1. The Arnold conjecture for singular symplectic manifolds
- Author
-
Universitat Politècnica de Catalunya. Departament de Matemàtiques, Universitat Politècnica de Catalunya. GEOMVAP - Geometria de Varietats i Aplicacions, Brugués Mora, Joaquim, Miranda Galcerán, Eva, Oms, Cedric, Universitat Politècnica de Catalunya. Departament de Matemàtiques, Universitat Politècnica de Catalunya. GEOMVAP - Geometria de Varietats i Aplicacions, Brugués Mora, Joaquim, Miranda Galcerán, Eva, and Oms, Cedric
- Abstract
The version of record of this article, first published in Journal of fixed point theory and its applications, is available online at Publisher’s website: http://doi.org/10.1007/s11784-024-01105-y, In this article, we study the Hamiltonian dynamics on singular symplectic manifolds and prove the Arnold conjecture for a large class of bm-symplectic manifolds. Novel techniques are introduced to associate smooth symplectic forms to the original singular symplectic structure, under some mild conditions. These techniques yield the validity of the Arnold conjecture for singular symplectic manifolds across multiple scenarios. More precisely, we prove a lower bound on the number of 1-periodic Hamiltonian orbits for b2m-symplectic manifolds depending only on the topology of the manifold. Moreover, for bm-symplectic surfaces, we improve the lower bound depending on the topology of the pair (M, Z). We then venture into the study of Floer homology to this singular realm and we conclude with a list of open questions., Funding OpenAccess funding provided thanks to the CRUE-CSIC agreement with Springer Nature. All the authors are partially supported by the Spanish State Research Agency grant PID2019-103849GB-I00 of MICIU/AEI/10.13039/50110 00110331934 and by the AGAUR project 2021 SGR 00603. J. Brugu´ es is supported by the FWO-FNRS Excellence of Science project G0H4518N “Symplectic techniques in differential geometry” with UA Antigoon Project-ID 36584.E. Miranda is supported by the Catalan Institution for Research and Advanced Studies via an ICREA Academia Prize 2021 and by the Alexander Von Humboldt foundation via a Friedrich Wilhelm Bessel Research Award. E. Miranda is also supported by the Spanish State Research Agency, through the 16 Page 52 of 60 J. Brugués et al. Severo Ochoa and Mar´ ıa de Maeztu Program for Centers and Units of Excellence in R&D (Project CEX2020-001084-M). C. Oms acknowledges financial support from the Juan de la Cierva postdoctoral grant FJC2021-046811-I / MICIU/AEI /10.13039/501100011033 and by the European Union NextGenerationEU/PRTR., Peer Reviewed, Postprint (published version)
- Published
- 2024