Elizabeth A. Meier, Isaac N. Alou, Eckart Priesack, Bruno Basso, Edward Gérardeaux, Heidi Webber, Eric Justes, Michel Giner, Saseendran S. Anapalli, Delphine Deryng, Marcelo Valadares Galdos, Alex C. Ruane, Bouba Sidi Traoré, Dominique Ripoche, Ward Smith, Babacar Faye, Thomas Gaiser, Patrick Bertuzzi, Folorunso M. Akinseye, Dilys S. MacCarthy, Frédéric Baudron, Alain Ndoli, Brian Grant, Claas Nendel, Kenneth J. Boote, Bernardo Maestrini, Louise Leroux, Christian Baron, Tracy E. Twine, Kokou Adambounou Amouzou, Upendra Singh, Sumit Sinha, Amit Kumar Srivastava, Yi Chen, Michael van der Laan, Gerrit Hoogenboom, Marc Corbeels, Dennis Timlin, M. Elsayed, Anthony M. Whitbread, Fulu Tao, Soo-Hyung Kim, Tesfaye Shiferaw Sida, Bahareh Kamali, Jon I. Lizaso, Myriam Adam, Kurt Christian Kersebaum, Peter J. Thorburn, François Affholder, Esther S. Ibrahim, Andrew J. Challinor, Sebastian Gayler, Lajpat R. Ahuja, Gatien N. Falconnier, Cheryl Porter, Fasil Mequanint, Agroécologie et Intensification Durables des cultures annuelles (UPR AIDA), Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad), Département Performances des systèmes de production et de transformation tropicaux (Cirad-PERSYST), International Maize and Wheat Improvement Center (CIMMYT), Consultative Group on International Agricultural Research [CGIAR] (CGIAR), University of Florida [Gainesville] (UF), Amélioration génétique et adaptation des plantes méditerranéennes et tropicales (UMR AGAP), Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-Centre international d'études supérieures en sciences agronomiques (Montpellier SupAgro)-Institut national d’études supérieures agronomiques de Montpellier (Montpellier SupAgro), Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Département Systèmes Biologiques (Cirad-BIOS), University of Ghana, GISS Climate impacts group, NASA Goddard Institute for Space Studies (GISS), NASA Goddard Space Flight Center (GSFC)-NASA Goddard Space Flight Center (GSFC), Leibniz-Zentrum für Agrarlandschaftsforschung = Leibniz Centre for Agricultural Landscape Research (ZALF), International Crops Research Institute for the Semi-Arid Tropics [Niger] (ICRISAT), International Crops Research Institute for the Semi-Arid Tropics [Inde] (ICRISAT), Consultative Group on International Agricultural Research [CGIAR] (CGIAR)-Consultative Group on International Agricultural Research [CGIAR] (CGIAR), Fonctionnement et conduite des systèmes de culture tropicaux et méditerranéens (UMR SYSTEM), Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-Centre international d'études supérieures en sciences agronomiques (Montpellier SupAgro)-Centre International de Hautes Etudes Agronomiques Méditerranéennes - Institut Agronomique Méditerranéen de Montpellier (CIHEAM-IAMM), Centre International de Hautes Études Agronomiques Méditerranéennes (CIHEAM)-Centre International de Hautes Études Agronomiques Méditerranéennes (CIHEAM)-Institut national d’études supérieures agronomiques de Montpellier (Montpellier SupAgro), Territoires, Environnement, Télédétection et Information Spatiale (UMR TETIS), Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-AgroParisTech-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), and Département Environnements et Sociétés (Cirad-ES)
International audience; Smallholder farmers in sub-Saharan Africa (SSA) currently grow rainfed maize with limited inputs including fertilizer. Climate change may exacerbate current production constraints. Crop models can help quantify the potential impact of climate change on maize yields, but a comprehensive multimodel assessment of simulation accuracy and uncertainty in these low-input systems is currently lacking. We evaluated the impact of varying [CO2], temperature and rainfall conditions on maize yield, for different nitrogen (N) inputs (0, 80, 160 kg N/ha) for five environments in SSA, including cool subhumid Ethiopia, cool semi-arid Rwanda, hot subhumid Ghana and hot semi-arid Mali and Benin using an ensemble of 25 maize models. Models were calibrated with measured grain yield, plant biomass, plant N, leaf area index, harvest index and in-season soil water content from 2-year experiments in each country to assess their ability to simulate observed yield. Simulated responses to climate change factors were explored and compared between models. Calibrated models reproduced measured grain yield variations well with average relative root mean square error of 26%, although uncertainty in model prediction was substantial (CV = 28%). Model ensembles gave greater accuracy than any model taken at random. Nitrogen fertilization controlled the response to variations in [CO2], temperature and rainfall. Without N fertilizer input, maize (a) benefited less from an increase in atmospheric [CO2]; (b) was less affected by higher temperature or decreasing rainfall; and (c) was more affected by increased rainfall because N leaching was more critical. The model intercomparison revealed that simulation of daily soil N supply and N leaching plays a crucial role in simulating climate change impacts for low-input systems. Climate change and N input interactions have strong implications for the design of robust adaptation approaches across SSA, because the impact of climate change in low input systems will be modified if farmers intensify maize production with balanced nutrient management.