. S. (Ingibjorg S.), Jucker, T. (Tommaso), Jump, A. S. (Alistair S.), Juszczak, R. (Radoslaw), Kanka, R. (Robert), Kaspar, V. (Vit), Kazakis, G. (George), Kelly, J. (Julia), Khuroo, A. A. (Anzar A.), Klemedtsson, L. (Leif), Klisz, M. (Marcin), Kljun, N. (Natascha), Knohl, A. (Alexander), Kobler, J. (Johannes), Kollar, J. (Jozef), Kotowska, M. M. (Martyna M.), Kovacs, B. (Bence), Kreyling, J. (Juergen), Lamprecht, A. (Andrea), Lang, S. I. (Simone, I), Larson, C. (Christian), Larson, K. (Keith), Laska, K. (Kamil), Maire, G. I. (Guerric Ie), Leihy, R. I. (Rachel, I), Lens, L. (Luc), Liljebladh, B. (Bengt), Lohila, A. (Annalea), Lorite, J. (Juan), Loubet, B. (Benjamin), Lynn, J. (Joshua), Macek, M. (Martin), Mackenzie, R. (Roy), Magliulo, E. (Enzo), Maier, R. (Regine), Malfasi, F. (Francesco), Malis, F. (Frantisek), Man, M. (Matej), Manca, G. (Giovanni), Manco, A. (Antonio), Manise, T. (Tanguy), Manolaki, P. (Paraskevi), Marciniak, F. (Felipe), Matula, R. (Radim), Clara Mazzolari, A. (Ana), Medinets, S. (Sergiy), Medinets, V. (Volodymyr), Meeussen, C. (Camille), Merinero, S. (Sonia), Guimaraes Mesquita, R. d. (Rita de Cassia), Meusburger, K. (Katrin), Meysman, F. J. (Filip J. R.), Michaletz, S. T. (Sean T.), Milbau, A. (Ann), Moiseev, D. (Dmitry), Moiseev, P. (Pavel), Mondoni, A. (Andrea), Monfries, R. (Ruth), Montagnani, L. (Leonardo), Moriana-Armendariz, M. (Mikel), di Cella, U. M. (Umberto Morra), Moersdorf, M. (Martin), Mosedale, J. R. (Jonathan R.), Muffler, L. (Lena), Munoz-Rojas, M. (Miriam), Myers, J. A. (Jonathan A.), Myers-Smith, I. H. (Isla H.), Nagy, L. (Laszlo), Nardino, M. (Marianna), Naujokaitis-Lewis, I. (Ilona), Newling, E. (Emily), Nicklas, L. (Lena), Niedrist, G. (Georg), Niessner, A. (Armin), Nilsson, M. B. (Mats B.), Normand, S. (Signe), Nosetto, M. D. (Marcelo D.), Nouvellon, Y. (Yann), Nunez, M. A. (Martin A.), Ogaya, R. (Roma), Ogee, J. (Jerome), Okello, J. (Joseph), Olejnik, J. (Janusz), Olesen, J. E. (Jorgen Eivind), Opedal, O. H. (Oystein H.), Orsenigo, S. (Simone), Palaj, A. (Andrej), Pampuch, T. (Timo), Panov, A. V. (Alexey V.), Pärtel, M. (Meelis), Pastor, A. (Ada), Pauchard, A. (Aníbal), Pauli, H. (Harald), Pavelka, M. (Marian), Pearse, W. D. (William D.), Peichl, M. (Matthias), Pellissier, L. (Loïc), Penczykowski, R. M. (Rachel M.), Penuelas, J. (Josep), Petit Bon, M. (Matteo), Petraglia, A. (Alessandro), Phartyal, S. S. (Shyam S.), Phoenix, G. K. (Gareth K.), Pio, C. (Casimiro), Pitacco, A. (Andrea), Pitteloud, C. (Camille), Plichta, R. (Roman), Porro, F. (Francesco), Portillo-Estrada, M. (Miguel), Poulenard, J. (Jérôme), Poyatos, R. (Rafael), Prokushkin, A. S. (Anatoly S.), Puchalka, R. (Radoslaw), Pușcaș, M. (Mihai), Radujković, D. (Dajana), Randall, K. (Krystal), Ratier Backes, A. (Amanda), Remmele, S. (Sabine), Remmers, W. (Wolfram), Renault, D. (David), Risch, A. C. (Anita C.), Rixen, C. (Christian), Robinson, S. A. (Sharon A.), Robroek, B. J. (Bjorn J. M.), Rocha, A. V. (Adrian V.), Rossi, C. (Christian), Rossi, G. (Graziano), Roupsard, O. (Olivier), Rubtsov, A. V. (Alexey V.), Saccone, P. (Patrick), Sagot, C. (Clotilde), Sallo Bravo, J. (Jhonatan), Santos, C. C. (Cinthya C.), Sarneel, J. M. (Judith M.), Scharnweber, T. (Tobias), Schmeddes, J. (Jonas), Schmidt, M. (Marius), Scholten, T. (Thomas), Schuchardt, M. (Max), Schwartz, N. (Naomi), Scott, T. (Tony), Seeber, J. (Julia), Segalin De Andrade, A. C. (Ana Cristina), Seipel, T. (Tim), Semenchuk, P. (Philipp), Senior, R. A. (Rebecca A.), Serra-Diaz, J. M. (Josep M.), Sewerniak, P. (Piotr), Shekhar, A. (Ankit), Sidenko, N. V. (Nikita V.), Siebicke, L. (Lukas), Siegwart Collier, L. (Laura), Simpson, E. (Elizabeth), Siqueira, D. P. (David P.), Sitková, Z. (Zuzana), Six, J. (Johan), Smiljanic, M. (Marko), Smith, S. W. (Stuart W.), Smith-Tripp, S. (Sarah), Somers, B. (Ben), Sørensen, M. V. (Mia Vedel), Souza, J. J. (José João L. L.), Souza, B. I. (Bartolomeu Israel), Dias, A. S. (Arildo Souza), Spasojevic, M. J. (Marko J.), Speed, J. D. (James D. M.), Spicher, F. (Fabien), Stanisci, A. (Angela), Steinbauer, K. (Klaus), Steinbrecher, R. (Rainer), Steinwandter, M. (Michael), Stemkovski, M. (Michael), Stephan, J. G. (Jörg G.), Stiegler, C. (Christian), Stoll, S. (Stefan), Svátek, M. (Martin), Svoboda, M. (Miroslav), Tagesson, T. (Torbern), Tanentzap, A. J. (Andrew J.), Tanneberger, F. (Franziska), Theurillat, J.-P. (Jean-Paul), Thomas, H. J. (Haydn J. D.), Thomas, A. D. (Andrew D.), Tielbörger, K. (Katja), Tomaselli, M. (Marcello), Treier, U. A. (Urs Albert), Trouillier, M. (Mario), Turtureanu, P. D. (Pavel Dan), Tutton, R. (Rosamond), Tyystjärvi, V. A. (Vilna A.), Ueyama, M. (Masahito), Ujházy, K. (Karol), Ujházyová, M. (Mariana), Uogintas, D. (Domas), Urban, A. V. (Anastasiya V.), Urban, J. (Josef), Urbaniak, M. (Marek), Ursu, T.-M. (Tudor-Mihai), Vaccari, F. P. (Francesco Primo), Van De Vondel, S. (Stijn), Van Den Brink, L. (Liesbeth), Van Geel, M. (Maarten), Vandvik, V. (Vigdis), Vangansbeke, P. (Pieter), Varlagin, A. (Andrej), Veen, G. F. (G. F.), Veenendaal, E. (Elmar), Venn, S. E. (Susanna E.), Verbeeck, H. (Hans), Verbrugggen, E. (Erik), Verheijen, F. G. (Frank G. A.), Villar, L. (Luis), Vitale, L. (Luca), Vittoz, P. (Pascal), Vives-Ingla, M. (Maria), Von Oppen, J. (Jonathan), Walz, J. (Josefine), Wang, R. (Runxi), Wang, Y. (Yifeng), Way, R. G. (Robert G.), Wedegärtner, R. E. (Ronja E. M.), Weigel, R. (Robert), Wild, J. (Jan), Wilkinson, M. (Matthew), Wilmking, M. (Martin), Wingate, L. (Lisa), Winkler, M. (Manuela), Wipf, S. (Sonja), Wohlfahrt, G. (Georg), Xenakis, G. (Georgios), Yang, Y. (Yan), Yu, Z. (Zicheng), Yu, K. (Kailiang), Zellweger, F. (Florian), Zhang, J. (Jian), Zhang, Z. (Zhaochen), Zhao, P. (Peng), Ziemblińska, K. (Klaudia), Zimmermann, R. (Reiner), Zong, S. (Shengwei), Zyryanov, V. I. (Viacheslav I.), Nijs, I. (Ivan), and Lenoir, J. (Jonathan)
- Abstract
Research in global change ecology relies heavily on global climatic grids derived from estimates of air temperature in open areas at around 2 m above the ground. These climatic grids do not reflect conditions below vegetation canopies and near the ground surface, where critical ecosystem functions occur and most terrestrial species reside. Here, we provide global maps of soil temperature and bioclimatic variables at a 1-km² resolution for 0‐5 and 5‐15 cm soil depth. These maps were created by calculating the difference (i.e. offset) between in situ soil temperature measurements, based on time series from over 1200 1‐km² pixels (summarized from 8519 unique temperature sensors) across all the world’s major terrestrial biomes, and coarse-grained air temperature estimates from ERA5-Land (an atmospheric reanalysis by the European Centre for Medium-Range Weather Forecasts). We show that mean annual soil temperature differs markedly from the corresponding gridded air temperature, by up to 10° degrees C (mean = 3.0 +/‐ 2.1° degrees C), with substantial variation across biomes and seasons. Over the year, soils in cold and/or dry biomes are substantially warmer (+3.6 +/‐2.3° degrees C) than gridded air temperature, whereas soils in warm and humid environments are on average slightly cooler (‐0.7 +/‐ 2.3° degrees C). The observed substantial and biome-specific offsets emphasize that the projected impacts of climate and climate change on near-surface biodiversity and ecosystem functioning are inaccurately assessed when air rather than soil temperature is used, especially in cold environments. The global soil-related bioclimatic variables provided here are an important step forward for any application in ecology and related disciplines. Nevertheless, we highlight the need to fill remaining geographic gaps by collecting more in situ measurements of microclimate conditions to further enhance the spatiotemporal resolution of global soil temperature products for ecological
- Published
- 2022
33. Chapter 13 New directions: VOCs and biosphere-atmosphere feedbacks
- Author
-
Fuentes, J.D., primary, Hayden, B.P., additional, Garstang, M., additional, Lerdau, M., additional, Fitzjarrald, D., additional, Baldocchi, D.D., additional, Monson, R., additional, Lamb, B., additional, and Geron, C., additional
- Published
- 2002
- Full Text
- View/download PDF
34. Parenteral hydroxocobalamin dose intensification in five patients with different types of early onset intracellular cobalamin defects: Clinical and biochemical responses
- Author
-
Scalais, E., Osterheld, E., Geron, C., Pierron, C., Chafai, R., Schlesser, V., Borde, P., Regal, L., Laeremans, H., Gassen, K.L.I. van, Heuvel, L.P. van den, Meirleir, L. de, Scalais, E., Osterheld, E., Geron, C., Pierron, C., Chafai, R., Schlesser, V., Borde, P., Regal, L., Laeremans, H., Gassen, K.L.I. van, Heuvel, L.P. van den, and Meirleir, L. de
- Abstract
Contains fulltext : 208821.pdf (publisher's version ) (Open Access)
- Published
- 2019
35. Nouvelle méthode de mesure des pressions intravaginales
- Author
-
Lambaudie, E, Dubois, P, Géron, C, Boukerrou, M, and Cosson, M
- Published
- 2003
- Full Text
- View/download PDF
36. Biogenic nitric oxide emissions from cropland soils
- Author
-
Roelle, Paul A., Aneja, Viney P., Gay, B., Geron, C., and Pierce, T.
- Published
- 2001
- Full Text
- View/download PDF
37. Overview of the Manitou Experimental Forest Observatory: site description and selected science results from 2008–2013
- Author
-
Ortega, J., primary, Turnipseed, A., additional, Guenther, A. B., additional, Karl, T. G., additional, Day, D. A., additional, Gochis, D., additional, Huffman, J. A., additional, Prenni, A. J., additional, Levin, E. J. T., additional, Kreidenweis, S. M., additional, DeMott, P. J., additional, Tobo, Y., additional, Patton, E. G., additional, Hodzic, A., additional, Cui, Y., additional, Harley, P. C., additional, Hornbrook, R. H., additional, Apel, E. C., additional, Monson, R. K., additional, Eller, A. S. D., additional, Greenberg, J. P., additional, Barth, M., additional, Campuzano-Jost, P., additional, Palm, B. B., additional, Jimenez, J. L., additional, Aiken, A. C., additional, Dubey, M. K., additional, Geron, C., additional, Offenberg, J., additional, Ryan, M. G., additional, Fornwalt, P. J., additional, Pryor, S. C., additional, Keutsch, F. N., additional, DiGangi, J. P., additional, Chan, A. W. H., additional, Goldstein, A. H., additional, Wolfe, G. M., additional, Kim, S., additional, Kaser, L., additional, Schnitzhofer, R., additional, Hansel, A., additional, Cantrell, C. A., additional, Mauldin III, R. L., additional, and Smith, J. N., additional
- Published
- 2014
- Full Text
- View/download PDF
38. Supplementary material to "Overview of the Manitou Experimental Forest Observatory: site description and selected science results from 2008–2013"
- Author
-
Ortega, J., primary, Turnipseed, A., additional, Guenther, A. B., additional, Karl, T. G., additional, Day, D. A., additional, Gochis, D., additional, Huffman, J. A., additional, Prenni, A. J., additional, Levin, E. J. T., additional, Kreidenweis, S. M., additional, DeMott, P. J., additional, Tobo, Y., additional, Patton, E. G., additional, Hodzic, A., additional, Cui, Y., additional, Harley, P. C., additional, Hornbrook, R. H., additional, Apel, E. C., additional, Monson, R. K., additional, Eller, A. S. D., additional, Greenberg, J. P., additional, Barth, M., additional, Campuzano-Jost, P., additional, Palm, B. B., additional, Jimenez, J. L., additional, Aiken, A. C., additional, Dubey, M. K., additional, Geron, C., additional, Offenberg, J., additional, Ryan, M. G., additional, Fornwalt, P. J., additional, Pryor, S. C., additional, Keutsch, F. N., additional, DiGangi, J. P., additional, Chan, A. W. H., additional, Goldstein, A. H., additional, Wolfe, G. M., additional, Kim, S., additional, Kaser, L., additional, Schnitzhofer, R., additional, Hansel, A., additional, Cantrell, C. A., additional, Mauldin III, R. L., additional, and Smith, J. N., additional
- Published
- 2014
- Full Text
- View/download PDF
39. An overview of the 2003 Chemical Emission, Loss, Transformation and Interactions within Canopies (CELTIC) study
- Author
-
Guenther A. Geron C. Baker B. Greenberg J. Harley P. Huey G. Karl T.Matsunaga S. Mielke L.. Nemitz E. Potosnak M.Rapparini F.Rasmussen R.Sparks J.Stroud C.Turnipseed A.Vizuete W.Jimenez J.
- Published
- 2003
40. Estimations of isoprenoid emission capacity from enclosure studies: measurements, data processing, quality and standardized measurement protocols.
- Author
-
Niinemets, Ü., Kuhn, U., Harley, P. C., Staudt, M., Arneth, A., Cescatti, A., Ciccioli, P., Copolovici, L., Geron, C., Guenther, A., Kesselmeier, J., Lerdau, M. T., Monson, R. K., Peñuelas, Josep, Niinemets, Ü., Kuhn, U., Harley, P. C., Staudt, M., Arneth, A., Cescatti, A., Ciccioli, P., Copolovici, L., Geron, C., Guenther, A., Kesselmeier, J., Lerdau, M. T., Monson, R. K., and Peñuelas, Josep
- Abstract
The capacity for volatile isoprenoid production under standardized environmental conditions at a certain time (ES, the emission factor) is a key characteristic in constructing isoprenoid emission inventories. However, there is large variation in published ES estimates for any given species partly driven by dynamic modifications in ES due to acclimation and stress responses. Here we review additional sources of variation in ES estimates that are due to measurement and analytical techniques and calculation and averaging procedures, and demonstrate that estimations of ES critically depend on applied experimental protocols and on data processing and reporting. A great variety of experimental setups has been used in the past, contributing to study-to-study variations in ES estimates. We suggest that past experimental data should be distributed into broad quality classes depending on whether the data can or cannot be considered quantitative based on rigorous experimental standards. Apart from analytical issues, the accuracy of ES values is strongly driven by extrapolation and integration errors introduced during data processing. Additional sources of error, especially in meta-database construction, can further arise from inconsistent use of units and expression bases of ES. We propose a standardized experimental protocol for BVOC estimations and highlight basic meta-information that we strongly recommend to report with any ES measurement. We conclude that standardization of experimental and calculation protocols and critical examination of past reports is essential for development of accurate emission factor databases.
- Published
- 2011
41. Large estragole fluxes from oil palms in Borneo
- Author
-
Misztal, P.K., Owen, S.M., Guenther, A.B., Rasmussen, R., Geron, C., Harley, P., Phillips, G.J., Ryan, A., Edwards, D.P., Hewitt, C.N., Nemitz, E., Siong, J., Heal, M.R., Cape, J.N., Misztal, P.K., Owen, S.M., Guenther, A.B., Rasmussen, R., Geron, C., Harley, P., Phillips, G.J., Ryan, A., Edwards, D.P., Hewitt, C.N., Nemitz, E., Siong, J., Heal, M.R., and Cape, J.N.
- Abstract
During two field campaigns (OP3 and ACES), which ran in Borneo in 2008, we measured large emissions of estragole (methyl chavicol; IUPAC systematic name 1-allyl-4-methoxybenzene; CAS number 140-67-0) in ambient air above oil palm canopies (0.81 mg m−2 h−1 and 3.2 ppbv for mean midday fluxes and mixing ratios respectively) and subsequently from flower enclosures. However, we did not detect this compound at a nearby rainforest. Estragole is a known attractant of the African oil palm weevil (Elaeidobius kamerunicus), which pollinates oil palms (Elaeis guineensis). There has been recent interest in the biogenic emissions of estragole but it is normally not included in atmospheric models of biogenic emissions and atmospheric chemistry despite its relatively high potential for secondary organic aerosol formation from photooxidation and high reactivity with OH radical. We report the first direct canopy-scale measurements of estragole fluxes from tropical oil palms by the virtual disjunct eddy covariance technique and compare them with previously reported data for estragole emissions from Ponderosa pine. Flowers, rather than leaves, appear to be the main source of estragole from oil palms; we derive a global estimate of estragole emissions from oil palm plantations of ~0.5 Tg y−1. The observed ecosystem mean fluxes (0.44 mg m−2 h−1) and mean ambient volume mixing ratios (3.0 ppbv) of estragole are the highest reported so far. The value for midday mixing ratios is not much different from the total average as, unlike other VOCs (e.g. isoprene), the main peak occurred in the evening rather than in the middle of the day. Despite this, we show that the estragole flux can be parameterised using a modified G06 algorithm for emission. However, the model underestimates the afternoon peak even though a similar approach works well for isoprene. Our measurements suggest that this biogenic compound may have an impact on regional atmospheric chemistry that previously has not been account
- Published
- 2010
42. Large estragole fluxes from oil palms in Borneo
- Author
-
Misztal, P. K., Owen, S. M., Guenther, A. B., Rasmussen, R., Geron, C., Harley, P., Phillips, G. J., Ryan, Annette, Edwards, D. P., Nemitz, E., Siong, J., Heal, M. R., Hewitt, C. N., Cape, J. N., Misztal, P. K., Owen, S. M., Guenther, A. B., Rasmussen, R., Geron, C., Harley, P., Phillips, G. J., Ryan, Annette, Edwards, D. P., Nemitz, E., Siong, J., Heal, M. R., Hewitt, C. N., and Cape, J. N.
- Abstract
During two field campaigns (OP3 and ACES), which ran in Borneo in 2008, we measured large emissions of estragole (methyl chavicol; IUPAC systematic name 1-allyl-4-methoxybenzene; CAS number 140-67-0) in ambient air above oil palm canopies (0.81 mg m(-2) h(-1) and 3.2 ppbv for mean midday fluxes and mixing ratios respectively) and subsequently from flower enclosures. However, we did not detect this compound at a nearby rainforest. Estragole is a known attractant of the African oil palm weevil (Elaeidobius kamerunicus), which pollinates oil palms (Elaeis guineensis). There has been recent interest in the biogenic emissions of estragole but it is normally not included in atmospheric models of biogenic emissions and atmospheric chemistry despite its relatively high potential for secondary organic aerosol formation from photooxidation and high reactivity with OH radical. We report the first direct canopy-scale measurements of estragole fluxes from tropical oil palms by the virtual disjunct eddy covariance technique and compare them with previously reported data for estragole emissions from Ponderosa pine. Flowers, rather than leaves, appear to be the main source of estragole from oil palms; we derive a global estimate of estragole emissions from oil palm plantations of similar to 0.5 Tg y(-1). The observed ecosystem mean fluxes (0.44 mg m(-2) h(-1)) and mean ambient volume mixing ratios (3.0 ppbv) of estragole are the highest reported so far. The value for midday mixing ratios is not much different from the total average as, unlike other VOCs (e.g. isoprene), the main peak occurred in the evening rather than in the middle of the day. Despite this, we show that the estragole flux can be parameterised using a modified G06 algorithm for emission. However, the model underestimates the afternoon peak even though a similar approach works well for isoprene. Our measurements suggest that this biogenic compound may have an impact on regional atmospheric chemistry that previously
- Published
- 2010
43. Active turbulence and scalar transport near the forest-atmosphere interface
- Author
-
Katul, G. G., Geron, C. D., Hsieh, C. -I, Vidakovic, B., and Guenther, A. B.
- Published
- 1998
44. Antiviral Drug-Resistance Typing Reveals Compartmentalization and Dynamics of Acyclovir-Resistant Herpes Simplex Virus Type-2 (HSV-2) in a Case of Neonatal Herpes
- Author
-
Bache, M., primary, Andrei, G., additional, Bindl, L., additional, Bofferding, L., additional, Bottu, J., additional, Geron, C., additional, Neuhauser, C., additional, Gillemot, S., additional, Fiten, P., additional, Opdenakker, G., additional, and Snoeck, R., additional
- Published
- 2013
- Full Text
- View/download PDF
45. Ozarks Isoprene Experiment (OZIE): Measurements and modeling of the 'isoprene volcano'
- Author
-
Wiedinmyer, C., Greenberg, J., Guenther, A., Hopkins, B., Baker, K., Geron, C., Palmer, P.I., Long, B.P., Turner, J.J., Petron, G., Harley, P., Pierce, T.E., Lamb, B., Westberg, H., Baugh, W., Koerber, M., Janssen, M.H.M., Wiedinmyer, C., Greenberg, J., Guenther, A., Hopkins, B., Baker, K., Geron, C., Palmer, P.I., Long, B.P., Turner, J.J., Petron, G., Harley, P., Pierce, T.E., Lamb, B., Westberg, H., Baugh, W., Koerber, M., and Janssen, M.H.M.
- Published
- 2005
- Full Text
- View/download PDF
46. Estimation of isoprenoid emission factors from enclosure studies: measurements, data processing, quality and standardized measurement protocols
- Author
-
Niinemets, Ü., primary, Kuhn, U., additional, Harley, P. C., additional, Staudt, M., additional, Arneth, A., additional, Cescatti, A., additional, Ciccioli, P., additional, Copolovici, L., additional, Geron, C., additional, Guenther, A., additional, Kesselmeier, J., additional, Lerdau, M. T., additional, Monson, R. K., additional, and Peñuelas, J., additional
- Published
- 2011
- Full Text
- View/download PDF
47. ChemInform Abstract: Effect of the Preparation Procedure on the Properties of Three-Way Automotive Platinum-Rhodium/Alumina-Ceria Catalysts.
- Author
-
MARECOT, P., primary, FAKCHE, A., additional, PIRAULT, L., additional, GERON, C., additional, MABILON, G., additional, PRIGENT, M., additional, and BARBIER, J., additional
- Published
- 2010
- Full Text
- View/download PDF
48. Technical Note: Fast two-dimensional GC-MS with thermal extraction for anhydro-sugars in fine aerosols
- Author
-
Ma, Y., primary, Hays, M. D., additional, Geron, C. D., additional, Walker, J. T., additional, and Gatari Gichuru, M. J., additional
- Published
- 2010
- Full Text
- View/download PDF
49. Organic nitrogen in PM<sub>2.5</sub> aerosol at a forest site in the Southeast US
- Author
-
Lin, M., primary, Walker, J., additional, Geron, C., additional, and Khlystov, A., additional
- Published
- 2010
- Full Text
- View/download PDF
50. Large estragole fluxes from oil palms in Borneo
- Author
-
Misztal, P. K., primary, Owen, S. M., additional, Guenther, A. B., additional, Rasmussen, R., additional, Geron, C., additional, Harley, P., additional, Phillips, G. J., additional, Ryan, A., additional, Edwards, D. P., additional, Hewitt, C. N., additional, Nemitz, E., additional, Siong, J., additional, Heal, M. R., additional, and Cape, J. N., additional
- Published
- 2010
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.