1. The prospects for ‘green steel’ making in a net-zero economy: A UK perspective
- Author
-
Paul W. Griffin and Geoffrey P. Hammond
- Subjects
Green steel ,‘Greenhouse gas’ emissions ,Decarbonisation options ,Circular thinking ,Technology roadmaps or transition pathways ,United Kingdom ,Technology ,Medicine - Abstract
Steel products are widely used in the construction industry and for the development of infrastructure projects, because they are versatile, durable, and affordable. Energy demand and ‘greenhouse gas’ (GHG) emissions associated with the United Kingdom (UK) Iron & Steel sector principally result from the large consumption of coal/coke used in conjunction with the blast furnace. Like other sectors of industry, efforts are being made to ensure that processing becomes ever more environmentally benign, or ‘green’. Thus, the notion of ‘green steel’ has entered into the industrial vocabulary over the last decade or so. It is a steel-making process designed principally to lower GHG emissions, as well as potentially cutting costs and improving the quality of steel, in comparison to conventional methods. The aim of this study was therefore to (i) elicit the various ways in which the term ‘green steel’ has recently been used in the literature; and (ii) compare and contrast different options for making UK steel production more environmentally benign, particularly in regard to its decarbonisation. Some key ‘deep decarbonisation’, or ‘disruptive’, options for producing green steel in the UK are evaluated drawing on the experience from other nation-states and regions. These include the prospects for carbon capture and storage (CCS), the use of bioenergy resources, hydrogen-based production, electrification, and the least desirable option of deindustrialisation (i.e., reducing or out-sourcing of UK steel production ‘offshore’). ‘Circular economy’ interventions or resource efficiency improvements (‘reduce, reuse, recycle’) are also discussed. The potential reductions in GHG emissions from the UK Iron & Steel sector overall out to 2050 are then illustrated by comparison with previous technology roadmaps or transition pathways. The lessons learned are applicable across much of the industrialised world.
- Published
- 2021
- Full Text
- View/download PDF