Antoine Danchin, Christoph Dehio, Huanming Yang, Francis Biville, Henri L Saenz, Geneviève Marignac, Philipp Engel, Muriel Vayssier-Taussat, Lionel Arnaud, Sandra Cescau, Hong Kuan Deng, Henri Jean Boulouis, Maria Mavris, Evelyne Lenaour, Jing Wang, Maxime Québatte, Danielle Le Rhun, Institut Jean-Pierre Bourgin (IJPB), Institut National de la Recherche Agronomique (INRA)-AgroParisTech, Focal area infection biology, Biozentrum, Université de Bâle, Biologie moléculaire et immunologie parasitaires et fongiques (BIPAR), Laboratoire de santé animale, sites de Maisons-Alfort et de Dozulé, Agence nationale de sécurité sanitaire de l'alimentation, de l'environnement et du travail (ANSES)-Agence nationale de sécurité sanitaire de l'alimentation, de l'environnement et du travail (ANSES)-Institut National de la Recherche Agronomique (INRA)-École nationale vétérinaire d'Alfort (ENVA)-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12), Génétique des Génomes Bactériens, Institut Pasteur [Paris]-Centre National de la Recherche Scientifique (CNRS), Beijing Genomics Institute, This work was supported by grant Hem-Bart06-08 from Agence Nationale de la Recherche (to M.V.-T.), grant 31003A-109925 from the Swiss National Science Foundation (to C.D.), grant 55005501 from the Howard Hughes Medical Institute (to C.D.), and grant 51RT-0_126008 (InfectX) in the frame of the SystemsX.ch Swiss Initiative for Systems Biology (to C.D.), University of Zurich, Vayssier-Taussat, Muriel, École nationale vétérinaire - Alfort (ENVA)-Institut National de la Recherche Agronomique (INRA)-Laboratoire de santé animale, sites de Maisons-Alfort et de Dozulé, Agence nationale de sécurité sanitaire de l'alimentation, de l'environnement et du travail (ANSES)-Agence nationale de sécurité sanitaire de l'alimentation, de l'environnement et du travail (ANSES)-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12), Beijing Genomics Institute [Shenzhen] (BGI), Centre National de la Recherche Scientifique (CNRS)-Institut Pasteur [Paris], École nationale vétérinaire - Alfort (ENVA)-Institut National de la Recherche Agronomique (INRA)-Laboratoire de santé animale, sites de Maisons-Alfort et de Normandie, and Institut Pasteur [Paris] (IP)-Centre National de la Recherche Scientifique (CNRS)
Bacterial pathogens typically infect only a limited range of hosts; however, the genetic mechanisms governing host-specificity are poorly understood. The α-proteobacterial genus Bartonella comprises 21 species that cause host-specific intraerythrocytic bacteremia as hallmark of infection in their respective mammalian reservoirs, including the human-specific pathogens Bartonella quintana and Bartonella bacilliformis that cause trench fever and Oroya fever, respectively. Here, we have identified bacterial factors that mediate host-specific erythrocyte colonization in the mammalian reservoirs. Using mouse-specific Bartonella birtlesii, human-specific Bartonella quintana, cat-specific Bartonella henselae and rat-specific Bartonella tribocorum, we established in vitro adhesion and invasion assays with isolated erythrocytes that fully reproduce the host-specificity of erythrocyte infection as observed in vivo. By signature-tagged mutagenesis of B. birtlesii and mutant selection in a mouse infection model we identified mutants impaired in establishing intraerythrocytic bacteremia. Among 45 abacteremic mutants, five failed to adhere to and invade mouse erythrocytes in vitro. The corresponding genes encode components of the type IV secretion system (T4SS) Trw, demonstrating that this virulence factor laterally acquired by the Bartonella lineage is directly involved in adherence to erythrocytes. Strikingly, ectopic expression of Trw of rat-specific B. tribocorum in cat-specific B. henselae or human-specific B. quintana expanded their host range for erythrocyte infection to rat, demonstrating that Trw mediates host-specific erythrocyte infection. A molecular evolutionary analysis of the trw locus further indicated that the variable, surface-located TrwL and TrwJ might represent the T4SS components that determine host-specificity of erythrocyte parasitism. In conclusion, we show that the laterally acquired Trw T4SS diversified in the Bartonella lineage to facilitate host-restricted adhesion to erythrocytes in a wide range of mammals., Author Summary Pathogens are—as the result of adaptive evolution in their principal host(s)—typically limited in the range of hosts that they can infect successfully. However, infrequently such host-restricted pathogens may undergo a spontaneous host switch, which can lead to the evolution of pathogens with altered host specificity. Most human pathogens evolved this way, and animal-specific pathogens have thus to be considered as an important reservoir for the emergence of novel human pathogens. Despite host-specificity representing a common feature of pathogens, the underlying molecular mechanisms are largely unknown. In this study we have used bacterial pathogens of the genus Bartonella to identify bacterial factors involved in the determination of host specificity. The bartonellae represent an excellent model to study host-specificity as each species is adapted to cause an intracellular infection of erythrocytes exclusively in its respective reservoir host(s). Using a genetic approach in combination with erythrocyte infection models in vitro and in vivo we demonstrate that a surface-located bacterial nanomachine—a so-called type IV secretion system—determines host specificity of erythrocyte infection. Our work sheds light on the molecular basis of host specificity and establishes an experimental model for studying the evolutionary processes facilitating spontaneous host shifts.