1. OmicPredict: a framework for omics data prediction using ANOVA-Firefly algorithm for feature selection.
- Author
-
Kaur P, Singh A, and Chana I
- Subjects
- Humans, Female, SARS-CoV-2 genetics, Machine Learning, Genomics statistics & numerical data, COVID-19 genetics, Algorithms, Alzheimer Disease genetics, Breast Neoplasms genetics
- Abstract
High-throughput technologies and machine learning (ML), when applied to a huge pool of medical data such as omics data, result in efficient analysis. Recent research aims to apply and develop ML models to predict a disease well in time using available omics datasets. The present work proposed a framework, 'OmicPredict', deploying a hybrid feature selection method and deep neural network (DNN) model to predict multiple diseases using omics data. The hybrid feature selection method is developed using the Analysis of Variance (ANOVA) technique and firefly algorithm. The OmicPredict framework is applied to three case studies, Alzheimer's disease, Breast cancer, and Coronavirus disease 2019 (COVID-19). In the case study of Alzheimer's disease, the framework predicts patients using GSE33000 and GSE44770 dataset. In the case study of Breast cancer, the framework predicts human epidermal growth factor receptor 2 (HER2) subtype status using Molecular Taxonomy of Breast Cancer International Consortium (METABRIC) dataset. In the case study of COVID-19, the framework performs patients' classification using GSE157103 dataset. The experimental results show that DNN model achieved an Area Under Curve (AUC) score of 0.949 for the Alzheimer's (GSE33000 and GSE44770) dataset. Furthermore, it achieved an AUC score of 0.987 and 0.989 for breast cancer (METABRIC) and COVID-19 (GSE157103) datasets, respectively, outperforming Random Forest, Naïve Bayes models, and the existing research.
- Published
- 2024
- Full Text
- View/download PDF