1. Graphitic Carbon Nitride (g-C3N4) in Photocatalytic Hydrogen Production: Critical Overview and Recent Advances
- Author
-
Periklis Kyriakos, Evangelos Hristoforou, and George V. Belessiotis
- Subjects
graphitic carbon nitride (g-C3N4) ,hydrogen (H2) ,water splitting ,photocatalysis ,photocatalytic composite ,synthesis method ,Technology - Abstract
Graphitic carbon Nitride (g-C3N4) is one of the most utilized graphitic materials in hydrogen (H2) production via photocatalytic water splitting. Thus, a detailed critical overview, updated with the most recent works, has been performed on the synthesis methods, modification techniques, characterization, and mechanisms of g-C3N4 and g-C3N4-based composite materials, with the aim of clarifying the optimum course towards highly efficient hydrogen-producing photocatalysts based on this promising material. First, the synthesis methods for different morphologies of pure g-C3N4 (bulk, nanosheets, nanotubes and nanodots) are critically analyzed in detail for every step and parameter involved, with special mention regarding the modification methods of g-C3N4 (doping and composite formation). Next, the most common results of g-C3N4 characterization, regarding structural, morphological, optical, and electrical properties, are presented and analyzed. Then, a detailed critical survey of the mechanisms, using g-C3N4 and g-C3N4-based composites during photocatalytic activity, is performed with a focus on their effect on their hydrogen production capabilities via water splitting. This review aims to provide a clear image of all aspects regarding the use of g-C3N4 for photocatalysis, as well as a comprehensive guide for research targeted towards this promising graphitic material.
- Published
- 2024
- Full Text
- View/download PDF