442 results on '"Georges Hadziioannou"'
Search Results
2. Divanillin-Based Polyazomethines: Toward Biobased and Metal-Free π‑Conjugated Polymers
- Author
-
Guillaume Garbay, Lauriane Giraud, Sai Manoj Gali, Georges Hadziioannou, Etienne Grau, Stéphane Grelier, Eric Cloutet, Henri Cramail, and Cyril Brochon
- Subjects
Chemistry ,QD1-999 - Published
- 2020
- Full Text
- View/download PDF
3. Synthesis and Characterization of Vanillin-Based π-Conjugated Polyazomethines and Their Oligomer Model Compounds
- Author
-
Lauriane Giraud, Stéphane Grelier, Etienne Grau, Laurent Garel, Georges Hadziioannou, Brice Kauffmann, Éric Cloutet, Henri Cramail, and Cyril Brochon
- Subjects
polyazomethines ,divanillin ,bio-based π-conjugated polymers ,Organic chemistry ,QD241-441 - Abstract
The synthesis of π-conjugated polymers via an environmentally friendly procedure is generally challenging. Herein, we describe the synthesis of divanillin-based polyazomethines, which are derived from a potentially bio-based monomer. The polymerization is performed in 5 min under microwave irradiation without any metallic catalyst, with water as the only by-product. The vanillin-based polyazomethines were characterized by SEC, TGA, and UV-Vis spectroscopy. Model compounds were designed and characterized by X-ray diffraction and UV-Vis spectroscopy. The structure/properties study of vanillin-based azomethines used as models allowed us to unequivocally confirm the E configuration and to highlight the cross-conjugated nature of divanillin-based polymers.
- Published
- 2022
- Full Text
- View/download PDF
4. Material challenges for solar cells in the twenty-first century: directions in emerging technologies
- Author
-
Samy Almosni, Amaury Delamarre, Zacharie Jehl, Daniel Suchet, Ludmila Cojocaru, Maxime Giteau, Benoit Behaghel, Anatole Julian, Camille Ibrahim, Léa Tatry, Haibin Wang, Takaya Kubo, Satoshi Uchida, Hiroshi Segawa, Naoya Miyashita, Ryo Tamaki, Yasushi Shoji, Katsuhisa Yoshida, Nazmul Ahsan, Kentaro Watanabe, Tomoyuki Inoue, Masakazu Sugiyama, Yoshiaki Nakano, Tomofumi Hamamura, Thierry Toupance, Céline Olivier, Sylvain Chambon, Laurence Vignau, Camille Geffroy, Eric Cloutet, Georges Hadziioannou, Nicolas Cavassilas, Pierre Rale, Andrea Cattoni, Stéphane Collin, François Gibelli, Myriam Paire, Laurent Lombez, Damien Aureau, Muriel Bouttemy, Arnaud Etcheberry, Yoshitaka Okada, and Jean-François Guillemoles
- Subjects
Photovoltaics ,semiconductors ,nanotechnologies ,energy conversion ,efficiency ,luminescence ,devices ,Materials of engineering and construction. Mechanics of materials ,TA401-492 ,Biotechnology ,TP248.13-248.65 - Abstract
Photovoltaic generation has stepped up within the last decade from outsider status to one of the important contributors of the ongoing energy transition, with about 1.7% of world electricity provided by solar cells. Progress in materials and production processes has played an important part in this development. Yet, there are many challenges before photovoltaics could provide clean, abundant, and cheap energy. Here, we review this research direction, with a focus on the results obtained within a Japan–French cooperation program, NextPV, working on promising solar cell technologies. The cooperation was focused on efficient photovoltaic devices, such as multijunction, ultrathin, intermediate band, and hot-carrier solar cells, and on printable solar cell materials such as colloidal quantum dots.
- Published
- 2018
- Full Text
- View/download PDF
5. Fully Printed Sensors for In Situ Temperature, Heat Flow, and Thermal Conductivity Measurements in Flexible Devices
- Author
-
Florian Le Goupil, Guillaume Payrot, Sokha Khiev, Wiljan Smaal, and Georges Hadziioannou
- Subjects
General Chemical Engineering ,General Chemistry - Published
- 2023
- Full Text
- View/download PDF
6. Chitosan-Modified Polyethyleneimine Nanoparticles for Enhancing the Carboxylation Reaction and Plants’ CO2 Uptake
- Author
-
Cyril Routier, Lorenzo Vallan, Yohann Daguerre, Marta Juvany, Emin Istif, Daniele Mantione, Cyril Brochon, Georges Hadziioannou, Åsa Strand, Torgny Näsholm, Eric Cloutet, Eleni Pavlopoulou, Eleni Stavrinidou, Laboratory of Organic Electronics [Norrköping, Sweden] (Department of Science and Technology), Linköping University (LIU), Laboratoire de Chimie des Polymères Organiques (LCPO), Université de Bordeaux (UB)-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Institut Polytechnique de Bordeaux-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Team 4 LCPO : Polymer Materials for Electronic, Energy, Information and Communication Technologies, Université de Bordeaux (UB)-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Institut Polytechnique de Bordeaux-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université de Bordeaux (UB)-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Institut Polytechnique de Bordeaux-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Umea Plant Science Center (UPSC), Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences (SLU)-Swedish University of Agricultural Sciences (SLU), Institute of Electronic Structure and Laser (FORTH-IESL), Foundation for Research and Technology - Hellas (FORTH), and European Project: 800926,HyPhOE
- Subjects
photosynthesis ,[SDE.IE]Environmental Sciences/Environmental Engineering ,Botany ,Biochemistry and Molecular Biology ,General Engineering ,nanoparticles CO2 capture polyethyleneimine chitosan photosynthesis ,General Physics and Astronomy ,Botanik ,CO2 capture ,[CHIM.POLY]Chemical Sciences/Polymers ,Nano Technology ,nanoparticles ,General Materials Science ,chitosan ,polyethyleneimine ,Biokemi och molekylärbiologi - Abstract
Increasing plants photosynthetic efficienc y is a major challenge that must be addressed in order to cover the food demands of the growing population in the changing climate. Photosynthes i s is greatly limited at the initial carboxylation reaction, where CO2 is converted to the organic acid 3-PGA, catalyzed by the RuBisCO enzyme. RuBisCO has poor affinity for CO2, but also the CO2 concentration at the RuBisCO site is limited by the diffusion of atmospheric CO2 through the various leaf compartments to the reaction site. Beyond genetic engineer-ing, nanotechnology can offer a materials-based approach for enhancing photosynthesis, and yet, it has mostly been explored for the light-dependent reactions. In this work, we developed polyethyleneimine-based nanoparticl e s for enhancing the carbox-ylation reaction. We demonstrate that the nanoparticles can capture CO2 in the form of bicarbonate and increase the CO2 that reacts with the RuBisCO enzyme, enhancing the 3-PGA production in in vitro assays by 20%. The nanoparticles can be introduced to the plant via leaf infiltration and, because of the functionalization with chitosan oligomers, they do not induce any toxic effect to the plant. In the leaves, the nanoparticles localize in the apoplastic space but also spontaneously reach the chloroplasts where photosynthetic activity takes place. Their CO2 loading-dependent fluorescence verifies that, in vivo, they maintain their abi l i t y to capture CO2 and can be therefore reloaded with atmospheric CO2 while in planta. Our results contribute to the development of a nanomaterials-based CO2-concentrating mechanism in plants t h a t can potentially increase photosynthetic efficiency and overall plants CO2 storage. Funding Agencies|European Union [800926, 101042148]; Swedish Research Council [VR-2017-04910]; Swedish Government Strategic Research Area in Materials Science on Advanced Functional Materials at Linkoping University [2009-00971]; MCIN/AEI [Ayuda RYC2021-031668-I]
- Published
- 2023
- Full Text
- View/download PDF
7. Size-Dependent Photophysical Behavior of Low Bandgap Semiconducting Polymer Particles
- Author
-
Tersilla Virgili, Chiara Botta, Marta M. Mróz, Laurie Parrenin, Cyril Brochon, Eric Cloutet, Eleni Pavlopoulou, Georges Hadziioannou, and Mark Geoghegan
- Subjects
transient absorption spectroscopy ,PCDTBT ,nanoparticles ,semiconducting polymers ,optoelectronics ,Chemistry ,QD1-999 - Abstract
The photophysics of water and propan-1-ol suspensions of poly [N-9”-heptadecanyl-2,7-carbazole-alt−5,5-(4,7-di-2-thienyl-2′,1′,3′- benzothiadiazole)] (PCDTBT) nanoparticles and mesoparticles has been studied by ultrafast spectroscopy. High molar mass polymer (HMM > 20 kg/mol) forms nanoparticles with around 50 nm diameter via mini-emulsion post-polymerization, while low molar mass (LMM < 5 kg/mol) polymer prepared by dispersion polymerization results in particles with a diameter of almost one order of magnitude larger (450 ± 50 nm). In this study, the presence of excited-states and charge separated species was identified through UV pump and visible/near-infrared probe femtosecond transient absorption spectroscopy. A different behavior for the HMM nanoparticles has been identified compared to the LMM mesoparticles. The nanoparticles exhibit typical features of an energetically disordered conjugated polymer with a broad density of states, allowing for delayed spectral relaxation of excited states, while the mesoparticles show a J-aggregate-like behavior where interchain interactions are less efficient. Stimulated emission in the red-near infrared region has been found in the mesoparticles which indicates that they present a more energetically ordered system.
- Published
- 2019
- Full Text
- View/download PDF
8. Design and Morphological Investigation of High-χ Catechol-Containing Styrenic Block Copolymers
- Author
-
Guillaume Pino, Cian Cummins, Daniele Mantione, Nils Demazy, Alberto Alvarez-Fernandez, Stefan Guldin, Guillaume Fleury, Georges Hadziioannou, Eric Cloutet, and Cyril Brochon
- Subjects
Inorganic Chemistry ,Polymers and Plastics ,Organic Chemistry ,Materials Chemistry - Published
- 2022
- Full Text
- View/download PDF
9. An Ultra-Thin Near-Perfect Absorber via Block Copolymer Engineered Metasurfaces
- Author
-
Cian Cummins, Alberto Alvarez-Fernandez, Nils Demazy, Marc Zelsmann, Georges Hadziioannou, Philippe Barois, Ahmed Bentaleb, Alexandre Baron, Ranjeet Dwivedi, Gwenaelle Pound-Lana, Quentin Flamant, Guillaume Fleury, Virginie Ponsinet, Centre de Recherche Paul Pascal (CRPP), Université de Bordeaux (UB)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Chimie des Polymères Organiques (LCPO), Université de Bordeaux (UB)-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Institut Polytechnique de Bordeaux-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Team 4 LCPO : Polymer Materials for Electronic, Energy, Information and Communication Technologies, Université de Bordeaux (UB)-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Institut Polytechnique de Bordeaux-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université de Bordeaux (UB)-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Institut Polytechnique de Bordeaux-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), University College of London [London] (UCL), Laboratoire des technologies de la microélectronique (LTM ), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA), ANR-10-EQPX-0028,ELORPrinttec,'Plate-forme de l'Université de Bordeaux pour l'organique électronique imprimable : de la molécule aux dispositifs et systèmes intégrés - valorisation et commercialisation'(2010), ANR-10-IDEX-0003,IDEX BORDEAUX,Initiative d'excellence de l'Université de Bordeaux(2010), Centre National de la Recherche Scientifique (CNRS)-Université de Bordeaux (UB)-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Institut Polytechnique de Bordeaux-Institut de Chimie du CNRS (INC), Centre National de la Recherche Scientifique (CNRS)-Université de Bordeaux (UB)-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Institut Polytechnique de Bordeaux-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université de Bordeaux (UB)-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Institut Polytechnique de Bordeaux-Institut de Chimie du CNRS (INC), Commissariat à l'énergie atomique et aux énergies alternatives - Laboratoire d'Electronique et de Technologie de l'Information (CEA-LETI), Direction de Recherche Technologique (CEA) (DRT (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Equipex ELORPrintTec ANR-10-EQPX-28-01 French state’s Initiative d’Excellence Bordeaux IdEx ANR-10-IDEX-003-02, and European Project: IdEx Bordeaux (ANR-10-IDEX- 003-02)
- Subjects
Materials science ,business.industry ,Nanoparticle ,[CHIM.MATE]Chemical Sciences/Material chemistry ,Block copolymers ,metasurfaces ,nanoresonators ,Surfaces, Coatings and Films ,Electronic, Optical and Magnetic Materials ,Biomaterials ,Colloid and Surface Chemistry ,Planar ,[SPI.OPTI]Engineering Sciences [physics]/Optics / Photonic ,Copolymer ,Optoelectronics ,Photonics ,Absorption (electromagnetic radiation) ,business ,Light absorber ,perfect absorbers ,flat optics ,Layer (electronics) - Abstract
International audience; Producing ultrathin light absorber layers is attractive towards the integration of lightweight planar components in electronic, photonic, and sensor devices. In this work, we report the experimental demonstration of a thin gold (Au) metallic metasurface with near-perfect visible absorption (~ 95 %). Au nanoresonators possessing heights from 5-15 nm with sub-50 nm diameters were engineered by block copolymer (BCP) templating. The Au nanoresonators were fabricated on an alumina (Al2O3) spacer layer and a reflecting Au mirror, in a film-coupled nanoparticle design. The BCP nanopatterning strategy to produce desired heights of Au nanoresonators was tailored to achieve nearperfect absorption at ≈ 600 nm. The experimental insight described in this work is a step forward towards realizing large area flat optics applications derived from subwavelengththin metasurfaces.
- Published
- 2022
- Full Text
- View/download PDF
10. Square arrays of vertically aligned nanoporous cylinders from a linear <scp>ABC</scp> triblock terpolymer
- Author
-
Karim Aissou, Muhammad Mumtaz, Daniel Hermida‐Merino, Eduardo Solano, Didier Cot, Belkacem Tarek Benkhaled, Damien Quémener, Stéphanie Roualdes, Guillaume Fleury, and Georges Hadziioannou
- Subjects
Polymers and Plastics ,Materials Chemistry ,Physical and Theoretical Chemistry - Published
- 2023
- Full Text
- View/download PDF
11. 3D‐Printed Organic Conjugated Trimer for Visible‐Light‐Driven Photocatalytic Applications
- Author
-
Xiaojiao Yuan, Neus Sunyer‐Pons, Aleix Terrado, José Luis León, Georges Hadziioannou, Eric Cloutet, and Katherine Villa
- Subjects
General Energy ,General Chemical Engineering ,Environmental Chemistry ,General Materials Science - Published
- 2023
- Full Text
- View/download PDF
12. Optical Gain in Semiconducting Polymer Nano and Mesoparticles
- Author
-
Mark Geoghegan, Marta M. Mróz, Chiara Botta, Laurie Parrenin, Cyril Brochon, Eric Cloutet, Eleni Pavlopoulou, Georges Hadziioannou, and Tersilla Virgili
- Subjects
transient absorption spectroscopy ,conjugated polymers ,stimulated emission ,nanoparticles ,mesoparticles ,Organic chemistry ,QD241-441 - Abstract
The presence of excited-states and charge-separated species was identified through UV and visible laser pump and visible/near-infrared probe femtosecond transient absorption spectroscopy in spin coated films of poly[N-9″-heptadecanyl-2,7-carbazole-alt-5,5-(4,7-di-2-thienyl-2′,1′,3′-benzothiadiazole)] (PCDTBT) nanoparticles and mesoparticles. Optical gain in the mesoparticle films is observed after excitation at both 400 and 610 nm. In the mesoparticle film, charge generation after UV excitation appears after around 50 ps, but little is observed after visible pump excitation. In the nanoparticle film, as for a uniform film of the pure polymer, charge formation was efficiently induced by UV excitation pump, while excitation of the low energetic absorption states (at 610 nm) induces in the nanoparticle film a large optical gain region reducing the charge formation efficiency. It is proposed that the different intermolecular interactions and molecular order within the nanoparticles and mesoparticles are responsible for their markedly different photophysical behavior. These results therefore demonstrate the possibility of a hitherto unexplored route to stimulated emission in a conjugated polymer that has relatively undemanding film preparation requirements.
- Published
- 2021
- Full Text
- View/download PDF
13. Ionic and poly(ionic liquid)s as perovskite passivating molecules for improved solar cell performances
- Author
-
Silvia Mariotti, Daniele Mantione, Samy Almosni, Milutin Ivanović, Takeru Bessho, Miwako Furue, Hiroshi Segawa, Georges Hadziioannou, Eric Cloutet, and Thierry Toupance
- Subjects
Materials Chemistry ,General Chemistry - Abstract
Ionic liquids and poly(ionic liquid)s act as bulk and/or passivation agents when used as additives in methylammonium-free lead perovskites, leading to devices showing enhanced power conversion efficiencies, reduced hysteresis and improved stability.
- Published
- 2022
- Full Text
- View/download PDF
14. Organic Conjugated Trimers with Donor–Acceptor–Donor Structures for Photocatalytic Hydrogen Generation Application
- Author
-
Xiaojiao Yuan, Cong Wang, Lorenzo Vallan, Anh Thy Bui, Gediminas Jonusauskas, Nathan D. McClenaghan, Chloé Grazon, Sabrina Lacomme, Cyril Brochon, Hynd Remita, Georges Hadziioannou, Eric Cloutet, Laboratoire de Chimie des Polymères Organiques (LCPO), Université de Bordeaux (UB)-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Institut Polytechnique de Bordeaux-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Team 4 LCPO : Polymer Materials for Electronic, Energy, Information and Communication Technologies, Université de Bordeaux (UB)-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Institut Polytechnique de Bordeaux-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université de Bordeaux (UB)-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Institut Polytechnique de Bordeaux-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Institut de Chimie Physique (ICP), Institut de Chimie du CNRS (INC)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Institut des Sciences Moléculaires (ISM), Université Montesquieu - Bordeaux 4-Université Sciences et Technologies - Bordeaux 1 (UB)-École Nationale Supérieure de Chimie et de Physique de Bordeaux (ENSCPB)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Laboratoire Ondes et Matière d'Aquitaine (LOMA), Université de Bordeaux (UB)-Centre National de la Recherche Scientifique (CNRS), Bordeaux Imaging Center (BIC), Université de Bordeaux (UB)-Institut François Magendie-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), and European Project: 800926,HyPhOE
- Subjects
Biomaterials ,hydrogen generation ,Conjugated trimers ,organic semiconductor ,Electrochemistry ,Conjugated trimers D-A-D organic semiconductor photocatalysis hydrogen generation ,D-A-D ,[CHIM]Chemical Sciences ,Condensed Matter Physics ,photocatalysis ,Electronic, Optical and Magnetic Materials - Abstract
International audience; Organic donor-acceptor-donor (D-AD) polymers or small molecules are widely investigated in organic solar cells (OSC) due to their broad light absorption, narrow band gap, excellent charge mobility and exciton seperation at the interface. However, studies of conjugated small molecules with D-AD molecule structures as photocatalytically active materials are still rare. In this work, we give an unprecedented demonstration that photocatalytic activity can in fact be affected by tuning the D and A. Especially, the EBE trimer, comprising 3,4-ethylenedioxythiophene (E) and benzothiadiazole (B) units, exhibits the best photophysical, chemical and photocatalytic properties compared to other D-AD combinations of D and A. Detailed kinetic studies show that all these trimers in organic solution present relatively long-lived and highly emissive photogenerated singlet excitons (τ = 4-13 ns; φem = 0.5-0.9) as judged by photoluminescence and transient absorption measurements, while in specific cases formation of long-lived triplet states can be identified. Organic microparticles of the trimers are efficiently formed in aqueous solution by nanoprecipitation, and rapid photoinduced electron release/injection to the solvent is evidenced spectroscopically. The results indicate that organic small molecule structures with D-AD structures pave a new pathway for photocatalytic solar-to-chemical energy conversion of novel small organic molecules.
- Published
- 2023
- Full Text
- View/download PDF
15. Nanotextured Pedot:Tos Layers from Block Copolymer Lithography
- Author
-
Florent Pawula, Solène Perrot, Georges Hadziioannou, and Guillaume Fleury
- Subjects
Biomaterials ,Materials Chemistry ,General Chemistry ,Electrical and Electronic Engineering ,Condensed Matter Physics ,Electronic, Optical and Magnetic Materials - Published
- 2023
- Full Text
- View/download PDF
16. Conjugated polymer blends for faster organic mixed conductors
- Author
-
Micah Barker, Tommaso Nicolini, Yasmina Al Yaman, Damien Thuau, Olga Siscan, Sasikumar Ramachandran, Eric Cloutet, Cyril Brochon, Lee J. Richter, Olivier J. Dautel, Georges Hadziioannou, and Natalie Stingelin
- Subjects
Mechanics of Materials ,Process Chemistry and Technology ,General Materials Science ,Electrical and Electronic Engineering - Abstract
A model mixed-conducting polymer, blended with an amphiphilic block-copolymer, is shown to yield systems with drastically enhanced electro-chemical doping kinetics, leading to faster electrochemical transistors with a high transduction. Importantly, this approach is robust and reproducible, and should be readily adaptable to other mixed conductors without the need for exhaustive chemical modification.
- Published
- 2022
17. Non-destructive depth-dependent morphological characterization of ferroelectric:semiconducting polymer blend films
- Author
-
Mario Maglione, Georges Hadziioannou, Eleni Pavlopoulou, N. Spampinato, Gilles Pecastaings, Team 4 LCPO : Polymer Materials for Electronic, Energy, Information and Communication Technologies, Laboratoire de Chimie des Polymères Organiques (LCPO), Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Université de Bordeaux (UB)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Université de Bordeaux (UB)-Institut de Chimie du CNRS (INC), Institut de Chimie de la Matière Condensée de Bordeaux (ICMCB), Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), The authors acknowledge receiving funding from the Labex AMADEus (ANR-10-LABEX-0042-AMADEUS) and the French state Initiative d’Excellence IdEx (ANR-10-IDEX-003-02). Financial support from the HOMERIC Industrial Chair (Arkema/ANR) with the grant agreement no AC-2013-365 is also acknowledged., ANR-10-LABX-0042,AMADEus,Advanced Materials by Design(2010), and ANR-10-IDEX-0003,IDEX BORDEAUX,Initiative d'excellence de l'Université de Bordeaux(2010)
- Subjects
non-volatile memories Declarations ,Materials science ,Polymers and Plastics ,scanning probe microscopy ,02 engineering and technology ,Substrate (electronics) ,010402 general chemistry ,01 natural sciences ,P3HT ,Scanning probe microscopy ,Colloid and Surface Chemistry ,morphology ,Microscopy ,Materials Chemistry ,Physical and Theoretical Chemistry ,Composite material ,Thin film ,Kelvin probe force microscope ,[CHIM.MATE]Chemical Sciences/Material chemistry ,P(VDF-co-TrFE) ,021001 nanoscience & nanotechnology ,0104 chemical sciences ,Piezoresponse force microscopy ,Polymer blend ,0210 nano-technology ,Layer (electronics) ,polymer blends - Abstract
International audience; Herein we investigate the technologically relevant blend of the ferroelectric polymer poly(vinylidene fluorideco-trifluoroethylene), P(VDF-co-TrFE), with the semiconducting polymer poly(3-hexylthiophene), P3HT, by means of a combination of Scanning Probe Microscopy techniques, namely Atomic Force Microscopy, Conductive Force Microscopy, Kelvin Probe Force Microscopy and Piezoresponse Force Microscopy. This combination proves to be a powerful tool for the non-destructive morphological reconstruction of multifunctional nano-structured thin films, as those under study. Each modality allows discerning the two blend constituents based on their functionality, and, additionally, probes layers of different thickness with respect to the films surface. The depth-dependent information that is collected allows a qualitative reconstruction of the blend's composition and morphology both in-plane and out-of-plane of the film. We demonstrate that P3HT exhibits the tendency to reside the film surface at an almost constant composition of 15%, independent of blend's composition. Increasing the P3HT content in the blend results in the segregation of P3HT at the upper layers of the films, partially buried below a P(VDF-co-TrFE) superficial layer. The depletion of P3HT from the substrate/film interface is reflected by the poor existence of conducting pathways that connect the top and bottom planes of the film. The three-dimensional morphology of this polymer blend that is revealed thanks to the employed techniques deviates substantially from the ideal morphology proposed for the efficient performance of the targeted memory devices.
- Published
- 2021
- Full Text
- View/download PDF
18. PEDOT:Tos electronic and thermoelectric properties: lessons from two polymerization processes
- Author
-
Solène Perrot, Florent Pawula, Stanislav Pechev, Guillaume Fleury, and Georges Hadziioannou
- Subjects
chemistry.chemical_classification ,Materials science ,Doping ,General Chemistry ,Polymer ,Thermoelectric materials ,Chemical engineering ,PEDOT:PSS ,chemistry ,Polymerization ,Seebeck coefficient ,Thermoelectric effect ,Materials Chemistry ,In situ polymerization - Abstract
In the landscape of π-conjugated polymers, poly(3,4-ethylenedioxythiophene) doped with iron(III) p-toluenesulfonate (PEDOT:Tos) has shown promise as a thermoelectric material for near room temperature applications. Such properties are inherent to its semi-metallic nature when optimally doped leading to high electrical conductivity and a relatively good Seebeck coefficient. Nevertheless, the final thermoelectric properties of PEDOT:Tos are highly influenced by the polymerization pathways and a thorough understanding of the interplay between polymerization processes and thermoelectric properties is needed. Here, PEDOT:Tos thin films with a doping level of 22 ± 2% were produced by in situ polymerization and vapor-phase polymerization and a comparative study was performed in order to investigate the subtle correlations between morphological features and electronic signatures for both types of samples. Accordingly, optimized in situ polymerized PEDOT:Tos films were demonstrated to exhibit higher electrical conductivities (up to 4398 ± 68 S cm−1) and power factors (up to 148 ± 37 μW m−1 K−2), highlighting the importance of the polymerization process on the final thermoelectric properties.
- Published
- 2021
- Full Text
- View/download PDF
19. Rapid Self-Assembly and Sequential Infiltration Synthesis of High χ Fluorine-Containing Block Copolymers
- Author
-
Cian Cummins, Giuseppe Portale, Federico Cruciani, Guillaume Pino, Yulin Shi, Nils Demazy, Daniele Mantione, Guillaume Fleury, Georges Hadziioannou, Macromolecular Chemistry & New Polymeric Materials, Team 4 LCPO : Polymer Materials for Electronic, Energy, Information and Communication Technologies, Laboratoire de Chimie des Polymères Organiques (LCPO), Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Université de Bordeaux (UB)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Université de Bordeaux (UB)-Institut de Chimie du CNRS (INC), Department of Mechanical Engineering [Montréal], McGill University = Université McGill [Montréal, Canada], and European Synchrotron Radiation Facility (ESRF)
- Subjects
Materials science ,metal oxide nanofeatures ,DOMAINS ,Polymers and Plastics ,STRATEGIES ,02 engineering and technology ,010402 general chemistry ,Methacrylate ,01 natural sciences ,Styrene ,Inorganic Chemistry ,chemistry.chemical_compound ,PATTERN TRANSFER ,THIN-FILMS ,NANOFINS ,Materials Chemistry ,Copolymer ,nanolithography ,chemistry.chemical_classification ,sequential infiltration synthesis ,Acrylate ,Small-angle X-ray scattering ,Organic Chemistry ,Fluoro block copolymers ,SUB-10 NM FEATURES ,Polymer ,021001 nanoscience & nanotechnology ,0104 chemical sciences ,[CHIM.POLY]Chemical Sciences/Polymers ,chemistry ,Chemical engineering ,METHACRYLATE) ,sub-10 nm patterning ,Self-assembly ,ORIENTATION ,POLYMERS ,0210 nano-technology ,Science, technology and society - Abstract
International audience; We leverage the attractive properties of a high χ-low N BCP, i.e. poly(styrene)-block-poly(2-fluoro ethyl methylacrylate) (PS-b-P2FEMA) and illustrate its utility for next-generation nano-manufacturing. The synthesis, physical characterization and thin film self-assembly of a series of lamellar and cylindrical PS-b-P2FEMA BCPs is delineated. PS-b-P2FEMA BCPs with total molecular weights ranging from 7 kg mol -1 to 22 kg mol -1 were synthesized using reversible-addition-fragmentation chain-transfer (RAFT) polymerization. Temperature resolved small angle X-ray scattering (SAXS) measurements revealed a large χ value (0.13@ 150°C) for PS-b-P2FEMA. Solvo-thermal vapor annealing of PS-b-P2FEMA films produced highly oriented fingerprint patterns in as short as 60 seconds. Lamellar period sizes ranged from 25.9 nm down to 14.2 nm with feature sizes as small as 7 nm observed. We also demonstrate the integration feasibility of PS-b-P2FEMA BCPs through alumina hardmask formation using sequential infiltration synthesis. The highly favorable characteristics of the P2FEMA based BCPs detailed here provide a versatile material option to the current library of available BCPs for sub-10 nm nanolithography.
- Published
- 2020
- Full Text
- View/download PDF
20. Cyan Ni1–xAl2+2x/3□x/3O4 Single-Phase Pigment Synthesis and Modification for Electrophoretic Ink Formulation
- Author
-
Cyril Brochon, Guillaume Fleury, Eric Cloutet, Georges Hadziioannou, Béatrice Serment, Alain Demourgues, Amélie Noël, Manuel Gaudon, Institut de Chimie de la Matière Condensée de Bordeaux (ICMCB), Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Team 4 LCPO : Polymer Materials for Electronic, Energy, Information and Communication Technologies, Laboratoire de Chimie des Polymères Organiques (LCPO), Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Université de Bordeaux (UB)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Université de Bordeaux (UB)-Institut de Chimie du CNRS (INC), Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Université de Bordeaux (UB)-Institut de Chimie du CNRS (INC), The authors want to thank Equipex ELORPrintTec facilities (ANR-10-EQPX-28-01)., and ANR-10-EQPX-0028,ELORPrinttec,'Plate-forme de l'Université de Bordeaux pour l'organique électronique imprimable : de la molécule aux dispositifs et systèmes intégrés - valorisation et commercialisation'(2010)
- Subjects
Nitroxide mediated radical polymerization ,Materials science ,spinel ,Pechini ,General Chemical Engineering ,Cyan ,Inorganic chemistry ,chemistry.chemical_element ,02 engineering and technology ,[CHIM.INOR]Chemical Sciences/Inorganic chemistry ,010402 general chemistry ,01 natural sciences ,Article ,QD1-999 ,Sol-gel ,Cationic polymerization ,General Chemistry ,[CHIM.MATE]Chemical Sciences/Material chemistry ,021001 nanoscience & nanotechnology ,0104 chemical sciences ,Electrophoretic inks ,Nickel ,Chemistry ,[CHIM.POLY]Chemical Sciences/Polymers ,Octahedron ,chemistry ,[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci] ,Surface modification ,hybrids particles ,dispersion polymerization ,0210 nano-technology ,Dispersion (chemistry) ,cyan pigment - Abstract
Cyan Ni1–xAl2+2x/3O4 single-phase pigments with various Ni/Al atomic ratios (from 1:2 down to 1:4) have been prepared by a sol–gel route (Pechini) followed by postannealing treatments. Nickel aluminates crystallize in the well-known spinel structure (Fd3m space group), where metals are located at two different Wyckoff positions: 16d (octahedron) and 8a (tetrahedron). Based on X-ray diffraction (XRD) Rietveld refinements, Ni2+ cations are shown to be partially located in both tetrahedral and octahedral sites and, in addition, cationic vacancies occupy the Oh environment. In the pure-phase series, Ni/Al = 0.35, 0.40, 0.45, as the Al content increases, the Ni2+ rate in the Td site decreases for Ni/Al = 0.45, thus altering the cyan color; within this series, the most saturated cyan coloration is reached for the highest Al concentration. Inorganic pigment drawbacks are their high density and hydrophilic surface, which induce sedimentation and aggregation in nonpolar media used in electrophoretic inks. Hybrid core–shell particle pigments have been synthesized from cyan pigments using nitroxide-mediated radical polymerization (NMRP) with methyl methacrylate monomer in Isopar G, leading to a dispersion of electrically charged hybrids in apolar media. Surface functionalization of the pigments by n-octyltrimethoxysilane (OTS) and n-dodecyltrimethoxysilane (DTS) modifiers has been compared. The inorganic pigments are successfully encapsulated by organic shells to allow a strong decrease in their density. Cyan inks, adequate for their use in e-book readers or other electrophoretic displays, taking further advantage of the high contrast ratio and reflectivity of inorganic pigments in regard to organic dyes, have been stabilized.
- Published
- 2020
- Full Text
- View/download PDF
21. Limiting Relative Permittivity 'Burn-in' in Polymer Ferroelectrics via Phase Stabilization
- Author
-
Naser Pouriamanesh, Florian Le Goupil, Natalie Stingelin, and Georges Hadziioannou
- Subjects
Inorganic Chemistry ,Polymers and Plastics ,Organic Chemistry ,Materials Chemistry - Abstract
VDF-based polymers, such as poly(vinylidene fluoride) (PVDF) and its copolymers, are well-known ferroelectrics of interest for numerous applications, from energy storage to electrocaloric refrigeration. However, their often complex thermal phase behavior that typically leads to a low phase-stability can drastically affect the long-term dielectric properties of this materials family. Here, we demonstrate on the example of the terpolymer P(VDF
- Published
- 2022
22. Electrocaloric Enhancement Induced by Cocrystallization of Vinylidene Difluoride-Based Polymer Blends
- Author
-
Georges Hadziioannou, Florian Le Goupil, Naser Pouriamanesh, Francesco Coin, Guillaume Fleury, Laboratoire de Chimie des Polymères Organiques (LCPO), Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Université de Bordeaux (UB)-Institut de Chimie du CNRS (INC), Team 4 LCPO : Polymer Materials for Electronic, Energy, Information and Communication Technologies, and Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Université de Bordeaux (UB)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Université de Bordeaux (UB)-Institut de Chimie du CNRS (INC)
- Subjects
Materials science ,Polymers and Plastics ,Organic Chemistry ,Difluoride ,Refrigeration ,microstructure tuning ,02 engineering and technology ,ferroelectric polymer ,010402 general chemistry ,021001 nanoscience & nanotechnology ,01 natural sciences ,Thermal control ,0104 chemical sciences ,electrocaloric effect ,Inorganic Chemistry ,[CHIM.POLY]Chemical Sciences/Polymers ,Chemical engineering ,Materials Chemistry ,Polymer blend ,0210 nano-technology - Abstract
International audience; Active thermal control will be a major challenge of the twenty-first century, which has emphasized the need for the development of energy-efficient refrigeration techniques such as electrocaloric (EC) cooling. Highly polar semi-crystalline VDF-based polymers are promising organic EC materials, however, their cooling performance, which is highly structurally-dependent, needs further improvement to become competitive. Here, we report a simple method to increase the crystalline coherence of P(VDF-ter-TrFE-ter-CFE) ter-polymer in the plane including the polar direction. This is achieved by blending P(VDF-ter-TrFE-ter-CFE) with minute amounts of P(VDF-co-TrFE) co-polymer with similar VDF/TrFE unit content. This similarity allows for a cocrystallization of the co-polymer chains in the ter-polymer crystalline lamellae, preferentially extending the lateral coherence without lamellar thickening, as validated with a wide range of structural characterisation. This results in a significant dielectric and electrocaloric enhancement, with a remarkable electrocaloric effect, ΔTEC = 5.2 K, confirmed by direct measurements for a moderate electric field of 90 MV∙m-1 in a blend with 1 wt% of co-polymer.
- Published
- 2022
- Full Text
- View/download PDF
23. p-Doping of a Hole Transport Material via a Poly(ionic liquid) for over 20% Efficiency and Hysteresis-Free Perovskite Solar Cells
- Author
-
Camille Geffroy, Takeru Bessho, Eric Cloutet, Fumiyasu Awai, Georges Hadziioannou, Hiroshi Segawa, Zeguo Tang, Samy Almosni, Anirudh Sharma, Eftychia Grana, Takumi Kinoshita, Thierry Toupance, Laboratoire de Chimie des Polymères Organiques (LCPO), Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Université de Bordeaux (UB)-Institut de Chimie du CNRS (INC), Research Center for Advanced Science and Technology [Tokyo] (RCAST), The University of Tokyo (UTokyo), Institut des Sciences Moléculaires (ISM), and Université Montesquieu - Bordeaux 4-Université Sciences et Technologies - Bordeaux 1-École Nationale Supérieure de Chimie et de Physique de Bordeaux (ENSCPB)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
poly(ionic liquid) ,Materials science ,Energy Engineering and Power Technology ,Hole transport layer ,02 engineering and technology ,hole transport layer ,010402 general chemistry ,01 natural sciences ,7. Clean energy ,Hole transporting material ,chemistry.chemical_compound ,Materials Chemistry ,Electrochemistry ,Chemical Engineering (miscellaneous) ,Electrical and Electronic Engineering ,Perovskite (structure) ,chemistry.chemical_classification ,p-doping ,poly(ionic-liquid) ,Perovskite solar cells ,Doping ,[CHIM.MATE]Chemical Sciences/Material chemistry ,Polymer ,021001 nanoscience & nanotechnology ,0104 chemical sciences ,Hysteresis ,[CHIM.POLY]Chemical Sciences/Polymers ,chemistry ,Chemical engineering ,Ionic liquid ,doping mechanism ,0210 nano-technology - Abstract
International audience; An efficient metal-free formulation of a hole transport material (HTM) based on an ionic liquid polymer is developed for n-i-p perovskite solar cells (PSCs), to address reproducibility issues related to the use of complex dopant mixtures based on lithium salts and cobalt coordination complexes. The conductivity of the HTM is thus significantly improved by 4 orders of magnitude, up to 1.9 x 10-3 S.cm-1, using poly(1-butyl-3-vinylimidazolium bis(trifluoromethylsulfonyl)imide) (PVBI-TFSI) as dopant. Introduced in the FTO/c-TiO2/mp-TiO2/K0.05(MA0.15FA0.85)0.95PbI2.55Br0.45/HTM/Au PSC configuration, PVBI-TFSI-HTM formulation shows power conver-sion efficiency as high as 20.3 %, versus 18.4 % for the standard lithium salt-HTM formulation, with considerably re-duced hysteresis and excellent reproducibility. Mechanistic investigations suggest that PVBI-TFSI acts as a source of protons promoting the HTM oxidation.
- Published
- 2020
- Full Text
- View/download PDF
24. Post-functionalization of polyvinylcarbazoles: An open route towards hole transporting materials for perovskite solar cells
- Author
-
Georges Hadziioannou, Camille Geffroy, Céline Olivier, Eftychia Grana, Hiroshi Segawa, Eric Cloutet, Muhammad Waseem Mumtaz, Ludmila Cojocaru, Thierry Toupance, Satoshi Uchida, Team 4 LCPO : Polymer Materials for Electronic, Energy, Information and Communication Technologies, Laboratoire de Chimie des Polymères Organiques (LCPO), Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Université de Bordeaux (UB)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Université de Bordeaux (UB)-Institut de Chimie du CNRS (INC), Research Center for Advanced Science and Technology [Tokyo] (RCAST), The University of Tokyo (UTokyo), Institut des Sciences Moléculaires (ISM), and Université Montesquieu - Bordeaux 4-Université Sciences et Technologies - Bordeaux 1-École Nationale Supérieure de Chimie et de Physique de Bordeaux (ENSCPB)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
chemistry.chemical_classification ,Electron mobility ,Materials science ,Perovskite solar cells ,Renewable Energy, Sustainability and the Environment ,020209 energy ,Polyvinylcarbazoles ,Hole mobility ,02 engineering and technology ,Polymer ,021001 nanoscience & nanotechnology ,7. Clean energy ,Hole-transporting materials ,[CHIM.POLY]Chemical Sciences/Polymers ,Chemical engineering ,chemistry ,0202 electrical engineering, electronic engineering, information engineering ,Surface modification ,General Materials Science ,Amine gas treating ,Device stability ,Solubility ,0210 nano-technology ,Perovskite (structure) - Abstract
International audience; We report on the potential of tuning poly(9-vinylcarbazole) (PVK) properties through functionalization for an application as hole transport material (HTM) for perovskite solar cells (PSCs). The synthesized PVK-based polymers were substituted with moieties of interest to improve the solubility, the charge transport properties, or to tune energy levels. Bis(4-methoxyphenyl)amine moieties were found to improve the hole mobility and to increase the HOMO level of the PVK. Therefore, PSCs employing PVK-[N(PhOCH3)2]2 as HTM exhibited a best PCE of 16.7%. Compared to spiro-OMeTAD, first studies have shown that PVK-[N(PhOCH3)2]2 could extend PSC lifetime.
- Published
- 2019
- Full Text
- View/download PDF
25. Tuning the Rheology of Conducting Polymer Inks for Various Deposition Processes
- Author
-
Alizée Glasser, Hamid Kellay, Georges Hadziioannou, and Eric Cloutet
- Subjects
chemistry.chemical_classification ,Materials science ,Aqueous solution ,General Chemical Engineering ,Nanotechnology ,02 engineering and technology ,General Chemistry ,Polymer ,010402 general chemistry ,021001 nanoscience & nanotechnology ,01 natural sciences ,0104 chemical sciences ,chemistry ,Rheology ,Printed electronics ,Materials Chemistry ,Deposition (phase transition) ,0210 nano-technology - Abstract
Organic semiconducting polymers are attractive because of their competitive price and low processability requirements. Aqueous solutions of these polymers can be deposited with a variety of process...
- Published
- 2019
- Full Text
- View/download PDF
26. Bicontinuous Network Nanostructure with Tunable Thickness Formed on Asymmetric Triblock Terpolymer Thick Films
- Author
-
Gilles Pecastaings, Karim Aissou, Hana Bouzit, Giuseppe Portale, Muhammad Mumtaz, Guillaume Fleury, Georges Hadziioannou, Institut Européen des membranes (IEM), Centre National de la Recherche Scientifique (CNRS)-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Université Montpellier 2 - Sciences et Techniques (UM2)-Institut de Chimie du CNRS (INC)-Université de Montpellier (UM), Laboratoire de Chimie des Polymères Organiques (LCPO), Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Université de Bordeaux (UB)-Institut de Chimie du CNRS (INC), Univ Groningen, Zernike Inst Adv Mat, Macromol Chem & New Polym Mat, University of Groningen [Groningen], and Macromolecular Chemistry & New Polymeric Materials
- Subjects
Nanostructure ,Materials science ,Polymers and Plastics ,Annealing (metallurgy) ,PHASE ,02 engineering and technology ,BLOCK-COPOLYMER MEMBRANES ,010402 general chemistry ,01 natural sciences ,ULTRAFILTRATION ,Inorganic Chemistry ,Phase (matter) ,Materials Chemistry ,Copolymer ,[CHIM]Chemical Sciences ,Lamellar structure ,ARCHIMEDEAN TILINGS ,Snips ,Organic Chemistry ,021001 nanoscience & nanotechnology ,LAMELLAE ,0104 chemical sciences ,ARRAYS ,Membrane ,Chemical engineering ,Substructure ,MORPHOLOGY ,0210 nano-technology - Abstract
International audience; Asymmetric poly(1,1-dimethyl silacyclobutane)-block-polystyrene-block-poly(2-vinyl pyridine) (PDMSB-b-PS-b-P2VP) thick films, consisting of a spongelike substructure topped by a nanostructured dense top layer, were produced by combining a fast self-assembly of the triblock terpolymer chains with nonsolvent-induced phase separation (referred as SNIPS). A controlled evolution of the thickness and morphology of the nanostructured top layer was achieved upon solvent vapor annealing (SVA). For instance, the sub-100 nm thick square array morphology generated by SNIPS is transformed into a 1.5 mu m thick core-shell perforated lamellar (PL) structure when exposed to a chloroform (CHCl3) vapor for 3 h. A PL phase having highly ordered continuous P2VP nanochannels can be envisioned as an appealing morphology for membrane applications, since such a network structure formed on asymmetric PDMSB-b-PS-b-P2VP thick films obviates the need for alignment. Monoliths entirely composed of the bicontinuous PL structure were also produced by increasing the duration of the SVA treatment (18 h, CHCl3)
- Published
- 2019
- Full Text
- View/download PDF
27. A Review on Conductive Polymers and Their Hybrids for Flexible and Wearable Thermoelectric Applications
- Author
-
Amir Pakdel, Eric Cloutet, Florent Pawula, Anthony J. Robinson, Georges Hadziioannou, Guillaume Fleury, Geoffrey Prunet, Team 4 LCPO : Polymer Materials for Electronic, Energy, Information and Communication Technologies, Laboratoire de Chimie des Polymères Organiques (LCPO), Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Université de Bordeaux (UB)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Université de Bordeaux (UB)-Institut de Chimie du CNRS (INC), and Trinity College Dublin
- Subjects
Conductive polymers ,Materials science ,Physics and Astronomy (miscellaneous) ,Wearable computer ,Nanotechnology ,02 engineering and technology ,Wearable thermoelectric devices ,010402 general chemistry ,7. Clean energy ,01 natural sciences ,Thermoelectric effect ,Organic thermoelectric materials ,General Materials Science ,Electronics ,chemistry.chemical_classification ,Conductive polymer ,Flexibility (engineering) ,Low toxicity ,Body energy harvesting ,Hybrid thermoelectric materials ,Flexible thermoelectric generators ,Polymer ,021001 nanoscience & nanotechnology ,0104 chemical sciences ,[CHIM.POLY]Chemical Sciences/Polymers ,chemistry ,0210 nano-technology ,Energy harvesting ,Energy (miscellaneous) - Abstract
International audience; The demand for electronic devices that are flexible and wearable is growing. To facilitate this demand, the next generation devices must be able to bend and stretch under mechanical loading. In this regard, energy harvesting technologies have invested in organic and polymeric semiconducting materials due to their, low cost and toxicity, good flexibility, tunable electronic properties and capacity for scaled manufacturing. For example, electrically conductive π-conjugated polymers have been investigated in various thermoelectric technologies for producing stretchable, wearable, and light-weight thermoelectric devices that can harvest energy from a temperature gradient and produce electricity with no pollution or moving parts. This review provides a general summary of the thermoelectric principles and conductive polymer characteristics, followed by the recent progress in their application in flexible and wearable thermoelectric devices. We also evaluate new advances in manufacturing hybrids of π-conjugated polymers with other polymers, inorganic materials, or carbon nanostructures, and their applications in body energy harvesting and smart cooling.
- Published
- 2021
- Full Text
- View/download PDF
28. Lithographically Defined Cross-Linkable Top Coats for Nanomanufacturing with High-χ Block Copolymers
- Author
-
Xavier Chevalier, Cindy Gomes Correia, Gwenaelle Pound-Lana, Philippe Bézard, Matthieu Sérégé, Camille Petit-Etienne, Guillaume Gay, Gilles Cunge, Benjamin Cabannes-Boué, Célia Nicolet, Christophe Navarro, Ian Cayrefourcq, Marcus Müller, Georges Hadziioannou, Ilias Iliopoulos, Guillaume Fleury, Marc Zelsmann, Arkema (Arkema), Laboratoire de Chimie des Polymères Organiques (LCPO), Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Université de Bordeaux (UB)-Institut de Chimie du CNRS (INC), Team 4 LCPO : Polymer Materials for Electronic, Energy, Information and Communication Technologies, Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Université de Bordeaux (UB)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Université de Bordeaux (UB)-Institut de Chimie du CNRS (INC), Laboratoire des technologies de la microélectronique (LTM ), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA), Commissariat à l'énergie atomique et aux énergies alternatives - Laboratoire d'Electronique et de Technologie de l'Information (CEA-LETI), Direction de Recherche Technologique (CEA) (DRT (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Institut für Theoretische Physik [Göttingen], Georg-August-University [Göttingen], Laboratoire Procédés et Ingénierie en Mécanique et Matériaux (PIMM), Conservatoire National des Arts et Métiers [CNAM] (CNAM)-Arts et Métiers Sciences et Technologies, HESAM Université (HESAM)-HESAM Université (HESAM), Université de Bordeaux (UB)-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Institut Polytechnique de Bordeaux-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Université de Bordeaux (UB)-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Institut Polytechnique de Bordeaux-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université de Bordeaux (UB)-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Institut Polytechnique de Bordeaux-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Georg-August-University = Georg-August-Universität Göttingen, Conservatoire National des Arts et Métiers [CNAM] (CNAM), HESAM Université - Communauté d'universités et d'établissements Hautes écoles Sorbonne Arts et métiers université (HESAM)-HESAM Université - Communauté d'universités et d'établissements Hautes écoles Sorbonne Arts et métiers université (HESAM)-Centre National de la Recherche Scientifique (CNRS)-Arts et Métiers Sciences et Technologies, and HESAM Université - Communauté d'universités et d'établissements Hautes écoles Sorbonne Arts et métiers université (HESAM)
- Subjects
Spatial positioning ,Materials science ,Lithography ,Dewetting ,Nanotechnology ,Top-coat patterning ,02 engineering and technology ,010402 general chemistry ,Sciences de l'ingénieur ,01 natural sciences ,[SPI.MAT]Engineering Sciences [physics]/Materials ,Cross-linkable top coats ,[SPI]Engineering Sciences [physics] ,Nanomanufacturing ,Perpendicular ,Copolymer ,General Materials Science ,ComputingMilieux_MISCELLANEOUS ,Nanopatterning ,Self-assembly ,021001 nanoscience & nanotechnology ,Block copolymers ,0104 chemical sciences ,[CHIM.POLY]Chemical Sciences/Polymers ,0210 nano-technology ,Layer (electronics) ,[PHYS.COND.CM-SCM]Physics [physics]/Condensed Matter [cond-mat]/Soft Condensed Matter [cond-mat.soft] - Abstract
International audience; The directed self-assembly (DSA) of block copolymers (BCPs) is a powerful method for the manufacture of high-resolution features. Critical issues remain to be addressed for successful implementation of DSA, such as dewetting and controlled orientation of BCP domains through physicochemical manipulations at the BCP interfaces, and the spatial positioning and registration of the BCP features. Here, we introduce novel top-coat (TC) materials designed to undergo cross-linking reactions triggered by thermal or photoactivation processes. The cross-linked TC layer with adjusted composition induces a mechanical confinement of the BCP layer, suppressing its dewetting while promoting perpendicular orientation of BCP domains. The selection of areas of interest with perpendicular features is performed directly on the patternable TC layer via a lithography step and leverages attractive integration pathways for the generation of locally controlled BCP patterns and nanostructured BCP multilayers.
- Published
- 2021
- Full Text
- View/download PDF
29. Multifunctional Top-Coats Strategy for DSA of High-χ Block Copolymers
- Author
-
Xavier Chevalier, Cindy Gomes Correia, Gwenaelle Pound-Lana, Philippe Bézard, Matthieu Sérégé, Camille Petit-Etienne, Guillaume Gay, Gilles Cunge, Benjamin Cabannes-Boué, Célia Nicolet, Christophe Navarro, Ian Cayrefourcq, Marcus Müller, Georges Hadziioannou, Ilias Iliopoulos, Guillaume Fleury, Marc Zelsmann, Arkema (Arkema), Laboratoire de Chimie des Polymères Organiques (LCPO), Université de Bordeaux (UB)-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Institut Polytechnique de Bordeaux-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Laboratoire des technologies de la microélectronique (LTM ), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA), Georg-August-University = Georg-August-Universität Göttingen, Laboratoire Procédés et Ingénierie en Mécanique et Matériaux (PIMM), Conservatoire National des Arts et Métiers [CNAM] (CNAM), HESAM Université - Communauté d'universités et d'établissements Hautes écoles Sorbonne Arts et métiers université (HESAM)-HESAM Université - Communauté d'universités et d'établissements Hautes écoles Sorbonne Arts et métiers université (HESAM)-Centre National de la Recherche Scientifique (CNRS)-Arts et Métiers Sciences et Technologies, HESAM Université - Communauté d'universités et d'établissements Hautes écoles Sorbonne Arts et métiers université (HESAM), Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Université de Bordeaux (UB)-Institut de Chimie du CNRS (INC), University of Göttingen - Georg-August-Universität Göttingen, Conservatoire National des Arts et Métiers [CNAM] (CNAM)-Arts et Métiers Sciences et Technologies, and HESAM Université (HESAM)-HESAM Université (HESAM)
- Subjects
Materials science ,Lithography ,Polymers and Plastics ,Dewetting ,010401 analytical chemistry ,Organic Chemistry ,Nanopatterning ,Top-coat patterning ,Self-assembly ,010402 general chemistry ,01 natural sciences ,Block copolymers ,0104 chemical sciences ,[CHIM.POLY]Chemical Sciences/Polymers ,Chemical engineering ,Materials Chemistry ,Copolymer ,Cross-linkable top-coats ,[SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics - Abstract
International audience; A concept of patternable top-coats dedicated to directed self-assembly of high-χ block copolymers is detailed, where the design enables a crosslinking reaction triggered by thermal or photo-activation. Nanostructured BCP areas with controlled domains orientation are selected through a straightforward top-coat lithography step with unique integration pathways. Additionally, the crosslinked nature of the material enables the suppression of the BCP dewetting, while exhibiting exceptional capabilities for the construction of 3D stacks.
- Published
- 2021
- Full Text
- View/download PDF
30. Biohybrid plants with electronic roots via in vivo polymerization of conjugated oligomers
- Author
-
Georges Hadziioannou, Daniela Parker, Eleni Stavrinidou, Magnus Berggren, Eleni Pavlopoulou, Eduardo Solano, Yohann Daguerre, Torgny Näsholm, Gwennaël Dufil, Daniele Mantione, Eric Cloutet, Laboratory of Organic Electronics, Linköping University (LIU), Umeå University, Team 4 LCPO : Polymer Materials for Electronic, Energy, Information and Communication Technologies, Laboratoire de Chimie des Polymères Organiques (LCPO), Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Université de Bordeaux (UB)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Université de Bordeaux (UB)-Institut de Chimie du CNRS (INC), ALBA Synchrotron light source [Barcelone], Institute of Electronic Structure and Laser (FORTH-IESL), and Foundation for Research and Technology - Hellas (FORTH)
- Subjects
electronic plant ,[SDV.BIO]Life Sciences [q-bio]/Biotechnology ,Nanotechnology ,02 engineering and technology ,010402 general chemistry ,01 natural sciences ,Energy storage ,Cutting ,Teoretisk kemi ,General Materials Science ,Electronics ,Electrical and Electronic Engineering ,[SDV.BBM.BC]Life Sciences [q-bio]/Biochemistry, Molecular Biology/Biochemistry [q-bio.BM] ,Theoretical Chemistry ,conducting polymers ,Vascular tissue ,2. Zero hunger ,chemistry.chemical_classification ,Conductive polymer ,energy storage ,Process Chemistry and Technology ,Polymer ,[SDV.BV.BOT]Life Sciences [q-bio]/Vegetal Biology/Botanics ,021001 nanoscience & nanotechnology ,Bio Materials ,6. Clean water ,0104 chemical sciences ,Biocatalysis and Enzyme Technology ,chemistry ,Polymerization ,Mechanics of Materials ,Surface modification ,mixed ionic-electronic conductors ,0210 nano-technology ,biohybrid - Abstract
Plant processes, ranging from photosynthesis through production of biomaterials to environmental sensing and adaptation, can be used in technology via integration of functional materials and devices. Previously, plants with integrated organic electronic devices and circuits distributed in their vascular tissue and organs have been demonstrated. To circumvent biological barriers, and thereby access the internal tissue, plant cuttings were used, which resulted in biohybrids with limited lifetime and use. Here, we report intact plants with electronic functionality that continue to grow and develop enabling plant-biohybrid systems that fully maintain their biological processes. The biocatalytic machinery of the plant cell wall was leveraged to seamlessly integrate conductors with mixed ionic-electronic conductivity along the root system of the plants. Cell wall peroxidases catalyzed ETE-S polymerization while the plant tissue served as the template, organizing the polymer in a favorable manner. The conductivity of the resulting p(ETE-S) roots reached the order of 10 S cm(-1) and remained stable over the course of 4 weeks while the roots continued to grow. The p(ETE-S) roots were used to build supercapacitors that outperform previous plant-biohybrid charge storage demonstrations. Plants were not affected by the electronic functionalization but adapted to this new hybrid state by developing a more complex root system. Biohybrid plants with electronic roots pave the way for autonomous systems with potential applications in energy, sensing and robotics. Funding Agencies|European UnionEuropean Commission [800926, 838171]; Swedish Research CouncilSwedish Research CouncilEuropean Commission [VR-2017-04910]; Knut and Alice Wallenberg FoundationKnut & Alice Wallenberg Foundation; Wallenberg Wood Science Center [KAW 2018.0452]; Swedish Government Strategic Research Area in Materials Science on Advanced Functional Materials at Linkoping University [2009-00971]; European Research Council (ERC)European Research Council (ERC)European Commission [834677]
- Published
- 2021
- Full Text
- View/download PDF
31. Delamination and wrinkling of flexible conductive polymer thin films
- Author
-
Shekhar Shinde, Hamid Kellay, Abdelhamid Maali, Kaili Xie, Eric Cloutet, Zaicheng Zhang, Georges Hadziioannou, Alizée Glasser, Jean-Michel Rampnoux, Team 4 LCPO : Polymer Materials for Electronic, Energy, Information and Communication Technologies, Laboratoire de Chimie des Polymères Organiques (LCPO), Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Université de Bordeaux (UB)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Université de Bordeaux (UB)-Institut de Chimie du CNRS (INC), Laboratoire Ondes et Matière d'Aquitaine (LOMA), and Université de Bordeaux (UB)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Materials science ,02 engineering and technology ,Substrate (electronics) ,wrinkling instability ,010402 general chemistry ,01 natural sciences ,Instability ,Biomaterials ,Electrochemistry ,conductive polymer ,Thin film ,Composite material ,Elastic modulus ,chemistry.chemical_classification ,Conductive polymer ,Drop (liquid) ,Delamination ,flexible thin films ,Polymer ,021001 nanoscience & nanotechnology ,Condensed Matter Physics ,0104 chemical sciences ,Electronic, Optical and Magnetic Materials ,[CHIM.POLY]Chemical Sciences/Polymers ,chemistry ,0210 nano-technology ,delamination and adhesion - Abstract
International audience; Polymer based conductive and transparent thin films are an important class of functional materials at the heart of flexible organic electronic devices. These flexible films are prone to degradation and to mechanical instability leading to the formation of blisters, wrinkles and cracks. This is detrimental to their use especially in the case of multilayer devices. Here, we show that a simple water or solvent drop deposited on such films gives rise to a buckling instability and the formation of several folds due to the tendency of these films to swell in contact with the solvent. A phase diagram of the instability portraying its domain of existence, and thus the means to inhibit it, is proposed. By depositing drops on such films and observing the instability, material parameters such as the elastic modulus of the thin films or their energy of adhesion to the substrate can be estimated reliably. Further, the instability can be harnessed to pattern surfaces at low cost giving rise to percolated and more conductive pathways in the conductive polymer films under scrutiny.
- Published
- 2021
- Full Text
- View/download PDF
32. Thiophene-Based Trimers for In-Vivo Electronic Functionalization of Tissues
- Author
-
Eleni Stavrinidou, Daniele Mantione, Eleni Pavlopoulou, Magnus Berggren, Daniela Parker, Lorenzo Vallan, Gwennaël Dufil, Emin Istif, Cyril Brochon, Eric Cloutet, Georges Hadziioannou, Laboratoire de Chimie des Polymères Organiques (LCPO), Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Université de Bordeaux (UB)-Institut de Chimie du CNRS (INC), Team 4 LCPO : Polymer Materials for Electronic, Energy, Information and Communication Technologies, Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Université de Bordeaux (UB)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Université de Bordeaux (UB)-Institut de Chimie du CNRS (INC), Laboratory of Organic Electronics [Norrköping, Sweden] (Department of Science and Technology), Linköping University (LIU), İstif, Emin, Mantione, Daniele, Dufil, Gwennael, Vallan, Lorenzo, Parker, Daniela, Brochon, Cyril, Cloutet, Eric, Hadziioannou, Georges, Berggren, Magnus, Stavrinidou, Eleni, Pavlopoulou, Eleni, College of Engineering, and Department of Mechanical Engineering
- Subjects
Trimer ,enzymatic polymerization ,02 engineering and technology ,Conjugated system ,bioelectronics ,010402 general chemistry ,01 natural sciences ,Oligomer ,chemistry.chemical_compound ,Materials Chemistry ,Electrochemistry ,Side chain ,Thiophene ,conducting polymers ,Växtbioteknologi ,Conductive polymer ,fungi ,Rational design ,Engineering ,Materials science ,food and beverages ,EDOT ,plant-mediated polymerization ,tissue engineering ,021001 nanoscience & nanotechnology ,Combinatorial chemistry ,plant mediated polymerization ,Bioelectronics ,Conducting polymers ,Enzymatic polymerization ,Plant-mediated polymerization ,Tissue engineering ,0104 chemical sciences ,Electronic, Optical and Magnetic Materials ,[CHIM.POLY]Chemical Sciences/Polymers ,chemistry ,Polymerization ,Plant Biotechnology ,EDOT, conducting polymers, enzymatic polymerization, plant mediated polymerization, bioelectronics, tissue engineering ,0210 nano-technology - Abstract
Electronic materials that can self-organize in vivo and form functional components along the tissue of interest can result in a seamless integration of the bioelectronic interface. Previously, we presented in vivo polymerization of the conjugated oligomer ETE-S in plants, forming conductors along the plant structure. The EDOT-thiophene-EDOT trimer with a sulfonate side group polymerized due to the native enzymatic activity of the plant and integrated within the plant cell wall. Here, we present the synthesis of three different conjugated trimers based on thiophene and EDOT or purely EDOT trimers that are able to polymerize enzymatically in physiological pH in vitro as well as in vivo along the roots of living plants. We show that by modulating the backbone and the side chain, we can tune the electronic properties of the resulting polymers as well as their localization and penetration within the root. Our work paves the way for the rational design of electronic materials that can self-organize in vivo for spatially controlled electronic functionalization of living tissue., European Union (EU); Horizon 2020; Research and Innovation Program; HyPhOE; MSCA-IF-2018; TEXTHIOL
- Published
- 2020
- Full Text
- View/download PDF
33. A Strategy for Enhancing Ultrahigh Molecular Weight Block Copolymer Chain Mobility to Access Large Period Sizes (> 100 nm)
- Author
-
Ahmed Bentaleb, Cian Cummins, Virginie Ponsinet, Alberto Alvarez-Fernandez, Guillaume Fleury, Georges Hadziioannou, Laboratoire de Chimie des Polymères Organiques (LCPO), Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Université de Bordeaux (UB)-Institut de Chimie du CNRS (INC), Team 4 LCPO : Polymer Materials for Electronic, Energy, Information and Communication Technologies, Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Université de Bordeaux (UB)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Université de Bordeaux (UB)-Institut de Chimie du CNRS (INC), Centre de Recherche Paul Pascal (CRPP), and Université de Bordeaux (UB)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Materials science ,large period patterning ,Band gap ,surface chemistry ,02 engineering and technology ,Surface engineering ,010402 general chemistry ,01 natural sciences ,chemistry.chemical_compound ,Electrochemistry ,Copolymer ,General Materials Science ,Lamellar structure ,Thin film ,Spectroscopy ,chemistry.chemical_classification ,Propylene glycol methyl ether acetate ,Surfaces and Interfaces ,Polymer ,021001 nanoscience & nanotechnology ,Condensed Matter Physics ,Block copolymers ,metasurfaces ,0104 chemical sciences ,Hildebrand solubility parameter ,[CHIM.POLY]Chemical Sciences/Polymers ,chemistry ,Chemical engineering ,optical nanoresonators ,0210 nano-technology - Abstract
International audience; Assembling ultra-high molecular weight (UHMW) block copolymers (BCPs) in rapid timescales is perceived as a grand challenge in polymer science due to slow kinetics. Through surface engineering and identifying a non-volatile solvent (propylene glycol methyl ether acetate, PGMEA) we showcase the impressive ability of a series of lamellar poly(styrene)-block-poly(2-vinylpyridine) (PS-b-P2VP) BCPs to self-assemble directly after spin-coating. In particular, we show the formation of large period (≈ 111 nm) lamellar structures from a neat UHMW PS-b-P2VP BCP. The significant influence of solvent-polymer solubility parameters are explored to enhance polymer chain mobility. After optimization using solvent vapor annealing, increased feature order of ultra large period PS-b-P2VP BCP patterns in 1 hr is achieved. The methods described in this article center on industry compatible patterning schemes, solvents and deposition techniques. Isolated metallic and dielectric features are also demonstrated exemplifying the promise that large BCP periods offer for functional applications. Thus, our straightforward UHMW BCP strategy potentially paves a viable and practical path forward for large-scale integration in various sectors, e.g. photonic band gaps, polarizers, and membranes that demand ultra large period sizes.
- Published
- 2020
- Full Text
- View/download PDF
34. Large area Al2O3-Au raspberry-like nanoclusters from iterative block-copolymer self-assembly
- Author
-
Guillaume Fleury, Philippe Fontaine, Cian Cummins, Georges Hadziioannou, Virginie Ponsinet, Alberto Alvarez-Fernandez, Frédéric Nallet, Philippe Barois, Centre de Recherche Paul Pascal (CRPP), Université de Bordeaux (UB)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Chimie des Polymères Organiques (LCPO), Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Université de Bordeaux (UB)-Institut de Chimie du CNRS (INC), Team 4 LCPO : Polymer Materials for Electronic, Energy, Information and Communication Technologies, Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Université de Bordeaux (UB)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Université de Bordeaux (UB)-Institut de Chimie du CNRS (INC), University College of London [London] (UCL), Synchrotron SOLEIL (SSOLEIL), Centre National de la Recherche Scientifique (CNRS), ANR-10-LABX-0042,AMADEus,Advanced Materials by Design(2010), ANR-10-EQPX-0028,ELORPrinttec,'Plate-forme de l'Université de Bordeaux pour l'organique électronique imprimable : de la molécule aux dispositifs et systèmes intégrés - valorisation et commercialisation'(2010), ANR-10-IDEX-0003,IDEX BORDEAUX,Initiative d'excellence de l'Université de Bordeaux(2010), Université de Bordeaux (UB)-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Institut Polytechnique de Bordeaux-Centre National de la Recherche Scientifique (CNRS), Université de Bordeaux (UB)-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Institut Polytechnique de Bordeaux-Centre National de la Recherche Scientifique (CNRS)-Université de Bordeaux (UB)-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Institut Polytechnique de Bordeaux-Centre National de la Recherche Scientifique (CNRS), Université de Bordeaux (UB)-Centre National de la Recherche Scientifique (CNRS), EconomiX, Université Paris Nanterre (UPN)-Centre National de la Recherche Scientifique (CNRS), and Université de Bordeaux (UB)
- Subjects
[PHYS]Physics [physics] ,Materials science ,General Chemical Engineering ,Nanotechnology ,02 engineering and technology ,General Chemistry ,[CHIM.MATE]Chemical Sciences/Material chemistry ,010402 general chemistry ,021001 nanoscience & nanotechnology ,01 natural sciences ,0104 chemical sciences ,Nanoclusters ,Nanomaterials ,[CHIM.POLY]Chemical Sciences/Polymers ,Monolayer ,Wafer ,Nanodot ,Self-assembly ,Thin film ,0210 nano-technology ,Lithography - Abstract
International audience; In the field of functional nanomaterials, core-satellite nanocluster have recently elicited great interest due to their unique optoelectronic properties. However, core-satellite synthetic routes to date are hampered by delicate and multistep reaction conditions and no practical method has been reported for the ordering of these structures onto a surface monolayer. Herein we show a reproducible and simplified thin film process to fabricate bimetallic raspberry nanoclusters using block copolymer (BCP) lithography. Inorganic raspberry nanoclusters fabricated consisted of a ~ 36 nm alumina core decorated with ~15 nm Au satellites after infusing multilayer BCP nanopatterns. A series of cylindrical BCPs with different molecular weights allowed us to dial in specific nanodot periodicities (from 30 to 80 nm). Highly ordered BCP nanopatterns were then selectively infiltrated with alumina and Au species to develop multi-level bimetallic raspberry features. Microscopy and x-ray reflectivity analysis were used at each fabrication step to gain further mechanistic insights and understand the infiltration process. Furthermore, grazing-incidence small-angle X-ray scattering studies of infiltrated films confirmed the excellent order and vertical orientation over wafer scale areas of Al2O3/Au raspberry nanoclusters. We believe our work demonstrates a robust strategy towards designing hybrid nanoclusters since BCP blocks can be infiltrated with various low cost salt-based precursors. The highly controlled nanocluster strategy disclosed here could have wide ranging uses, in particular for metasurface and optical based sensor applications.
- Published
- 2020
- Full Text
- View/download PDF
35. Excited state dynamics of conducting polymers studied by time-resolved optical and terahertz spectroscopy
- Author
-
M. Bousquet, Eric Freysz, F. Dutin, Jérôme Degert, Georges Hadziioannou, Eric Cloutet, and Marc Tondusson
- Subjects
Conductive polymer ,Materials science ,010405 organic chemistry ,business.industry ,Terahertz radiation ,010402 general chemistry ,Polaron ,01 natural sciences ,0104 chemical sciences ,Terahertz spectroscopy and technology ,Photoexcitation ,Optical pumping ,PEDOT:PSS ,Optoelectronics ,business ,Spectroscopy - Abstract
Terahertz time-domain, optical pump-THz probe and optical pump-optical probe spectroscopies are used to study the optoelectronic properties of two PEDOT-based conducting polymers: PEDOT/PSTFSIK and PEDOT/PSS. These experiments highlight the role played by polarons and bipolarons in the carriers' dynamics taking place within these compounds after their photoexcitation by ultrashort optical pulses.
- Published
- 2020
- Full Text
- View/download PDF
36. Tailoring fluorinated electroactive polymers toward specific applications
- Author
-
Georges Hadziioannou, Cyril Brochon, Konstantinos Kallitsis, Damien Thuau, Eric Cloutet, Team 4 LCPO : Polymer Materials for Electronic, Energy, Information and Communication Technologies, Laboratoire de Chimie des Polymères Organiques (LCPO), Université de Bordeaux (UB)-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Institut Polytechnique de Bordeaux-Centre National de la Recherche Scientifique (CNRS)-Université de Bordeaux (UB)-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Institut Polytechnique de Bordeaux-Centre National de la Recherche Scientifique (CNRS), Université de Bordeaux (UB)-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Institut Polytechnique de Bordeaux-Centre National de la Recherche Scientifique (CNRS), Laboratoire de l'intégration, du matériau au système (IMS), Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Université Sciences et Technologies - Bordeaux 1, Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Université de Bordeaux (UB)-Institut de Chimie du CNRS (INC), Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Université de Bordeaux (UB)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Université de Bordeaux (UB)-Institut de Chimie du CNRS (INC), and ANR-10-EQPX-0028,ELORPrinttec,'Plate-forme de l'Université de Bordeaux pour l'organique électronique imprimable : de la molécule aux dispositifs et systèmes intégrés - valorisation et commercialisation'(2010)
- Subjects
Photolithography ,Materials science ,Fabrication ,Dielectric ,Polymers and Plastics ,Nanotechnology ,02 engineering and technology ,010402 general chemistry ,01 natural sciences ,law.invention ,Semiconductor industry ,Colloid and Surface Chemistry ,law ,Materials Chemistry ,Electroactive polymers ,[CHIM]Chemical Sciences ,Fluorinated Electroactive Polymers ,Electronics ,Physical and Theoretical Chemistry ,ComputingMilieux_MISCELLANEOUS ,chemistry.chemical_classification ,Organic field-effect transistor ,Polymer ,[CHIM.MATE]Chemical Sciences/Material chemistry ,021001 nanoscience & nanotechnology ,0104 chemical sciences ,chemistry ,OFET ,0210 nano-technology ,Relaxor-ferroelectric ,Ferroelectric - Abstract
International audience; Fluorinated Electroactive Polymers (FEPs) are emerging as one of the most prominent classes of insulating materials found in organic electronic devices.Despite their broad application, those materials have fixed electronic properties that are difficult to be tuned in order to achieve optimal performance in different applications. This mini-review highlights the need for tailoring the electronic properties of FEPs and explores the different approaches our group has proposed as solutions to such problem. Those include strategies to obtain stable dielectric properties and thus stable OFET performance over a broad range of temperature, as well as strategies to make FEPs directly compatible with photolithography, which is the most widely used fabrication technique by the semiconductor industry. Last, a general strategy to introduce different functional groups on FEPs is presented, allowing the introduction of altogether new properties to those polymers.
- Published
- 2020
- Full Text
- View/download PDF
37. Phase diagram of poly(VDF-ter-TrFE-ter-CTFE) copolymers: Relationship between crystalline structure and material properties
- Author
-
Georges Hadziioannou, Damien Thuau, Sylvie Tencé-Girault, François Bargain, Fabrice Domingues Dos Santos, Laboratoire de l'intégration, du matériau au système (IMS), Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Université Sciences et Technologies - Bordeaux 1, Team 4 LCPO : Polymer Materials for Electronic, Energy, Information and Communication Technologies, Laboratoire de Chimie des Polymères Organiques (LCPO), Université de Bordeaux (UB)-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Institut Polytechnique de Bordeaux-Centre National de la Recherche Scientifique (CNRS)-Université de Bordeaux (UB)-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Institut Polytechnique de Bordeaux-Centre National de la Recherche Scientifique (CNRS), Ecole Nationale Supérieure d'Arts et Métiers (Arts et Métiers ParisTech) (ENSAM), Arkema (Arkema), Chimie Moléculaire, Macromoléculaire et Matériaux (UMR7167) (C3M), Centre National de la Recherche Scientifique (CNRS)-Ecole Superieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut de Chimie du CNRS (INC), Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Université de Bordeaux (UB)-Institut de Chimie du CNRS (INC), Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Université de Bordeaux (UB)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Université de Bordeaux (UB)-Institut de Chimie du CNRS (INC), Centre de recherche Rhône-Alpes (CRRA), Laboratoire Procédés et Ingénierie en Mécanique et Matériaux (PIMM), Conservatoire National des Arts et Métiers [CNAM] (CNAM)-Arts et Métiers Sciences et Technologies, HESAM Université (HESAM)-HESAM Université (HESAM), ANR-10-EQPX-0028,ELORPrinttec,'Plate-forme de l'Université de Bordeaux pour l'organique électronique imprimable : de la molécule aux dispositifs et systèmes intégrés - valorisation et commercialisation'(2010), and Université Sciences et Technologies - Bordeaux 1-Institut Polytechnique de Bordeaux-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Matériaux [Sciences de l'ingénieur] ,Materials science ,Polymers and Plastics ,Annealing (metallurgy) ,Analytical chemistry ,02 engineering and technology ,Crystal structure ,010402 general chemistry ,01 natural sciences ,Electroactive material ,VDF based terpolymer ,Materials Chemistry ,Copolymer ,ComputingMilieux_MISCELLANEOUS ,Phase diagram ,Organic Chemistry ,[CHIM.MATE]Chemical Sciences/Material chemistry ,021001 nanoscience & nanotechnology ,Ferroelectricity ,3. Good health ,0104 chemical sciences ,Dielectric spectroscopy ,Solvent ,[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci] ,Orthorhombic crystal system ,0210 nano-technology - Abstract
International audience; Depending on their CTFE content (from 0 to 10 mol %), poly(VDF-ter-TrFE-ter-CTFE), poly(vinylidene fluoride-ter-trifluoroethylene-ter-chlorotrifluoroethylene) copolymers, exhibit ferroelectric (FE) or relaxor ferroelectric (RFE) properties at room temperature. Solvent cast films of these terpolymers can crystallize in three orthorhombic phases: FE, DFE (Defective Ferroelectric) or RFE according to their amount of CTFE. The relative amount of each crystalline phase depends on the amount of CTFE and evolves after annealing. We study the dependence of the electric displacement−electric field (D−E) loop with the amount of CTFE and with annealing step. We observed a closely link between the remnant polarization, PR, and the fraction of (FE + DFE) crystalline phase. Macroscopic properties, studied using thermo-mechanical experiments (DSC and DMA) and dielectric spectroscopy, evolve continuously with the CTFE amount and are well correlated with the structural properties. Finally, a temperature versus mol% CTFE phase diagram is established and discussed in relation-ship with material properties.
- Published
- 2020
- Full Text
- View/download PDF
38. Large area Al
- Author
-
Alberto, Alvarez-Fernandez, Frédéric, Nallet, Philippe, Fontaine, Cian, Cummins, Georges, Hadziioannou, Philippe, Barois, Guillaume, Fleury, and Virginie, Ponsinet
- Abstract
In the field of functional nanomaterials, core-satellite nanoclusters have recently elicited great interest due to their unique optoelectronic properties. However, core-satellite synthetic routes to date are hampered by delicate and multistep reaction conditions and no practical method has been reported for the ordering of these structures onto a surface monolayer. Herein we show a reproducible and simplified thin film process to fabricate bimetallic raspberry nanoclusters using block copolymer (BCP) lithography. The fabricated inorganic raspberry nanoclusters consisted of a ∼36 nm alumina core decorated with ∼15 nm Au satellites after infusing multilayer BCP nanopatterns. A series of cylindrical BCPs with different molecular weights allowed us to dial in specific nanodot periodicities (from 30 to 80 nm). Highly ordered BCP nanopatterns were then selectively infiltrated with alumina and Au species to develop multi-level bimetallic raspberry features. Microscopy and X-ray reflectivity analysis were used at each fabrication step to gain further mechanistic insights and understand the infiltration process. Furthermore, grazing-incidence small-angle X-ray scattering studies of infiltrated films confirmed the excellent order and vertical orientation over wafer scale areas of Al
- Published
- 2020
39. Enhanced Electrocaloric Response of Vinylidene Fluoride–Based Polymers via One‐Step Molecular Engineering
- Author
-
Thibaut Soulestin, Eric Cloutet, Naser Pouriamanesh, Sylvie Tencé-Girault, Georges Hadziioannou, Konstantinos Kallitsis, Cyril Brochon, Florian Le Goupil, Natalie Stingelin, Fabrice Domingues Dos Santos, Laboratoire de Chimie des Polymères Organiques (LCPO), Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Université de Bordeaux (UB)-Institut de Chimie du CNRS (INC), Team 4 LCPO : Polymer Materials for Electronic, Energy, Information and Communication Technologies, Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Université de Bordeaux (UB)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Université de Bordeaux (UB)-Institut de Chimie du CNRS (INC), Laboratoire Procédés et Ingénierie en Mécanique et Matériaux (PIMM), Conservatoire National des Arts et Métiers [CNAM] (CNAM)-Arts et Métiers Sciences et Technologies, HESAM Université (HESAM)-HESAM Université (HESAM), Centre de recherche, développement, applications et technique de l'ouest (CERDATO), Arkema (Arkema), Piezotech SAS (Piezotech SAS), Piezotech SAS, and Georgia Institute of Technology [Atlanta]
- Subjects
Permittivity ,Matériaux [Sciences de l'ingénieur] ,Materials science ,Annealing (metallurgy) ,General Chemical Engineering ,Analytical chemistry ,microstructure tuning ,02 engineering and technology ,010402 general chemistry ,01 natural sciences ,Biomaterials ,Crystal ,Crystallinity ,Electric field ,Electrochemistry ,Lamellar structure ,Polarization (electrochemistry) ,ferroelectric polymer ,021001 nanoscience & nanotechnology ,Condensed Matter Physics ,electrocaloric effect ,0104 chemical sciences ,Electronic, Optical and Magnetic Materials ,[CHIM.POLY]Chemical Sciences/Polymers ,Electrocaloric effect ,0210 nano-technology - Abstract
International audience; Electrocaloric refrigeration is one of the most promising, environmentallyfriendly technology to replace current cooling platforms—if a notable electrocaloric effect (ECE) is realized around room temperature where the highest need is. Here, a straight-forward, one-pot chemical modification of P(VDF-ter-TrFE-ter-CTFE) is reported through the controlled introduction of small fractions of double bonds within the backbone that, very uniquely, decreases the lamellar crystalline thickness while, simultaneously, enlarging the crystalline coherence along the a-b plane. This increases the polarizability and polarization without affecting the degree of crystallinity or amending the crystal unit cell—undesirable effects observed with other approaches. Specifically, the permittivity increases by >35%, from 52 to 71 at 1 kHz, and ECE improves by >60% at moderate electric fields. At 40 °C, an adiabatic temperature change >2 K is realized at 60 MV m−1 (>5.5 K at 192 MV m−1), compared to ≈1.3 K for pristine P(VDF-ter-rFE-ter-CTFE), highlighting the promise of a simple, versatile approach that allows direct film deposition without requiring any post-treatment such as mechanical stretching or high-temperature annealing for achieving the desired performance.
- Published
- 2020
- Full Text
- View/download PDF
40. A Low-Swelling Polymeric Mixed Conductor Operating in Aqueous Electrolytes
- Author
-
Guillaume Wantz, Alberto D. Scaccabarozzi, Georges Hadziioannou, Olivier Dautel, Achilleas Savva, Tommaso Nicolini, Rana Nakar, Natalie Stingelin, Damien Thuau, Jokubas Surgailis, Lee J. Richter, Team 4 LCPO : Polymer Materials for Electronic, Energy, Information and Communication Technologies, Laboratoire de Chimie des Polymères Organiques (LCPO), Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Université de Bordeaux (UB)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Université de Bordeaux (UB)-Institut de Chimie du CNRS (INC), Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Université de Bordeaux (UB)-Institut de Chimie du CNRS (INC), King Abdullah University of Science and Technology (KAUST), University of Cambridge [UK] (CAM), Institut Charles Gerhardt Montpellier - Institut de Chimie Moléculaire et des Matériaux de Montpellier (ICGM ICMMM), Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Université Montpellier 1 (UM1)-Université Montpellier 2 - Sciences et Techniques (UM2)-Institut de Chimie du CNRS (INC), Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM), Laboratoire de l'intégration, du matériau au système (IMS), Université Sciences et Technologies - Bordeaux 1-Institut Polytechnique de Bordeaux-Centre National de la Recherche Scientifique (CNRS), National Institute of Standards and Technology [Gaithersburg] (NIST), and Georgia Institute of Technology [Atlanta]
- Subjects
Materials science ,Nanotechnology ,02 engineering and technology ,010402 general chemistry ,01 natural sciences ,Ion ,medicine ,[CHIM]Chemical Sciences ,General Materials Science ,Electrical conductor ,[PHYS]Physics [physics] ,chemistry.chemical_classification ,Bioelectronics ,hydrophilic conjugated polymers ,Mechanical Engineering ,Doping ,Polymer ,021001 nanoscience & nanotechnology ,organic electrochemical transistors ,poly(3-(6-hydroxy)hexyl thiophene) ,0104 chemical sciences ,Mixed conductor ,Neuromorphic engineering ,chemistry ,mixed conduction ,Mechanics of Materials ,[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci] ,Swelling ,medicine.symptom ,0210 nano-technology - Abstract
Organic mixed conductors find use in batteries, bioelectronics technologies, neuromorphic computing, and sensing. While great progress has been achieved, polymer-based mixed conductors frequently experience significant volumetric changes during ion uptake/rejection, i.e., during doping/de-doping and charging/discharging. Although ion dynamics may be enhanced in expanded networks, these volumetric changes can have undesirable consequences, e.g., negatively affecting hole/electron conduction and severely shortening device lifetime. Here, the authors present a new material poly[3-(6-hydroxy)hexylthiophene] (P3HHT) that is able to transport ions and electrons/holes, as tested in electrochemical absorption spectroscopy and organic electrochemical transistors, and that exhibits low swelling, attributed to the hydroxylated alkyl side-chain functionalization. P3HHT displays a thickness change upon passive swelling of only +2.5%, compared to +90% observed for the ubiquitous poly(3,4-ethylenedioxythiophene):polystyrene sulfonate, and +10 to +15% for polymers such as poly(2-(3,3'-bis(2-(2-(2-methoxyethoxy)ethoxy)ethoxy)-[2,2'-bithiophen]-5-yl)thieno[3,2-b]thiophene) (p[g2T-TT]). Applying a bias pulse during swelling, this discrepancy becomes even more pronounced, with the thickness of P3HHT films changing by10% while that of p(g2T-TT) structures increases by +75 to +80%. Importantly, the initial P3HHT film thickness is essentially restored after de-doping while p(g2T-TT) remains substantially swollen. The authors, thus, expand the materials-design toolbox for the creation of low-swelling soft mixed conductors with tailored properties and applications in bioelectronics and beyond.
- Published
- 2020
- Full Text
- View/download PDF
41. Ultra-High Performance Organic Thermoelectric Generators through Interfacial Doping Gradients
- Author
-
Tero-Petri Ruoko, Klas Tybrandt, Sergi Riera-Galindo, Simone Fabiano, Xenofon Strakosas, Xavier Crispin, Viktor Gueskine, Slawomir Braun, Ioannis Petsagkourakis, Nara Kim, Georges Hadziioannou, Samuel Lienemann, Mats Fahlman, Xianjie Liu, Magnus Berggren, and Eleni Pavlopoulou
- Subjects
Materials science ,Thermoelectric generator ,business.industry ,Doping ,Optoelectronics ,Ultra high performance ,business - Abstract
The interfacial energetics are known to play a crucial role in organic electronic devices. However, their effects in organic thermoelectrics remain to be elucidated. In this work we optimize the output power density of an organic thermoelectric generator (OTEG) at ambient atmosphere to record high values, by varying the work function of the metal contacts. We find that the effect is linked to extended gradients of doping states, which are induced by humidity and reside inside the organic layer oriented perpendicular to the metal contacts. The thermovoltage, arising from this contact phenomenon alone, reaches a magnitude similar to that of the Seebeck voltage of the conducting polymer itself, thereby providing a major contribution to the resulting thermoelectric performance. With this work, we put a new emphasis on the importance of the metal-polymer interface in thermoelectrics. The overall output performance can be greatly improved by fine-tuning the interfacial energetics, which then provides an attractive complementing route for enhancing the performance of OTEGs.
- Published
- 2020
- Full Text
- View/download PDF
42. Synthesis and characterization of high molecular weight polyrotaxanes: towards the control over a wide range of threaded α-cyclodextrins
- Author
-
Alain Lapp, Guy Schlatter, Cyril Brochon, Guillaume Bonnet, Guillaume Fleury, Georges Hadziioannou, Laboratoire d'Ingenierie des Polymères pour les Hautes Technologies, Centre National de la Recherche Scientifique (CNRS)-Université Louis Pasteur - Strasbourg I, and Université Louis Pasteur - Strasbourg I-Centre National de la Recherche Scientifique (CNRS)
- Subjects
POLY(PROPYLENE GLYCOL) ,LINEAR POLYMER-CHAINS ,POLY(ETHYLENE GLYCOL) ,INCLUSION COMPLEXES ,One-pot synthesis ,02 engineering and technology ,010402 general chemistry ,01 natural sciences ,chemistry.chemical_compound ,PEG ratio ,Polymer chemistry ,Molecule ,GELS ,chemistry.chemical_classification ,Range (particle radiation) ,Cyclodextrin ,Chemistry ,ROTAXANES ,General Chemistry ,Polymer ,021001 nanoscience & nanotechnology ,Condensed Matter Physics ,0104 chemical sciences ,Characterization (materials science) ,[CHIM.POLY]Chemical Sciences/Polymers ,0210 nano-technology ,Ethylene glycol ,TRANSITION - Abstract
International audience; This work focuses on the synthesis of polyrotaxanes with high molecular weight template poly(ethylene glycol) PEG (20 kg mol(-1)) having various and well-defined amounts of alpha-cyclodextrins (alpha-CD) per chain N from 3 up to 125. N is the complexation degree of the polyrotaxane defined to be the average number of cyclodextrin molecules per template chain, The usual route has been used for high values of N, while sparsely complexed polyrotaxanes have been synthesized with an original one pot synthesis in water. Furthermore, it systernatic study wits carried out to understand and control the complexation degree N of the polyrotaxane as it function of the complexation time, the temperature and the initial ratio of alpha-CD to template polymer. It has been shown that a high temperature thermal plateau leads to the formation of very sparsely complexed (low N) pseudo-polyrotaxanes for which, the threaded alpha-CD act like nuclei and generate a favourable driving force for the final complexation at lower temperature.
- Published
- 2020
- Full Text
- View/download PDF
43. The versatile Co2+/Co3+ oxidation states in cobalt alumina spinel: how to design strong blue nanometric pigments for color electrophoretic display
- Author
-
Georges Hadziioannou, Sonia Buffière, Manuel Gaudon, Cyril Brochon, Alain Demourgues, Béatrice Serment, Institut de Chimie de la Matière Condensée de Bordeaux (ICMCB), Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Chimie des Polymères Organiques (LCPO), and Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Université de Bordeaux (UB)-Institut de Chimie du CNRS (INC)
- Subjects
Valence (chemistry) ,Materials science ,Annealing (metallurgy) ,General Chemical Engineering ,Spinel ,chemistry.chemical_element ,[CHIM.MATE]Chemical Sciences/Material chemistry ,02 engineering and technology ,General Chemistry ,engineering.material ,010402 general chemistry ,021001 nanoscience & nanotechnology ,01 natural sciences ,Charged particle ,0104 chemical sciences ,Electrophoresis ,Pigment ,Octahedron ,Chemical engineering ,chemistry ,visual_art ,engineering ,visual_art.visual_art_medium ,0210 nano-technology ,Cobalt - Abstract
International audience; Blue cobalt inorganic pigments with spinel-type structure have been revisited in order to understand the origin of blackening at low temperatures and to design strong blue nanosized materials. Starting from a sol–gel process, the so-called Pechini route, the correlation between the structural features (inversion rate, Co over-stoichiometry, Co valence states) of the spinel network and its thermal history under air up to high temperatures (T = 1400 °C) allows concluding that the stabilization of CoIII in octahedral sites is at the origin of the blackening of the pigment annealed at low and medium temperatures. EELS coupled with TEM analyses (occurrence of multiple phases with various Al/Co atomic ratios) lead to us to conclude definitively about the variation of Co valence states. A top-down (mechanical grinding) and a bottom-up approach lead to the definition of a synthesis route (co-precipitation in basic medium followed by annealing at medium temperatures under Ar) allowing the design of strong blue pure nano-sized pigments to be incorporated in inks. Hybrid blue positively charged particles were mixed with white negatively charged particles to formulate dual-colour inks. A dual-colour display was filled with the as-prepared inks and tested under ±150 V.
- Published
- 2019
- Full Text
- View/download PDF
44. High refractive index in low metal content nanoplasmonic surfaces from self-assembled block copolymer thin films
- Author
-
Alberto Alvarez-Fernandez, Virginie Ponsinet, Guillaume Fleury, Georges Hadziioannou, Gilles Pecastaings, Karim Aissou, Laboratoire de Chimie des Polymères Organiques (LCPO), Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Université de Bordeaux (UB)-Institut de Chimie du CNRS (INC), Team 4 LCPO : Polymer Materials for Electronic, Energy, Information and Communication Technologies, Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Université de Bordeaux (UB)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Université de Bordeaux (UB)-Institut de Chimie du CNRS (INC), Centre de Recherche Paul Pascal (CRPP), Université de Bordeaux (UB)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), ANR-10-LABX-0042,AMADEus,Advanced Materials by Design(2010), ANR-10-EQPX-0028,ELORPrinttec,'Plate-forme de l'Université de Bordeaux pour l'organique électronique imprimable : de la molécule aux dispositifs et systèmes intégrés - valorisation et commercialisation'(2010), and ANR-10-IDEX-0003,IDEX BORDEAUX,Initiative d'excellence de l'Université de Bordeaux(2010)
- Subjects
Nanoplasmonics ,Materials science ,Fabrication ,Nanophotonics ,Physics::Optics ,High refractive index ,Bioengineering ,02 engineering and technology ,010402 general chemistry ,01 natural sciences ,Microscopy ,General Materials Science ,Thin film ,chemistry.chemical_classification ,business.industry ,Scattering ,High-refractive-index polymer ,General Engineering ,General Chemistry ,Polymer ,021001 nanoscience & nanotechnology ,Block copolymers ,Atomic and Molecular Physics, and Optics ,0104 chemical sciences ,[CHIM.POLY]Chemical Sciences/Polymers ,chemistry ,Optoelectronics ,0210 nano-technology ,business ,Refractive index - Abstract
International audience; Materials with a high and tunable refractive index are attractive for nanophotonic applications. In this contribution, we propose a straightforward fabrication technique of high-refractive index surfaces based on self-assembled nanostructured block copolymer thin films. The selective and customizable metal incorporation within out-of-plane polymer lamellae produces azimuthally isotropic metallic nanostructures of defined geometries, which were analysed using microscopy and small-angle X-ray scattering techniques. Variable-angle spectroscopic ellipsometry was used to relate the geometrical parameters of the metallic features and the resulting refractive index of the patterned surfaces. In particular, nanostructured gold patterns with a high degree of homogeneity and a gold content as low as 16 vol% reach a refractive index value of more than 3 in the visible domain. Our study thus demonstrates a new route for the preparation of high refractive index surfaces with a low metal content for optical applications.
- Published
- 2019
- Full Text
- View/download PDF
45. Design of Potassium-Selective Mixed Ion/Electron Conducting Polymers
- Author
-
Abarkan Myriam, Gerardo Salinas, Cyril Brochon, Eric Cloutet, Alexander Kuhn, Matthieu Raoux, Maël Idir, Jochen Lang, Georges Hadziioannou, Ariana Villarroel Marquez, Laboratoire de Chimie des Polymères Organiques (LCPO), Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Université de Bordeaux (UB)-Institut de Chimie du CNRS (INC), Team 4 LCPO : Polymer Materials for Electronic, Energy, Information and Communication Technologies, Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Université de Bordeaux (UB)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Université de Bordeaux (UB)-Institut de Chimie du CNRS (INC), Institut des Sciences Moléculaires (ISM), Université Montesquieu - Bordeaux 4-Université Sciences et Technologies - Bordeaux 1-École Nationale Supérieure de Chimie et de Physique de Bordeaux (ENSCPB)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Chimie et Biologie des Membranes et des Nanoobjets (CBMN), and École Nationale d'Ingénieurs des Travaux Agricoles - Bordeaux (ENITAB)-Institut de Chimie du CNRS (INC)-Université de Bordeaux (UB)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Materials science ,Polymers and Plastics ,Polymers ,Ionic bonding ,02 engineering and technology ,coulovoltammetry ,010402 general chemistry ,Electrochemistry ,01 natural sciences ,17 coulovoltammetry 18 19 ,chemistry.chemical_compound ,PEDOT:PSS ,Mixed conducting polymers ,Materials Chemistry ,ion sensing ,Moiety ,PEDOT ,chemistry.chemical_classification ,Conductive polymer ,Ions ,Molecular Structure ,Organic Chemistry ,Electric Conductivity ,Polymer ,021001 nanoscience & nanotechnology ,0104 chemical sciences ,[CHIM.POLY]Chemical Sciences/Polymers ,Monomer ,Sulfonate ,chemistry ,Chemical engineering ,crown-ether ,Potassium ,0210 nano-technology - Abstract
International audience; An approach providing cation selective PEDOT:polyelectrolyte mixed conductors is presented in this communication, based on the structural modification of this ambivalent (ionic and electronic conductive) polymer complex. First, an 18-crown-6 moiety was integrated into the styrene sulfonate monomer structure as a specific metal cation scavenger particularly targeting K+ vs Na+ detection. This newly functionalized monomer has been characterized by 1H- NMR titration to evaluate the ion selectivity. Aqueous PEDOT dispersion inks containing the polymeric ion-selective moieties have been designed and their electrical and electrochemical properties have been analysed. These biocompatible inks are the first proof-of-concept step towards ion selectivity in view of their interfacing with biological cells and microorgans of interest in the field of biosensors and physiology.
- Published
- 2020
- Full Text
- View/download PDF
46. Material challenges for solar cells in the twenty-first century: directions in emerging technologies
- Author
-
Ryo Tamaki, Naoya Miyashita, Tomofumi Hamamura, Nicolas Cavassilas, Nazmul Ahsan, Haibin Wang, Laurence Vignau, Ludmila Cojocaru, Thierry Toupance, Arnaud Etcheberry, Kentaro Watanabe, Daniel Suchet, Sylvain Chambon, Camille Geffroy, Maxime Giteau, Benoit Behaghel, Samy Almosni, Takaya Kubo, Katsuhisa Yoshida, Eric Cloutet, Zacharie Jehl, Laurent Lombez, Camille Ibrahim, Tomoyuki Inoue, Yoshiaki Nakano, Yasushi Shoji, M. Paire, Céline Olivier, Jean-François Guillemoles, Andrea Cattoni, Hiroshi Segawa, Damien Aureau, Georges Hadziioannou, Satoshi Uchida, Anatole Julian, Pierre Rale, Yoshitaka Okada, Masakazu Sugiyama, Stéphane Collin, Léa Tatry, François Gibelli, Muriel Bouttemy, Amaury Delamarre, University of Tokyo NextPV, Research Center for Advanced Science and Technology [Tokyo] (RCAST), The University of Tokyo, Institut de Recherche et Développement sur l'Energie Photovoltaïque (IRDEP), Ecole Nationale Supérieure de Chimie de Paris- Chimie ParisTech-PSL (ENSCP)-Centre National de la Recherche Scientifique (CNRS)-EDF R&D (EDF R&D), EDF (EDF)-EDF (EDF), Institut des Sciences Moléculaires (ISM), Université Montesquieu - Bordeaux 4-Université Sciences et Technologies - Bordeaux 1-École Nationale Supérieure de Chimie et de Physique de Bordeaux (ENSCPB)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de l'intégration, du matériau au système (IMS), Université Sciences et Technologies - Bordeaux 1-Institut Polytechnique de Bordeaux-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Chimie des Polymères Organiques (LCPO), Université de Bordeaux (UB)-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Institut Polytechnique de Bordeaux-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Chimie des polymères organiques (LCPO), Université Sciences et Technologies - Bordeaux 1-École Nationale Supérieure de Chimie et de Physique de Bordeaux (ENSCPB)-Centre National de la Recherche Scientifique (CNRS), Institut des Matériaux, de Microélectronique et des Nanosciences de Provence (IM2NP), Aix Marseille Université (AMU)-Université de Toulon (UTLN)-Centre National de la Recherche Scientifique (CNRS), Centre de Nanosciences et de Nanotechnologies [Marcoussis] (C2N), Université Paris-Sud - Paris 11 (UP11)-Université Paris Diderot - Paris 7 (UPD7)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Laboratoire de photonique et de nanostructures (LPN), Centre National de la Recherche Scientifique (CNRS), Institut Lavoisier de Versailles (ILV), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Centre National de la Recherche Scientifique (CNRS), Institut Photovoltaïque d’Ile-de-France (UMR) (IPVF), EDF (EDF)-Air Liquide [Siège Social]-Centre National de la Recherche Scientifique (CNRS)-École polytechnique (X)-Institut Photovoltaïque d’Ile-de-France (ITE) (IPVF)-Ecole Nationale Supérieure de Chimie de Paris- Chimie ParisTech-PSL (ENSCP)-TOTAL FINA ELF, The University of Tokyo (UTokyo), Ecole Nationale Supérieure de Chimie de Paris - Chimie ParisTech-PSL (ENSCP), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-EDF R&D (EDF R&D), Université Montesquieu - Bordeaux 4-Université Sciences et Technologies - Bordeaux 1 (UB)-École Nationale Supérieure de Chimie et de Physique de Bordeaux (ENSCPB)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Université Sciences et Technologies - Bordeaux 1 (UB)-Institut Polytechnique de Bordeaux-Centre National de la Recherche Scientifique (CNRS), Université de Bordeaux (UB)-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Institut Polytechnique de Bordeaux-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Université Sciences et Technologies - Bordeaux 1 (UB)-École Nationale Supérieure de Chimie et de Physique de Bordeaux (ENSCPB)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Université Paris-Sud - Paris 11 (UP11)-Centre National de la Recherche Scientifique (CNRS), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), École polytechnique (X)-Ecole Nationale Supérieure de Chimie de Paris - Chimie ParisTech-PSL (ENSCP), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-TOTAL FINA ELF-EDF (EDF)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut Photovoltaïque d’Ile-de-France (ITE) (IPVF)-Air Liquide [Siège Social], EDF R&D (EDF R&D), EDF (EDF)-EDF (EDF)-Centre National de la Recherche Scientifique (CNRS)-Ecole Nationale Supérieure de Chimie de Paris - Chimie ParisTech-PSL (ENSCP), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut de Chimie du CNRS (INC), Université Montesquieu - Bordeaux 4-Université Sciences et Technologies - Bordeaux 1-École Nationale Supérieure de Chimie et de Physique de Bordeaux (ENSCPB)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Université de Bordeaux (UB)-Institut de Chimie du CNRS (INC), Centre National de la Recherche Scientifique (CNRS)-École Nationale Supérieure de Chimie et de Physique de Bordeaux (ENSCPB)-Université Sciences et Technologies - Bordeaux 1-Institut de Chimie du CNRS (INC), and Université de Toulon (UTLN)-Centre National de la Recherche Scientifique (CNRS)-Aix Marseille Université (AMU)
- Subjects
Engineering ,energy conversion ,502 Electron spectroscopy ,Emerging technologies ,lcsh:Biotechnology ,02 engineering and technology ,semiconductors ,Energy transition ,010402 general chemistry ,7. Clean energy ,01 natural sciences ,[SPI]Engineering Sciences [physics] ,Photovoltaics ,lcsh:TP248.13-248.65 ,209 Solar cell / Photovoltaics ,lcsh:TA401-492 ,luminescence ,[CHIM]Chemical Sciences ,Energy transformation ,General Materials Science ,ComputingMilieux_MISCELLANEOUS ,206 Energy conversion / transport / storage / recovery ,business.industry ,Photovoltaic system ,Twenty-First Century ,50 Energy Materials ,505 Optical / Molecular spectroscopy ,021001 nanoscience & nanotechnology ,Engineering physics ,0104 chemical sciences ,Focus on Overview of innovative materials for energy ,13. Climate action ,efficiency ,lcsh:Materials of engineering and construction. Mechanics of materials ,Electricity ,nanotechnologies ,0210 nano-technology ,business ,devices - Abstract
Photovoltaic generation has stepped up within the last decade from outsider status to one of the important contributors of the ongoing energy transition, with about 1.7% of world electricity provided by solar cells. Progress in materials and production processes has played an important part in this development. Yet, there are many challenges before photovoltaics could provide clean, abundant, and cheap energy. Here, we review this research direction, with a focus on the results obtained within a Japan–French cooperation program, NextPV, working on promising solar cell technologies. The cooperation was focused on efficient photovoltaic devices, such as multijunction, ultrathin, intermediate band, and hot-carrier solar cells, and on printable solar cell materials such as colloidal quantum dots.
- Published
- 2018
- Full Text
- View/download PDF
47. Surface relief gratings formed by microphase-separated disperse red 1 acrylate-containing diblock copolymers
- Author
-
Georges Hadziioannou, Mitica Cezar Spiridon, Eric Cloutet, Guillaume Fleury, Cyril Brochon, Karim Aissou, Muhammad Waseem Mumtaz, Team 4 LCPO : Polymer Materials for Electronic, Energy, Information and Communication Technologies, Laboratoire de Chimie des Polymères Organiques (LCPO), and Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Université de Bordeaux (UB)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Université de Bordeaux (UB)-Institut de Chimie du CNRS (INC)
- Subjects
Acrylate ,Materials science ,Polymers and Plastics ,Surface relief ,Organic Chemistry ,block copolymer ,ATRP ,self-assembly ,02 engineering and technology ,010402 general chemistry ,021001 nanoscience & nanotechnology ,01 natural sciences ,0104 chemical sciences ,chemistry.chemical_compound ,[CHIM.POLY]Chemical Sciences/Polymers ,chemistry ,Chemical engineering ,surface-relief grating ,Materials Chemistry ,Copolymer ,Self-assembly ,0210 nano-technology ,Surface relief grating ,Layer (electronics) - Abstract
International audience; Sinusoidal surface-relief gratings (SRGs) formed by microphase separated photoresponsive poly(dimethylsiloxane)-block-poly(methyl acrylate-co-disperse red 1 acrylate) (PDMS-b-P(MA-co-DR1A)) chains are investigated. Different PDMS-b-P(MA-co-DR1A) were prepared by a multi-step synthetic approach which overcomes the challenges inherent to the synthesis of well-defined PDMS-based block copolymers (BCPs) having a DR1A dye content up to 50 wt%. A sinusoidal SRG (amplitude ≈ 5 nm, wavenumber ≈ 315 nm) interferometrically inscribed onto a thin PDMS-b-P(MA-co-DR1A) layer exhibiting an out-of-plane cylindrical structure with a period of ∼34 nm is demonstrated. Such kind of “two-colored” multiscale patterned surfaces could be envisioned as guiding patterns to efficiently direct the self-assembly of a BCP upper-layer via a hybrid chemo-/grapho-epitaxial alignment of BCP features.
- Published
- 2018
- Full Text
- View/download PDF
48. Tridodecylamine, an efficient charge control agent in non-polar media for electrophoretic inks application
- Author
-
Christophe Navarro, Guillaume Fleury, CyrilBrochon, Eric Cloutet, Georges Hadziioannou, Déborah Mirbel, Christophe Schatz, Amélie Noël, Laboratoire de Chimie des Polymères Organiques (LCPO), Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Université de Bordeaux (UB)-Institut de Chimie du CNRS (INC), Team 4 LCPO : Polymer Materials for Electronic, Energy, Information and Communication Technologies, Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Université de Bordeaux (UB)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Université de Bordeaux (UB)-Institut de Chimie du CNRS (INC), Groupement de recherches de Lacq (GRL), and Arkema (Arkema)
- Subjects
Analytical chemistry ,General Physics and Astronomy ,02 engineering and technology ,010402 general chemistry ,Charge control agent ,01 natural sciences ,Pigment ,Charge control ,Inorganic pigments ,Non-polar solvent ,Range (particle radiation) ,Mineral oxides ,Chemistry ,Surfaces and Interfaces ,General Chemistry ,021001 nanoscience & nanotechnology ,Condensed Matter Physics ,Surface charging ,0104 chemical sciences ,Surfaces, Coatings and Films ,Solvent ,Electrophoresis ,[CHIM.POLY]Chemical Sciences/Polymers ,Isoelectric point ,Chemical engineering ,visual_art ,visual_art.visual_art_medium ,Non polar ,0210 nano-technology ,Electrophoretic ink - Abstract
International audience; In order to obtain efficient electrophoretic inks, Tridodecylamine (Dod3N), has been studied as charge controlagent (CCA) in a non-polar paraffin solvent (Isopar G) for various inorganic pigments (TiO2 and Fe2O3).All hydrophobic mineral oxides, i.e. treated with octyltrimethoxysilane (C8) or dodecyltrimethoxysilane(C12), were found to be negatively charged in presence of Dod3N. The electrophoretic mobilities ofinorganic pigments seemed to be strongly dependent of their isoelectric point (IEP) and also of the concentrationof dod3N with an optimum range between 10 and 20 mM depending on the pigments. Finally,an electrophoretic ink constituted of hydrophobic mineral oxides in presence of Dod3N was tested in adevice. Its efficiency as charge control agent to negatively charge hydrophobic particles was confirmedthrough good optical properties and fast response time (220 ms at 200 kV m−1).
- Published
- 2018
- Full Text
- View/download PDF
49. Triaryl-1,4-diamine-based polysquaraines: effect of co-solvent and monomer insertion on optoelectronic properties
- Author
-
Mickael Bezirdjoglou, Eleni Pavlopoulou, Georges Hadziioannou, Guillaume Garbay, Tiphaine Tailliez, Eric Cloutet, Cyril Brochon, Jules Oriou, Laboratoire de Chimie des Polymères Organiques (LCPO), Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Université de Bordeaux (UB)-Institut de Chimie du CNRS (INC), Team 4 LCPO : Polymer Materials for Electronic, Energy, Information and Communication Technologies, and Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Université de Bordeaux (UB)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Université de Bordeaux (UB)-Institut de Chimie du CNRS (INC)
- Subjects
Materials science ,Polymers and Plastics ,Quantum yield ,Bioengineering ,02 engineering and technology ,Squaric acid ,010402 general chemistry ,01 natural sciences ,Biochemistry ,chemistry.chemical_compound ,Catenation ,Diamine ,Polymer chemistry ,chemistry.chemical_classification ,Organic Chemistry ,Polymer ,021001 nanoscience & nanotechnology ,polysquaraine ,0104 chemical sciences ,Solvent ,[CHIM.POLY]Chemical Sciences/Polymers ,Monomer ,chemistry ,Polymerization ,0210 nano-technology ,optoelectronic - Abstract
International audience; A series of N1,N4-didodecyl-N1,N4-diphenylbenzene-1,4-diamine based polysquaraines have been synthesized under micro-wave irradiation in the absence of any catalyst. The effect of solvent of polymerization, on the squaric acid catenation (1,2 and 1,3 linkages), has been studied and polysquaraines integrating linear chain in their backbone have been advantageously obtained by using di-functional alcohol during the polymerization. Such obtained polymers exhibit a broad emission with a quantum yield up to 18%. The latter were then tested into OLED devices exhibiting a promising white emission.
- Published
- 2018
- Full Text
- View/download PDF
50. Organic Thermoelectric Materials
- Author
-
Georges Hadziioannou, Ioannis Petsagkourakis, Xavier Crispin, Guillaume Fleury, Simone Fabiano, Linköping University (LIU), Laboratoire de Chimie des Polymères Organiques (LCPO), Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Université de Bordeaux (UB)-Institut de Chimie du CNRS (INC), Team 4 LCPO : Polymer Materials for Electronic, Energy, Information and Communication Technologies, and Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Université de Bordeaux (UB)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Université de Bordeaux (UB)-Institut de Chimie du CNRS (INC)
- Subjects
Materials science ,Fermi level ,Energy conversion efficiency ,02 engineering and technology ,010402 general chemistry ,021001 nanoscience & nanotechnology ,Thermoelectric materials ,01 natural sciences ,7. Clean energy ,Engineering physics ,0104 chemical sciences ,symbols.namesake ,[CHIM.POLY]Chemical Sciences/Polymers ,Thermal conductivity ,Thermoelectric generator ,Seebeck coefficient ,Waste heat ,Thermoelectric effect ,symbols ,0210 nano-technology - Abstract
International audience; Thermoelectric generators (TEGs) convert heat into electricity, and could contribute to the world's increasing energy demand by harvesting low-energy-density heat, such as waste heat produced during the conversion of fossil fuels to electricity or heat from solar radiation. The efficiency of the heat-electricity conversion is dictated by the material properties. This chapter presents the key material properties that help define the heat-to-electricity conversion efficiency. TEG is an electronic device that uses the Seebeck effect to convert a heat flow into an electron flow. The Seebeck coefficient is intimately related to the electronic structure and mobility of the charge carrier. Controlling the shape of the density of state at the Fermi level in a material should enable tuning its Seebeck coefficient. Hence, it is crucial to understand the electronic structure of conducting polymers. The chapter summarizes how the electrical conductivity, the Seebeck coefficient, and the thermal conductivity of conducting polymers depend on their oxidation level.
- Published
- 2017
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.