213,427 results on '"Garg, A"'
Search Results
2. Investigation of Thuja orientalis leaves extract's anti-arthritic activity in freund's complete adjuvant-induced arthritis in wistar rats
- Author
-
Sisodiya, Kanhaiya, Singh, Talever, Pathak, Devender, Kumar, Shivendra, Garg, Akash, and Chopra, Himansu
- Published
- 2024
- Full Text
- View/download PDF
3. Gastroretentive drug delivery system: An overview
- Author
-
Rathor, Muskan and Garg, Anshika
- Published
- 2024
- Full Text
- View/download PDF
4. Anthrax: An overview of the disease, toxicity and relevance of the protective antigen (PA) toxin
- Author
-
Singh, S.K., Mohanty, N.N., Gupta, V., Yogisharadhya, R., Prajapati, A., Shivachandra, S.B., and Garg, A.P.
- Published
- 2024
- Full Text
- View/download PDF
5. Molecular Cloning of Protective Antigen Toxin Gene of Bacillus anthracis Sterne Strain 34F2 Sterne Strain in pET28a Vector
- Author
-
Singh, Sandeep Kumar, Mohanty, Nihar Nalini, Prajapati, Awadhesh, Shivachandra, Sathish Bhadravati, and Garg, Amar Prakash
- Published
- 2023
- Full Text
- View/download PDF
6. Effect of exercise on quality of life of patients with chronic kidney disease
- Author
-
Borah, Asima Nasreen, Anand, Kanchan, Shrivastava, Sameer, Nidhi, Garg, Aakriti, and Khan, Mohd Ashif
- Published
- 2023
- Full Text
- View/download PDF
7. Agricultural residue to wealth : Strategies and planning
- Author
-
Chaudhary, Monika and Garg, Amar P.
- Published
- 2023
- Full Text
- View/download PDF
8. Complications of third molar surgery - A literature review
- Author
-
Vasudev, Diwakar, Vasudeva, Dhananjay, Goraya, Harminder Singh, Garg, Akanksha, and Tantray, Shoborose
- Published
- 2023
- Full Text
- View/download PDF
9. The Haven Clinic: The Planning and Implementation of a Medical Home for Child Trafficking Survivors
- Author
-
Panda, Preeti, Garg, Anjali, and Grube, Amy
- Published
- 2023
- Full Text
- View/download PDF
10. Evaluation of physical, chemical and sensory properties of multigrain cookies prepared using wheat, oats and Barley flours
- Author
-
Sharma, Shikha and Garg, Amar P.
- Published
- 2023
- Full Text
- View/download PDF
11. Herbs in cosmetics: An overview
- Author
-
Garg, Anshika
- Published
- 2023
- Full Text
- View/download PDF
12. Seed germination and seedling growth of annual chrysanthemum (Glebionis coronaria L). as influenced by priming and growing media
- Author
-
Thakur, T, Singh, N, and Garg, A
- Published
- 2022
- Full Text
- View/download PDF
13. Linguistic Inequities in ADHD Diagnosis among School-age Children Screened for Attention Problems in Primary Care
- Author
-
Sikov, Jennifer, Baul, Tithi D., Garg, Arvin, Loubeau, Krystel, Murphy, J. Michael, and Spencer, Andrea E.
- Published
- 2022
- Full Text
- View/download PDF
14. Isolation of bio-molecule baicalein (5, 6, 7-trihydroxy flavone) from root of Oroxylum indicum L. vent and its prospective interaction with COVID-19 viral s-protein receptor binding domain
- Author
-
Gokhale, Mamta, Faraz, Rumana, Deshpande, Isha, and Garg, Ashish
- Published
- 2022
- Full Text
- View/download PDF
15. Correlation of Time Since Death with Morphological Changes in Neutrophils
- Author
-
Mighani, Rahul, Garg, Anil, Singh, Kulwant, Sharma, Gaurav, Kumar, Yogesh, and Sharma, Balraj
- Published
- 2022
- Full Text
- View/download PDF
16. An Epidemiological Burns Autopsy Study Along with its Source and Severity in a Tertiary Care Hospital
- Author
-
Yadav, Sangram Singh, Sharma, Gaurav, Kumar, Yogesh, Garg, Anil, and Sharma, Balraj
- Published
- 2022
- Full Text
- View/download PDF
17. Study of Coronary Arteries' Atherosclerosis in Autopsies Conducted at BPS GMC (W), Khanpur Kalan, Sonipat
- Author
-
Grover, Vikas Kumar, Garg, Anil, Kundu, Parveen Rana, and Sharma, Gaurav
- Published
- 2022
- Full Text
- View/download PDF
18. Epidemiological and Pattern of Injuries due to Fall from Height: A Retrospective Study
- Author
-
Sharma, Balraj, Garg, Anil, Sharma, Gaurav, and Mittal, Pawan
- Published
- 2022
- Full Text
- View/download PDF
19. Medical Termination of Pregnancy Act 1971 and its Recent Amendments
- Author
-
Garg, Anil and Goyal, Nisha
- Published
- 2022
- Full Text
- View/download PDF
20. Identification of point mutation in exon 3 of leptin gene in Munjal sheep
- Author
-
Kumar, Sandeep, Dahiya, S.P., Magotra, Ankit, Bangar, Yogesh C., and Garg, Asha Rani
- Published
- 2022
- Full Text
- View/download PDF
21. Formulation of High Fiber Pumpkin Cookies
- Author
-
Anurag, Garg, Amar P., and Sharma, Shikha
- Published
- 2022
- Full Text
- View/download PDF
22. Genetic studies for isolation of superior parents and hybrids for a further breeding programme in safflower (Carthamus tinctorious L)
- Author
-
Garg, Arzoo and Gawande, Vijaykumar L.
- Published
- 2022
- Full Text
- View/download PDF
23. Development and validation of In-vitro dissolution test using RP-HPLC Analysis for simultaneous estimation of Azelnidipine and Telmisartan in a fixed-dose combination
- Author
-
Kumar, Manish, Chandra, Umesh, Garg, Arun, and Gupta, Pankaj
- Published
- 2022
- Full Text
- View/download PDF
24. Revisit Anything: Visual Place Recognition via Image Segment Retrieval
- Author
-
Garg, Kartik, Puligilla, Sai Shubodh, Kolathaya, Shishir, Krishna, Madhava, and Garg, Sourav
- Subjects
Computer Science - Computer Vision and Pattern Recognition ,Computer Science - Artificial Intelligence ,Computer Science - Information Retrieval ,Computer Science - Machine Learning ,Computer Science - Robotics - Abstract
Accurately recognizing a revisited place is crucial for embodied agents to localize and navigate. This requires visual representations to be distinct, despite strong variations in camera viewpoint and scene appearance. Existing visual place recognition pipelines encode the "whole" image and search for matches. This poses a fundamental challenge in matching two images of the same place captured from different camera viewpoints: "the similarity of what overlaps can be dominated by the dissimilarity of what does not overlap". We address this by encoding and searching for "image segments" instead of the whole images. We propose to use open-set image segmentation to decompose an image into `meaningful' entities (i.e., things and stuff). This enables us to create a novel image representation as a collection of multiple overlapping subgraphs connecting a segment with its neighboring segments, dubbed SuperSegment. Furthermore, to efficiently encode these SuperSegments into compact vector representations, we propose a novel factorized representation of feature aggregation. We show that retrieving these partial representations leads to significantly higher recognition recall than the typical whole image based retrieval. Our segments-based approach, dubbed SegVLAD, sets a new state-of-the-art in place recognition on a diverse selection of benchmark datasets, while being applicable to both generic and task-specialized image encoders. Finally, we demonstrate the potential of our method to ``revisit anything'' by evaluating our method on an object instance retrieval task, which bridges the two disparate areas of research: visual place recognition and object-goal navigation, through their common aim of recognizing goal objects specific to a place. Source code: https://github.com/AnyLoc/Revisit-Anything., Comment: Presented at ECCV 2024; Includes supplementary; 29 pages; 8 figures
- Published
- 2024
25. Estimation of Stature from Palm Length in Regional Population of Sonipat
- Author
-
Kumar, Sunil, Sharma, Balraj, Sharma, Gaurav, Garg, Anil, Kumar, Yogesh, and Mittal, Pawan
- Published
- 2022
- Full Text
- View/download PDF
26. Vapour cooled current leads-operations and control for Nb3 Sn coil test
- Author
-
Panchal, Rohit, Patel, Rakesh, Sonara, Dashrath, Mahesuria, Gaurang, Nimavat, Hiren, Garg, Atul, Christian, Dikens, Panchal, Pradip, Purwar, Gaurav, Tomar, Arvind Kumar, Ghate, M., Raj, P., Prasad, Upendra, and Tanna, Vipul
- Published
- 2022
- Full Text
- View/download PDF
27. Analytical Study of best Practices for Energy Conservation in MRT Projects
- Author
-
Garg, Amit and Gupta, Sumeet
- Published
- 2022
28. A Descriptive Analysis of Risk Management with Specific Reference to High Speed Rail (HSR) in India
- Author
-
Garg, Amit and Gupta, Sumeet
- Published
- 2021
29. Whole genome sequencing and analysis of Mycobacteroides chelonae m77 isolated from cow milk from the hill state of Meghalaya, India
- Author
-
Vise, Esther, Ghatak, Sandeep, Garg, Akshay, Karam, Amarjeet, Prasad, Chendu Bharat, Milton, A. Arun Prince, Shakuntala, Ingudam, Puro, Kekungu, Sanjukta, Raj kumari, Sen, Arnab, and Das, Samir
- Published
- 2021
- Full Text
- View/download PDF
30. Simulate and Optimise: A two-layer mortgage simulator for designing novel mortgage assistance products
- Author
-
Ardon, Leo, Evans, Benjamin Patrick, Garg, Deepeka, Narayanan, Annapoorani Lakshmi, Henry-Nickie, Makada, and Ganesh, Sumitra
- Subjects
Computer Science - Multiagent Systems ,Computer Science - Artificial Intelligence ,Computer Science - Computational Engineering, Finance, and Science ,Quantitative Finance - Computational Finance - Abstract
We develop a novel two-layer approach for optimising mortgage relief products through a simulated multi-agent mortgage environment. While the approach is generic, here the environment is calibrated to the US mortgage market based on publicly available census data and regulatory guidelines. Through the simulation layer, we assess the resilience of households to exogenous income shocks, while the optimisation layer explores strategies to improve the robustness of households to these shocks by making novel mortgage assistance products available to households. Households in the simulation are adaptive, learning to make mortgage-related decisions (such as product enrolment or strategic foreclosures) that maximize their utility, balancing their available liquidity and equity. We show how this novel two-layer simulation approach can successfully design novel mortgage assistance products to improve household resilience to exogenous shocks, and balance the costs of providing such products through post-hoc analysis. Previously, such analysis could only be conducted through expensive pilot studies involving real participants, demonstrating the benefit of the approach for designing and evaluating financial products., Comment: Accepted at the 5th ACM International Conference on AI in Finance
- Published
- 2024
31. Speech is More Than Words: Do Speech-to-Text Translation Systems Leverage Prosody?
- Author
-
Tsiamas, Ioannis, Sperber, Matthias, Finch, Andrew, and Garg, Sarthak
- Subjects
Computer Science - Computation and Language ,Computer Science - Sound ,Electrical Engineering and Systems Science - Audio and Speech Processing - Abstract
The prosody of a spoken utterance, including features like stress, intonation and rhythm, can significantly affect the underlying semantics, and as a consequence can also affect its textual translation. Nevertheless, prosody is rarely studied within the context of speech-to-text translation (S2TT) systems. In particular, end-to-end (E2E) systems have been proposed as well-suited for prosody-aware translation because they have direct access to the speech signal when making translation decisions, but the understanding of whether this is successful in practice is still limited. A main challenge is the difficulty of evaluating prosody awareness in translation. To address this challenge, we introduce an evaluation methodology and a focused benchmark (named ContraProST) aimed at capturing a wide range of prosodic phenomena. Our methodology uses large language models and controllable text-to-speech (TTS) to generate contrastive examples. Through experiments in translating English speech into German, Spanish, and Japanese, we find that (a) S2TT models possess some internal representation of prosody, but the prosody signal is often not strong enough to affect the translations, (b) E2E systems outperform cascades of speech recognition and text translation systems, confirming their theoretical advantage in this regard, and (c) certain cascaded systems also capture prosodic information in the translation, but only to a lesser extent that depends on the particulars of the transcript's surface form., Comment: WMT 2024
- Published
- 2024
32. Diffusion Twigs with Loop Guidance for Conditional Graph Generation
- Author
-
Mercatali, Giangiacomo, Verma, Yogesh, Freitas, Andre, and Garg, Vikas
- Subjects
Computer Science - Machine Learning - Abstract
We introduce a novel score-based diffusion framework named Twigs that incorporates multiple co-evolving flows for enriching conditional generation tasks. Specifically, a central or trunk diffusion process is associated with a primary variable (e.g., graph structure), and additional offshoot or stem processes are dedicated to dependent variables (e.g., graph properties or labels). A new strategy, which we call loop guidance, effectively orchestrates the flow of information between the trunk and the stem processes during sampling. This approach allows us to uncover intricate interactions and dependencies, and unlock new generative capabilities. We provide extensive experiments to demonstrate strong performance gains of the proposed method over contemporary baselines in the context of conditional graph generation, underscoring the potential of Twigs in challenging generative tasks such as inverse molecular design and molecular optimization., Comment: NeurIPS 2024. Code is available at https://github.com/Aalto-QuML/Diffusion_twigs
- Published
- 2024
33. Dual Agent Learning Based Aerial Trajectory Tracking
- Author
-
Garg, Shaswat, Masnavi, Houman, Fidan, Baris, and Janabi-Sharifi, Farrokh
- Subjects
Computer Science - Robotics - Abstract
This paper presents a novel reinforcement learning framework for trajectory tracking of unmanned aerial vehicles in cluttered environments using a dual-agent architecture. Traditional optimization methods for trajectory tracking face significant computational challenges and lack robustness in dynamic environments. Our approach employs deep reinforcement learning (RL) to overcome these limitations, leveraging 3D pointcloud data to perceive the environment without relying on memory-intensive obstacle representations like occupancy grids. The proposed system features two RL agents: one for predicting UAV velocities to follow a reference trajectory and another for managing collision avoidance in the presence of obstacles. This architecture ensures real-time performance and adaptability to uncertainties. We demonstrate the efficacy of our approach through simulated and real-world experiments, highlighting improvements over state-of-the-art RL and optimization-based methods. Additionally, a curriculum learning paradigm is employed to scale the algorithms to more complex environments, ensuring robust trajectory tracking and obstacle avoidance in both static and dynamic scenarios.
- Published
- 2024
34. Attribute-to-Delete: Machine Unlearning via Datamodel Matching
- Author
-
Georgiev, Kristian, Rinberg, Roy, Park, Sung Min, Garg, Shivam, Ilyas, Andrew, Madry, Aleksander, and Neel, Seth
- Subjects
Computer Science - Machine Learning - Abstract
Machine unlearning -- efficiently removing the effect of a small "forget set" of training data on a pre-trained machine learning model -- has recently attracted significant research interest. Despite this interest, however, recent work shows that existing machine unlearning techniques do not hold up to thorough evaluation in non-convex settings. In this work, we introduce a new machine unlearning technique that exhibits strong empirical performance even in such challenging settings. Our starting point is the perspective that the goal of unlearning is to produce a model whose outputs are statistically indistinguishable from those of a model re-trained on all but the forget set. This perspective naturally suggests a reduction from the unlearning problem to that of data attribution, where the goal is to predict the effect of changing the training set on a model's outputs. Thus motivated, we propose the following meta-algorithm, which we call Datamodel Matching (DMM): given a trained model, we (a) use data attribution to predict the output of the model if it were re-trained on all but the forget set points; then (b) fine-tune the pre-trained model to match these predicted outputs. In a simple convex setting, we show how this approach provably outperforms a variety of iterative unlearning algorithms. Empirically, we use a combination of existing evaluations and a new metric based on the KL-divergence to show that even in non-convex settings, DMM achieves strong unlearning performance relative to existing algorithms. An added benefit of DMM is that it is a meta-algorithm, in the sense that future advances in data attribution translate directly into better unlearning algorithms, pointing to a clear direction for future progress in unlearning.
- Published
- 2024
35. Model-independent measurement of $D^0$-$\overline{D}{}^0$ mixing parameters in $D^0\rightarrow K^0_{S}\pi^+\pi^-$ decays at Belle and Belle II
- Author
-
Belle, Collaborations, Belle II, Adachi, I., Aggarwal, L., Ahmed, H., Aihara, H., Akopov, N., Aloisio, A., Althubiti, N., Ky, N. Anh, Asner, D. M., Atmacan, H., Aushev, V., Aversano, M., Ayad, R., Baghel, N. K., Bambade, P., Banerjee, Sw., Bansal, S., Barrett, M., Bartl, M., Baudot, J., Beaubien, A., Becker, J., Bennett, J. V., Bertacchi, V., Bertemes, M., Bertholet, E., Bessner, M., Bettarini, S., Bhuyan, B., Biswas, D., Bodrov, D., Bolz, A., Bondar, A., Boschetti, A., Bozek, A., Bračko, M., Branchini, P., Briere, R. A., Browder, T. E., Budano, A., Bussino, S., Campagna, Q., Campajola, M., Casarosa, G., Cecchi, C., Chang, P., Cheaib, R., Cheema, P., Cheon, B. G., Chilikin, K., Chirapatpimol, K., Cho, H. -E., Cho, K., Cho, S. -J., Choi, S. -K., Choudhury, S., Cochran, J., Corona, L., Cui, J. X., Das, S., De La Cruz-Burelo, E., De La Motte, S. A., De Pietro, G., de Sangro, R., Destefanis, M., Di Canto, A., Di Capua, F., Dingfelder, J., Doležal, Z., Dong, T. V., Dorigo, M., Dossett, D., Dujany, G., Ecker, P., Epifanov, D., Eppelt, J., Feichtinger, P., Ferber, T., Fillinger, T., Finck, C., Finocchiaro, G., Fodor, A., Forti, F., Fulsom, B. G., Gabrielli, A., Ganiev, E., Garcia-Hernandez, M., Garg, R., Gaudino, G., Gaur, V., Gaz, A., Gellrich, A., Ghevondyan, G., Ghosh, D., Ghumaryan, H., Giakoustidis, G., Giordano, R., Giri, A., Gironell, P. Gironella, Glazov, A., Gobbo, B., Godang, R., Goldenzweig, P., Gong, G., Gradl, W., Graziani, E., Greenwald, D., Gruberová, Z., Gudkova, K., Haide, I., Hara, T., Hayasaka, K., Hayashii, H., Hazra, S., Hearty, C., Hedges, M. T., Heidelbach, A., de la Cruz, I. Heredia, Higuchi, T., Hoek, M., Hohmann, M., Hoppe, R., Hsu, C. -L., Humair, T., Iijima, T., Inami, K., Ipsita, N., Itoh, R., Iwasaki, M., Jacobs, W. W., Jang, E. -J., Ji, Q. P., Jin, Y., Johnson, A., Junkerkalefeld, H., Kaliyar, A. B., Kandra, J., Karyan, G., Keil, F., Kiesling, C., Kim, C. -H., Kim, D. Y., Kim, J. -Y., Kim, K. -H., Kim, Y. -K., Kinoshita, K., Kodyš, P., Koga, T., Kohani, S., Kojima, K., Korobov, A., Kovalenko, E., Kowalewski, R., Križan, P., Krokovny, P., Kuhr, T., Kumar, R., Kumara, K., Kunigo, T., Kuzmin, A., Kwon, Y. -J., Lalwani, K., Lam, T., Lange, J. S., Lau, T. S., Leboucher, R., Diberder, F. R. Le, Lee, M. J., Lemettais, C., Leo, P., Li, C., Li, L. K., Li, Q. M., Li, W. Z., Li, Y., Li, Y. B., Libby, J., Liu, M. H., Liu, Q. Y., Liu, Z. Q., Liventsev, D., Longo, S., Lueck, T., Lyu, C., Madaan, C., Maggiora, M., Maiti, R., Mancinelli, G., Manfredi, R., Manoni, E., Mantovano, M., Marcello, S., Marinas, C., Martellini, C., Martens, A., Martini, A., Martinov, T., Massaccesi, L., Masuda, M., Matvienko, D., Maurya, S. K., Maushart, M., McKenna, J. A., Meier, F., Merola, M., Miller, C., Mirra, M., Mitra, S., Miyabayashi, K., Mohanty, G. B., Mondal, S., Moneta, S., Moser, H. -G., Mussa, R., Nakamura, I., Nakao, M., Nakazawa, H., Nakazawa, Y., Naruki, M., Natkaniec, Z., Natochii, A., Nayak, M., Nazaryan, G., Neu, M., Nishida, S., Ogawa, S., Ono, H., Oxford, E. R., Pakhlova, G., Pardi, S., Parham, K., Park, H., Park, J., Park, K., Park, S. -H., Paschen, B., Passeri, A., Patra, S., Pedlar, T. K., Peschke, R., Piilonen, L. E., Podesta-Lerma, P. L. M., Podobnik, T., Praz, C., Prell, S., Prencipe, E., Prim, M. T., Purwar, H., Raiz, S., Rehman, J. U., Reif, M., Reiter, S., Reuter, L., Herrmann, D. Ricalde, Ripp-Baudot, I., Rizzo, G., Roehrken, M., Roney, J. M., Rostomyan, A., Rout, N., Sanders, D. A., Sandilya, S., Santelj, L., Savinov, V., Scavino, B., Schwanda, C., Schwartz, A. J., Seino, Y., Selce, A., Senyo, K., Serrano, J., Sevior, M. E., Sfienti, C., Shan, W., Shen, C. P., Shi, X. D., Shillington, T., Shiu, J. -G., Shtol, D., Sibidanov, A., Simon, F., Skorupa, J., Sobie, R. J., Sobotzik, M., Soffer, A., Sokolov, A., Solovieva, E., Spataro, S., Spruck, B., Starič, M., Stavroulakis, P., Stefkova, S., Stroili, R., Sumihama, M., Sumisawa, K., Svidras, H., Takizawa, M., Tanida, K., Tenchini, F., Tittel, O., Tiwary, R., Torassa, E., Trabelsi, K., Uchida, M., Ueda, I., Uglov, T., Unger, K., Unno, Y., Uno, K., Uno, S., Urquijo, P., Vahsen, S. E., van Tonder, R., Varvell, K. E., Veronesi, M., Vinokurova, A., Vismaya, V. S., Vitale, L., Volpe, R., Wakai, M., Wallner, S., Wang, M. -Z., Warburton, A., Watanabe, M., Watanuki, S., Wessel, C., Yabsley, B. D., Yamada, S., Yan, W., Yin, J. H., Yoshihara, K., Yuan, J., Zhilich, V., Zhou, J. S., Zhou, Q. D., Zhu, L., Zhukova, V. I., and Žlebčík, R.
- Subjects
High Energy Physics - Experiment - Abstract
We perform a model-independent measurement of the $D^0$-$\overline{D}{}^0$ mixing parameters using samples of $e^+e^-$-collision data collected by the Belle and Belle II experiments that have integrated luminosities of $951\ \text{fb}^{-1}$ and $408\ \text{fb}^{-1}$, respectively. Approximately $2.05\times10^6$ neutral $D$ mesons are reconstructed in the $D^0\rightarrow K^0_{S}\pi^+\pi^-$ channel, with the neutral $D$ flavor tagged by the charge of the pion in the $D^{*+}\rightarrow D^0\pi^+$ decay. Assuming charge-parity symmetry, the mixing parameters are measured to be $ x = (4.0\pm1.7\pm0.4)\times 10^{-3} $ and $ y = (2.9\pm1.4\pm0.3)\times 10^{-3}$, where the first uncertainties are statistical and the second systematic. The results are consistent with previous determinations.
- Published
- 2024
36. Enhancing Image Resolution: A Simulation Study and Sensitivity Analysis of System Parameters for Resourcesat-3S/3SA
- Author
-
Garg, Ankur, Sarkar, Meenakshi, Moorthi, S. M., and Dhar, Debajyoti
- Subjects
Electrical Engineering and Systems Science - Image and Video Processing - Abstract
Resourcesat-3S/3SA, an upcoming Indian satellite, is designed with Aft and Fore payloads capturing stereo images at look angles of -5deg and 26deg, respectively. Operating at 632.6 km altitude, it features a panchromatic (PAN) band offering a Ground Sampling Distance (GSD) of 1.25 meters and a 60 km swath. To balance swath width and resolution, an Instantaneous Geometric Field of View (IGFOV) of 2.5 meters is maintained while ensuring a 1.25-meter GSD both along and across track. Along-track sampling is achieved through precise timing, while across-track accuracy is ensured by using two staggered pixel arrays. Signal-to-Noise Ratio (SNR) is enhanced through Time Delay and Integration (TDI), employing two five-stage subarrays spaced 80 {\mu}m apart along the track, with a 4 {\mu}m (0.5 pixel) stagger in the across-track direction to achieve 1.25-meter resolution. To further boost resolution, the satellite employs super-resolution (SR), combining multiple low-resolution captures using sub-pixel shifts to produce high-resolution images. This technique, effective when images contain aliased high-frequency details, reconstructs full-resolution imagery using phase information from multiple observations, and has been successfully applied in remote sensing missions like SPOT-5, SkySat, and DubaiSat-1. A Monte Carlo simulation explores the factors influencing the resolution in Resourcesat-3S/3SA, with sensitivity analysis highlighting key impacts. The simulation methodology is broadly applicable to other remote sensing missions, optimizing SR for enhanced image clarity and resolution in future satellite systems., Comment: Preprint
- Published
- 2024
37. Testing Tensor Products of Algebraic Codes
- Author
-
Garg, Sumegha, Sudan, Madhu, and Wu, Gabriel
- Subjects
Computer Science - Information Theory - Abstract
Motivated by recent advances in locally testable codes and quantum LDPCs based on robust testability of tensor product codes, we explore the local testability of tensor products of (an abstraction of) algebraic geometry codes. Such codes are parameterized by, in addition to standard parameters such as block length $n$ and dimension $k$, their genus $g$. We show that the tensor product of two algebraic geometry codes is robustly locally testable provided $n = \Omega((k+g)^2)$. Apart from Reed-Solomon codes, this seems to be the first explicit family of codes of super-constant dual distance that is robustly locally testable., Comment: 12 pages
- Published
- 2024
38. Are VLMs Really Blind
- Author
-
Singh, Ayush, Gupta, Mansi, and Garg, Shivank
- Subjects
Computer Science - Computation and Language ,Computer Science - Computer Vision and Pattern Recognition - Abstract
Vision Language Models excel in handling a wide range of complex tasks, including Optical Character Recognition (OCR), Visual Question Answering (VQA), and advanced geometric reasoning. However, these models fail to perform well on low-level basic visual tasks which are especially easy for humans. Our goal in this work was to determine if these models are truly "blind" to geometric reasoning or if there are ways to enhance their capabilities in this area. Our work presents a novel automatic pipeline designed to extract key information from images in response to specific questions. Instead of just relying on direct VQA, we use question-derived keywords to create a caption that highlights important details in the image related to the question. This caption is then used by a language model to provide a precise answer to the question without requiring external fine-tuning., Comment: 2 pages, 1 figure
- Published
- 2024
39. Device-Directed Speech Detection for Follow-up Conversations Using Large Language Models
- Author
-
Rudovic, Oggi, Dighe, Pranay, Su, Yi, Garg, Vineet, Dharur, Sameer, Niu, Xiaochuan, Abdelaziz, Ahmed H., Adya, Saurabah, and Tewfik, Ahmed
- Subjects
Electrical Engineering and Systems Science - Audio and Speech Processing ,Computer Science - Artificial Intelligence ,Computer Science - Computation and Language ,Computer Science - Sound - Abstract
Follow-up conversations with virtual assistants (VAs) enable a user to seamlessly interact with a VA without the need to repeatedly invoke it using a keyword (after the first query). Therefore, accurate Device-directed Speech Detection (DDSD) from the follow-up queries is critical for enabling naturalistic user experience. To this end, we explore the notion of Large Language Models (LLMs) and model the first query when making inference about the follow-ups (based on the ASR-decoded text), via prompting of a pretrained LLM, or by adapting a binary classifier on top of the LLM. In doing so, we also exploit the ASR uncertainty when designing the LLM prompts. We show on the real-world dataset of follow-up conversations that this approach yields large gains (20-40% reduction in false alarms at 10% fixed false rejects) due to the joint modeling of the previous speech context and ASR uncertainty, compared to when follow-ups are modeled alone.
- Published
- 2024
40. Giant Negative Linear Compressibility in Orthorhombic Copper Cyanide
- Author
-
Kesari, Swayam, Garg, Alka B., Salke, Nilesh P., and Rao, Rekha
- Subjects
Condensed Matter - Materials Science - Abstract
Most reported negative linear compressibility (NLC) materials exhibit either a small NLC over a large pressure range or a high NLC over a very small pressure range. Here, we report the remarkable discovery of giant NLC in the low-temperature form of CuCN (LT-CuCN) over an unusually large pressure range. High-pressure XRD studies on LT-CuCN observed the NLC of -20.5 TPa-1 along the a-axis at zero pressure, and the ambient orthorhombic phase remained stable up to 9.8 GPa. Pressure and temperature-dependent Raman studies identified the phonon vibrations responsible for NLC and negative thermal expansion (NTE).
- Published
- 2024
41. Measurement of the CKM angle $\gamma$ in $B^{\pm} \to D K^*(892)^{\pm}$ decays
- Author
-
LHCb collaboration, Aaij, R., Abdelmotteleb, A. S. W., Beteta, C. Abellan, Abudinén, F., Ackernley, T., Adefisoye, A. A., Adeva, B., Adinolfi, M., Adlarson, P., Agapopoulou, C., Aidala, C. A., Ajaltouni, Z., Akar, S., Akiba, K., Albicocco, P., Albrecht, J., Alessio, F., Alexander, M., Aliouche, Z., Cartelle, P. Alvarez, Amalric, R., Amato, S., Amey, J. L., Amhis, Y., An, L., Anderlini, L., Andersson, M., Andreianov, A., Andreola, P., Andreotti, M., Andreou, D., Anelli, A., Ao, D., Archilli, F., Argenton, M., Cuendis, S. Arguedas, Artamonov, A., Artuso, M., Aslanides, E., Da Silva, R. Ataíde, Atzeni, M., Audurier, B., Bacher, D., Perea, I. Bachiller, Bachmann, S., Bachmayer, M., Back, J. J., Rodriguez, P. Baladron, Balagura, V., Baldini, W., Balzani, L., Bao, H., Leite, J. Baptista de Souza, Pretel, C. Barbero, Barbetti, M., Barbosa, I. R., Barlow, R. J., Barnyakov, M., Barsuk, S., Barter, W., Bartolini, M., Bartz, J., Basels, J. M., Bashir, S., Bassi, G., Batsukh, B., Battista, P. B., Bay, A., Beck, A., Becker, M., Bedeschi, F., Bediaga, I. B., Behling, N. A., Belin, S., Bellee, V., Belous, K., Belov, I., Belyaev, I., Benane, G., Bencivenni, G., Ben-Haim, E., Berezhnoy, A., Bernet, R., Andres, S. Bernet, Bertolin, A., Betancourt, C., Betti, F., Bex, J., Bezshyiko, Ia., Bhom, J., Bieker, M. S., Biesuz, N. V., Billoir, P., Biolchini, A., Birch, M., Bishop, F. C. R., Bitadze, A., Bizzeti, A., Blake, T., Blanc, F., Blank, J. E., Blusk, S., Bocharnikov, V., Boelhauve, J. A., Garcia, O. Boente, Boettcher, T., Bohare, A., Boldyrev, A., Bolognani, C. S., Bolzonella, R., Bondar, N., Bordelius, A., Borgato, F., Borghi, S., Borsato, M., Borsuk, J. T., Bouchiba, S. A., Bovill, M., Bowcock, T. J. V., Boyer, A., Bozzi, C., Rodriguez, A. Brea, Breer, N., Brodzicka, J., Gonzalo, A. Brossa, Brown, J., Brundu, D., Buchanan, E., Buonaura, A., Buonincontri, L., Burke, A. T., Burr, C., Butter, J. S., Buytaert, J., Byczynski, W., Cadeddu, S., Cai, H., Caillet, A. C., Calabrese, R., Ramirez, S. Calderon, Calefice, L., Cali, S., Calvi, M., Gomez, M. Calvo, Magalhaes, P. Camargo, Bouzas, J. I. Cambon, Campana, P., Perez, D. H. Campora, Quezada, A. F. Campoverde, Capelli, S., Capriotti, L., Caravaca-Mora, R., Carbone, A., Salgado, L. Carcedo, Cardinale, R., Cardini, A., Carniti, P., Carus, L., Vidal, A. Casais, Caspary, R., Casse, G., Godinez, J. Castro, Cattaneo, M., Cavallero, G., Cavallini, V., Celani, S., Cervenkov, D., Cesare, S., Chadwick, A. J., Chahrour, I., Charles, M., Charpentier, Ph., Chatzianagnostou, E., Chefdeville, M., Chen, C., Chen, S., Chen, Z., Chernov, A., Chernyshenko, S., Chiotopoulos, X., Chobanova, V., Cholak, S., Chrzaszcz, M., Chubykin, A., Chulikov, V., Ciambrone, P., Vidal, X. Cid, Ciezarek, G., Cifra, P., Clarke, P. E. L., Clemencic, M., Cliff, H. V., Closier, J., Toapaxi, C. Cocha, Coco, V., Cogan, J., Cogneras, E., Cojocariu, L., Collins, P., Colombo, T., Colonna, M. C., Comerma-Montells, A., Congedo, L., Contu, A., Cooke, N., Corredoira, I., Correia, A., Corti, G., Meldrum, J. J. Cottee, Couturier, B., Craik, D. C., Torres, M. Cruz, Rivera, E. Curras, Currie, R., Da Silva, C. L., Dadabaev, S., Dai, L., Dai, X., Dall'Occo, E., Dalseno, J., D'Ambrosio, C., Daniel, J., Danilina, A., d'Argent, P., Davidson, A., Davies, J. E., Davis, A., Francisco, O. De Aguiar, De Angelis, C., De Benedetti, F., de Boer, J., De Bruyn, K., De Capua, S., De Cian, M., Da Graca, U. De Freitas Carneiro, De Lucia, E., De Miranda, J. M., De Paula, L., De Serio, M., De Simone, P., De Vellis, F., de Vries, J. A., Debernardis, F., Decamp, D., Dedu, V., Dekkers, S., Del Buono, L., Delaney, B., Dembinski, H. -P., Deng, J., Denysenko, V., Deschamps, O., Dettori, F., Dey, B., Di Nezza, P., Diachkov, I., Didenko, S., Ding, S., Dittmann, L., Dobishuk, V., Docheva, A. D., Dong, C., Donohoe, A. M., Dordei, F., Reis, A. C. dos, Dowling, A. D., Duan, W., Duda, P., Dudek, M. W., Dufour, L., Duk, V., Durante, P., Duras, M. M., Durham, J. M., Durmus, O. D., Dziurda, A., Dzyuba, A., Easo, S., Eckstein, E., Egede, U., Egorychev, A., Egorychev, V., Eisenhardt, S., Ejopu, E., Eklund, L., Elashri, M., Ellbracht, J., Ely, S., Ene, A., Epple, E., Eschle, J., Esen, S., Evans, T., Fabiano, F., Falcao, L. N., Fan, Y., Fang, B., Fantini, L., Faria, M., Farmer, K., Fazzini, D., Felkowski, L., Feng, M., Feo, M., Casani, A. Fernandez, Gomez, M. Fernandez, Fernez, A. D., Ferrari, F., Rodrigues, F. Ferreira, Ferrillo, M., Ferro-Luzzi, M., Filippov, S., Fini, R. A., Fiorini, M., Fischer, K. L., Fitzgerald, D. S., Fitzpatrick, C., Fleuret, F., Fontana, M., Foreman, L. F., Forty, R., Foulds-Holt, D., Lima, V. Franco, Sevilla, M. Franco, Frank, M., Franzoso, E., Frau, G., Frei, C., Friday, D. A., Fu, J., Führing, Q., Fujii, Y., Fulghesu, T., Gabriel, E., Galati, G., Galati, M. D., Torreira, A. Gallas, Galli, D., Gambetta, S., Gandelman, M., Gandini, P., Ganie, B., Gao, H., Gao, R., Gao, T. Q., Gao, Y., Garau, M., Martin, L. M. Garcia, Moreno, P. Garcia, Pardiñas, J. García, Garg, K. G., Garrido, L., Gaspar, C., Geertsema, R. E., Gerken, L. L., Gersabeck, E., Gersabeck, M., Gershon, T., Ghizzo, S. G., Ghorbanimoghaddam, Z., Giambastiani, L., Giasemis, F. I., Gibson, V., Giemza, H. K., Gilman, A. L., Giovannetti, M., Gioventù, A., Girardey, L., Gironell, P. Gironella, Giugliano, C., Giza, M. A., Gkougkousis, E. L., Glaser, F. C., Gligorov, V. V., Göbel, C., Golobardes, E., Golubkov, D., Golutvin, A., Gomes, A., Fernandez, S. Gomez, Abrantes, F. Goncalves, Goncerz, M., Gong, G., Gooding, J. A., Gorelov, I. V., Gotti, C., Grabowski, J. P., Cardoso, L. A. Granado, Graugés, E., Graverini, E., Grazette, L., Graziani, G., Grecu, A. T., Greeven, L. M., Grieser, N. A., Grillo, L., Gromov, S., Gu, C., Guarise, M., Guerry, L., Guittiere, M., Guliaeva, V., Günther, P. A., Guseinov, A. -K., Gushchin, E., Guz, Y., Gys, T., Habermann, K., Hadavizadeh, T., Hadjivasiliou, C., Haefeli, G., Haen, C., Haimberger, J., Hajheidari, M., Hallett, G., Halvorsen, M. M., Hamilton, P. M., Hammerich, J., Han, Q., Han, X., Hansmann-Menzemer, S., Hao, L., Harnew, N., Hartmann, M., Hashmi, S., He, J., Hemmer, F., Henderson, C., Henderson, R. D. L., Hennequin, A. M., Hennessy, K., Henry, L., Herd, J., Gascon, P. Herrero, Heuel, J., Hicheur, A., Mendizabal, G. Hijano, Hill, D., Hollitt, S. E., Horswill, J., Hou, R., Hou, Y., Howarth, N., Hu, J., Hu, W., Hu, X., Huang, W., Hulsbergen, W., Hunter, R. J., Hushchyn, M., Hutchcroft, D., Ilin, D., Ilten, P., Inglessi, A., Iniukhin, A., Ishteev, A., Ivshin, K., Jacobsson, R., Jage, H., Elles, S. J. Jaimes, Jakobsen, S., Jans, E., Jashal, B. K., Jawahery, A., Jevtic, V., Jiang, E., Jiang, X., Jiang, Y., Jiang, Y. J., John, M., Rajan, A. John Rubesh, Johnson, D., Jones, C. R., Jones, T. P., Joshi, S., Jost, B., Castella, J. Juan, Jurik, N., Juszczak, I., Kaminaris, D., Kandybei, S., Kane, M., Kang, Y., Kar, C., Karacson, M., Karpenkov, D., Kauniskangas, A., Kautz, J. W., Kazanecki, M. K., Keizer, F., Kenzie, M., Ketel, T., Khanji, B., Kharisova, A., Kholodenko, S., Khreich, G., Kirn, T., Kirsebom, V. S., Kitouni, O., Klaver, S., Kleijne, N., Klimaszewski, K., Kmiec, M. R., Koliiev, S., Kolk, L., Konoplyannikov, A., Kopciewicz, P., Koppenburg, P., Korolev, M., Kostiuk, I., Kot, O., Kotriakhova, S., Kozachuk, A., Kravchenko, P., Kravchuk, L., Kreps, M., Krokovny, P., Krupa, W., Krzemien, W., Kshyvanskyi, O., Kubis, S., Kucharczyk, M., Kudryavtsev, V., Kulikova, E., Kupsc, A., Kutsenko, B. K., Lacarrere, D., Gonzalez, P. Laguarta, Lai, A., Lampis, A., Lancierini, D., Gomez, C. Landesa, Lane, J. J., Lane, R., Lanfranchi, G., Langenbruch, C., Langer, J., Lantwin, O., Latham, T., Lazzari, F., Lazzeroni, C., Gac, R. Le, Lee, H., Lefèvre, R., Leflat, A., Legotin, S., Lehuraux, M., Cid, E. Lemos, Leroy, O., Lesiak, T., Lesser, E. D., Leverington, B., Li, A., Li, C., Li, H., Li, K., Li, L., Li, M., Li, P., Li, P. -R., Li, Q., Li, S., Li, T., Li, Y., Lian, Z., Liang, X., Libralon, S., Lin, C., Lin, T., Lindner, R., Lisovskyi, V., Litvinov, R., Liu, F. L., Liu, G., Liu, K., Liu, S., Liu, W., Liu, Y., Liu, Y. L., Salvia, A. Lobo, Loi, A., Castro, J. Lomba, Long, T., Lopes, J. H., Huertas, A. Lopez, Soliño, S. López, Lu, Q., Lucarelli, C., Lucchesi, D., Martinez, M. Lucio, Lukashenko, V., Luo, Y., Lupato, A., Luppi, E., Lynch, K., Lyu, X. -R., Ma, G. M., Ma, R., Maccolini, S., Machefert, F., Maciuc, F., Mack, B., Mackay, I., Mackey, L. M., Mohan, L. R. Madhan, Madurai, M. J., Maevskiy, A., Magdalinski, D., Maisuzenko, D., Majewski, M. W., Malczewski, J. J., Malde, S., Malentacca, L., Malinin, A., Maltsev, T., Manca, G., Mancinelli, G., Mancuso, C., Escalero, R. Manera, Manuzzi, D., Marangotto, D., Marchand, J. F., Marchevski, R., Marconi, U., Mariani, E., Mariani, S., Benito, C. Marin, Marks, J., Marshall, A. M., Martel, L., Martelli, G., Martellotti, G., Martinazzoli, L., Martinelli, M., Santos, D. Martinez, Vidal, F. Martinez, Massafferri, A., Matev, R., Mathad, A., Matiunin, V., Matteuzzi, C., Mattioli, K. R., Mauri, A., Maurice, E., Mauricio, J., Mayencourt, P., de Cos, J. Mazorra, Mazurek, M., McCann, M., Mcconnell, L., McGrath, T. H., McHugh, N. T., McNab, A., McNulty, R., Meadows, B., Meier, G., Melnychuk, D., Meng, F. M., Merk, M., Merli, A., Garcia, L. Meyer, Miao, D., Miao, H., Mikhasenko, M., Milanes, D. A., Minotti, A., Minucci, E., Miralles, T., Mitreska, B., Mitzel, D. S., Modak, A., Mohammed, R. A., Moise, R. D., Mokhnenko, S., Cardenas, E. F. Molina, Mombächer, T., Monk, M., Monteil, S., Gomez, A. Morcillo, Morello, G., Morello, M. J., Morgenthaler, M. P., Morris, A. B., Morris, A. G., Mountain, R., Mu, H., Mu, Z. M., Muhammad, E., Muheim, F., Mulder, M., Müller, K., Muñoz-Rojas, F., Murta, R., Naik, P., Nakada, T., Nandakumar, R., Nanut, T., Nasteva, I., Needham, M., Neri, N., Neubert, S., Neufeld, N., Neustroev, P., Nicolini, J., Nicotra, D., Niel, E. M., Nikitin, N., Nogarolli, P., Nogga, P., Normand, C., Fernandez, J. Novoa, Nowak, G., Nunez, C., Nur, H. N., Oblakowska-Mucha, A., Obraztsov, V., Oeser, T., Okamura, S., Okhotnikov, A., Okhrimenko, O., Oldeman, R., Oliva, F., Olocco, M., Onderwater, C. J. G., O'Neil, R. H., Osthues, D., Goicochea, J. M. Otalora, Owen, P., Oyanguren, A., Ozcelik, O., Paciolla, F., Padee, A., Padeken, K. O., Pagare, B., Pais, P. R., Pajero, T., Palano, A., Palutan, M., Panshin, G., Paolucci, L., Papanestis, A., Pappagallo, M., Pappalardo, L. L., Pappenheimer, C., Parkes, C., Passalacqua, B., Passaleva, G., Passaro, D., Pastore, A., Patel, M., Patoc, J., Patrignani, C., Paul, A., Pawley, C. J., Pellegrino, A., Peng, J., Altarelli, M. Pepe, Perazzini, S., Pereima, D., Da Costa, H. Pereira, Castro, A. Pereiro, Perret, P., Perro, A., Petridis, K., Petrolini, A., Pfaller, J. P., Pham, H., Pica, L., Piccini, M., Piccolo, L., Pietrzyk, B., Pietrzyk, G., Pinci, D., Pisani, F., Pizzichemi, M., Placinta, V., Casasus, M. Plo, Poeschl, T., Polci, F., Lener, M. Poli, Poluektov, A., Polukhina, N., Polyakov, I., Polycarpo, E., Ponce, S., Popov, D., Poslavskii, S., Prasanth, K., Prouve, C., Provenzano, D., Pugatch, V., Punzi, G., Qasim, S., Qian, Q. Q., Qian, W., Qin, N., Qu, S., Quagliani, R., Trejo, R. I. Rabadan, Rademacker, J. H., Rama, M., García, M. Ramírez, De Oliveira, V. Ramos, Pernas, M. Ramos, Rangel, M. S., Ratnikov, F., Raven, G., De Miguel, M. Rebollo, Redi, F., Reich, J., Reiss, F., Ren, Z., Resmi, P. K., Ribatti, R., Ricart, G. R., Riccardi, D., Ricciardi, S., Richardson, K., Richardson-Slipper, M., Rinnert, K., Robbe, P., Robertson, G., Rodrigues, E., Fernandez, E. Rodriguez, Lopez, J. A. Rodriguez, Rodriguez, E. Rodriguez, Roensch, J., Rogachev, A., Rogovskiy, A., Rolf, D. L., Roloff, P., Romanovskiy, V., Lamas, M. Romero, Vidal, A. Romero, Romolini, G., Ronchetti, F., Rong, T., Rotondo, M., Roy, S. R., Rudolph, M. S., Diaz, M. Ruiz, Fernandez, R. A. Ruiz, Vidal, J. Ruiz, Ryzhikov, A., Ryzka, J., Saavedra-Arias, J. J., Silva, J. J. Saborido, Sadek, R., Sagidova, N., Sahoo, D., Sahoo, N., Saitta, B., Salomoni, M., Sanderswood, I., Santacesaria, R., Rios, C. Santamarina, Santimaria, M., Santoro, L., Santovetti, E., Saputi, A., Saranin, D., Sarnatskiy, A., Sarpis, G., Sarpis, M., Satriano, C., Satta, A., Saur, M., Savrina, D., Sazak, H., Sborzacchi, F., Smead, L. G. Scantlebury, Scarabotto, A., Schael, S., Scherl, S., Schiller, M., Schindler, H., Schmelling, M., Schmidt, B., Schmitt, S., Schmitz, H., Schneider, O., Schopper, A., Schulte, N., Schulte, S., Schune, M. H., Schwemmer, R., Schwering, G., Sciascia, B., Sciuccati, A., Sellam, S., Semennikov, A., Senger, T., Soares, M. Senghi, Sergi, A., Serra, N., Sestini, L., Seuthe, A., Shang, Y., Shangase, D. M., Shapkin, M., Sharma, R. S., Shchemerov, I., Shchutska, L., Shears, T., Shekhtman, L., Shen, Z., Sheng, S., Shevchenko, V., Shi, B., Shi, Q., Shimizu, Y., Shmanin, E., Shorkin, R., Shupperd, J. D., Coutinho, R. Silva, Simi, G., Simone, S., Skidmore, N., Skwarnicki, T., Slater, M. W., Smallwood, J. C., Smith, E., Smith, K., Smith, M., Snoch, A., Lavra, L. Soares, Sokoloff, M. D., Soler, F. J. P., Solomin, A., Solovev, A., Solovyev, I., Song, R., Song, Y., Song, Y. S., De Almeida, F. L. Souza, De Paula, B. Souza, Norella, E. Spadaro, Spedicato, E., Speer, J. G., Spiridenkov, E., Spradlin, P., Sriskaran, V., Stagni, F., Stahl, M., Stahl, S., Stanislaus, S., Stein, E. N., Steinkamp, O., Stenyakin, O., Stevens, H., Strekalina, D., Su, Y., Suljik, F., Sun, J., Sun, L., Sun, Y., Sundfeld, D., Sutcliffe, W., Swallow, P. N., Swystun, F., Szabelski, A., Szumlak, T., Tan, Y., Tat, M. D., Terentev, A., Terzuoli, F., Teubert, F., Thomas, E., Thompson, D. J. D., Tilquin, H., Tisserand, V., T'Jampens, S., Tobin, M., Tomassetti, L., Tonani, G., Tong, X., Machado, D. Torres, Toscano, L., Tou, D. Y., Trippl, C., Tuci, G., Tuning, N., Uecker, L. H., Ukleja, A., Unverzagt, D. J., Ursov, E., Usachov, A., Ustyuzhanin, A., Uwer, U., Vagnoni, V., Cadenas, V. Valcarce, Valenti, G., Canudas, N. Valls, Van Hecke, H., van Herwijnen, E., Van Hulse, C. B., Van Laak, R., van Veghel, M., Vasquez, G., Gomez, R. Vazquez, Regueiro, P. Vazquez, Sierra, C. Vázquez, Vecchi, S., Velthuis, J. J., Veltri, M., Venkateswaran, A., Verdoglia, M., Vesterinen, M., Benet, D. Vico, Villalba, P. Vidrier, Diaz, M. Vieites, Vilasis-Cardona, X., Figueras, E. Vilella, Villa, A., Vincent, P., Volle, F. C., Bruch, D. vom, Voropaev, N., Vos, K., Vouters, G., Vrahas, C., Wagner, J., Walsh, J., Walton, E. J., Wan, G., Wang, C., Wang, G., Wang, J., Wang, M., Wang, N. W., Wang, R., Wang, X., Wang, X. W., Wang, Y., Wang, Z., Ward, J. A., Waterlaat, M., Watson, N. K., Websdale, D., Wei, Y., Wendel, J., Westhenry, B. D. C., White, C., Whitehead, M., Whiter, E., Wiederhold, A. R., Wiedner, D., Wilkinson, G., Wilkinson, M. K., Williams, M., Williams, M. R. J., Williams, R., Williams, Z., Wilson, F. F., Wislicki, W., Witek, M., Witola, L., Wormser, G., Wotton, S. A., Wu, H., Wu, J., Wu, Y., Wu, Z., Wyllie, K., Xian, S., Xiang, Z., Xie, Y., Xu, A., Xu, J., Xu, L., Xu, M., Xu, Z., Yang, D., Yang, K., Yang, S., Yang, X., Yang, Y., Yang, Z., Yeroshenko, V., Yeung, H., Yin, H., Yin, X., Yu, C. Y., Yu, J., Yuan, X., Yuan, Y, Zaffaroni, E., Zavertyaev, M., Zdybal, M., Zenesini, F., Zeng, C., Zeng, M., Zhang, C., Zhang, D., Zhang, J., Zhang, L., Zhang, S., Zhang, Y., Zhang, Y. Z., Zhao, Y., Zharkova, A., Zhelezov, A., Zheng, S. Z., Zheng, X. Z., Zheng, Y., Zhou, T., Zhou, X., Zhou, Y., Zhovkovska, V., Zhu, L. Z., Zhu, X., Zhukov, V., Zhuo, J., Zou, Q., Zuliani, D., and Zunica, G.
- Subjects
High Energy Physics - Experiment - Abstract
Measurements of $CP$ observables and the CKM angle $\gamma$ are performed in $B^{\pm} \to D K^*(892)^{\pm}$ decays, where $D$ represents a superposition of $D^0$ and $\overline{D}{}^0$ states, using the LHCb dataset collected during Run 1 (2011-2012) and Run 2 (2015-2018). A comprehensive study of this channel is presented with the $D$ meson reconstructed in two-body final states $K^{\pm}\pi^{\mp}$, $K^+K^-$ and $\pi^+\pi^-$; four-body final states $K^{\pm}\pi^{\mp}\pi^{\pm}\pi^{\mp}$ and $\pi^+\pi^-\pi^+\pi^-$; and three-body final states $K^0_{S} \pi^+\pi^-$ and $K^0_{S} K^+ K^-$. This analysis includes the first observation of the suppressed $B^{\pm} \to [\pi^+K^-]_D K^{*\pm}$ and $B^{\pm} \to [\pi^+K^-\pi^+\pi^-]_D K^{*\pm}$ decays. The combined result gives $\gamma=(63\pm 13)^\circ$., Comment: All figures and tables, along with machine-readable versions and any supplementary material and additional information, are available at https://lbfence.cern.ch/alcm/public/analysis/full-details/3180/ (LHCb public pages)
- Published
- 2024
42. Discovering Robotic Interaction Modes with Discrete Representation Learning
- Author
-
Wang, Liquan, Goyal, Ankit, Xu, Haoping, and Garg, Animesh
- Subjects
Computer Science - Robotics - Abstract
Human actions manipulating articulated objects, such as opening and closing a drawer, can be categorized into multiple modalities we define as interaction modes. Traditional robot learning approaches lack discrete representations of these modes, which are crucial for empirical sampling and grounding. In this paper, we present ActAIM2, which learns a discrete representation of robot manipulation interaction modes in a purely unsupervised fashion, without the use of expert labels or simulator-based privileged information. Utilizing novel data collection methods involving simulator rollouts, ActAIM2 consists of an interaction mode selector and a low-level action predictor. The selector generates discrete representations of potential interaction modes with self-supervision, while the predictor outputs corresponding action trajectories. Our method is validated through its success rate in manipulating articulated objects and its robustness in sampling meaningful actions from the discrete representation. Extensive experiments demonstrate ActAIM2's effectiveness in enhancing manipulability and generalizability over baselines and ablation studies. For videos and additional results, see our website: https://actaim2.github.io/.
- Published
- 2024
43. Geometric Correction and Mosaic Generation of Geo High Resolution Camera Images
- Author
-
Garg, Ankur, Thapa, Nitesh, Sangar, Ghansham, Gaur, Neha, Sarkar, Meenakshi, Moorthi, S. Manthira, and Dhar, Debajyoti
- Subjects
Electrical Engineering and Systems Science - Image and Video Processing - Abstract
The Geo High Resolution Camera (GHRC) aboard ISRO GSAT-29 satellite is a state-of-the-art 6-band Visible and Near Infrared (VNIR) imager in geostationary orbit at 55degE longitude. It provides a ground sampling distance of 55 meters at nadir, covering 110x110 km at a time, and can image the entire Earth disk using a scan mirror mechanism. To cover India, GHRC uses a two-dimensional raster scanning technique, resulting in over 1,000 scenes that must be stitched into a seamless mosaic. This paper presents the geolocation model and examines potential sources of targeting error, with an assessment of location accuracy. Challenges in inter-band registration and inter-frame mosaicing are addressed through algorithms for geometric correction, band-to-band registration, and seamless mosaic generation. In-flight geometric calibration, including adjustments to the instrument interior alignment angles using ground reference images, has improved pointing and location accuracy. A backtracking algorithm has been developed to correct frame-to-frame mosaicing errors for large-scale mosaics, leveraging geometric models, image processing, and space resection techniques. These advancements now enable the operational generation of full India mosaics with 100-meter resolution and high geometric fidelity, enhancing the GHRC capabilities for Earth observation and monitoring applications., Comment: Preprint
- Published
- 2024
44. Double Auctions: Formalization and Automated Checkers
- Author
-
Garg, Mohit, Raja, N., Sarswat, Suneel, and Singh, Abhishek Kr
- Subjects
Computer Science - Logic in Computer Science ,Quantitative Finance - Trading and Market Microstructure ,F.3.1 ,K.4.4 - Abstract
Double auctions are widely used in financial markets, such as those for stocks, derivatives, currencies, and commodities, to match demand and supply. Once all buyers and sellers have placed their trade requests, the exchange determines how these requests are to be matched. The two most common objectives for determining the matching are maximizing trade volume at a uniform price and maximizing trade volume through dynamic pricing. Prior research has primarily focused on single-quantity trade requests. In this work, we extend the framework to handle multiple-quantity trade requests and present fully formalized matching algorithms for double auctions, along with their correctness proofs. We establish new uniqueness theorems, enabling automatic detection of violations in exchange systems by comparing their output to that of a verified program. All proofs are formalized in the Coq Proof Assistant, and we extract verified OCaml and Haskell programs that could serve as a resource for exchanges and market regulators. We demonstrate the practical applicability of our work by running the verified program on real market data from an exchange to automatically check for violations in the exchange algorithm., Comment: 23 pages, Preliminary version of this work was published in ITP 2021
- Published
- 2024
45. Hyperspectral Spatial Super-Resolution using Keystone Error
- Author
-
Garg, Ankur, Sarkar, Meenakshi, Moorthi, S. Manthira, and Dhar, Debajyoti
- Subjects
Electrical Engineering and Systems Science - Image and Video Processing - Abstract
Hyperspectral images enable precise identification of ground objects by capturing their spectral signatures with fine spectral resolution.While high spatial resolution further enhances this capability, increasing spatial resolution through hardware like larger telescopes is costly and inefficient. A more optimal solution is using ground processing techniques, such as hypersharpening, to merge high spectral and spatial resolution data. However, this method works best when datasets are captured under similar conditions, which is difficult when using data from different times. In this work, we propose a superresolution approach to enhance hyperspectral data's spatial resolution without auxiliary input. Our method estimates the high-resolution point spread function (PSF) using blind deconvolution and corrects for sampling-related blur using a model-based superresolution framework. This differs from previous approaches by not assuming a known highresolution blur. We also introduce an adaptive prior that improves performance compared to existing methods. Applied to the visible and near-infrared (VNIR) spectrometer of HySIS, ISRO hyperspectral sensor, our algorithm removes aliasing and boosts resolution by approximately 1.3 times. It is versatile and can be applied to similar systems., Comment: Preprint
- Published
- 2024
46. Advancements in Image Resolution: Super-Resolution Algorithm for Enhanced EOS-06 OCM-3 Data
- Author
-
Garg, Ankur, Shukla, Tushar, Joshi, Purvee, Ganguly, Debojyoti, Gujarati, Ashwin, Sarkar, Meenakshi, Babu, KN, Pandya, Mehul, Moorthi, S. Manthira, and Dhar, Debajyoti
- Subjects
Electrical Engineering and Systems Science - Image and Video Processing ,Electrical Engineering and Systems Science - Signal Processing - Abstract
The Ocean Color Monitor-3 (OCM-3) sensor is instrumental in Earth observation, achieving a critical balance between high-resolution imaging and broad coverage. This paper explores innovative imaging methods employed in OCM-3 and the transformative potential of super-resolution techniques to enhance image quality. The super-resolution model for OCM-3 (SOCM-3) addresses the challenges of contemporary satellite imaging by effectively navigating the trade-off between image clarity and swath width. With resolutions below 240 meters in Local Area Coverage (LAC) mode and below 750 meters in Global Area Coverage (GAC) mode, coupled with a wide 1550-kilometer swath and a 2-day revisit time, SOCM-3 emerges as a leading asset in remote sensing. The paper details the intricate interplay of atmospheric, motion, optical, and detector effects that impact image quality, emphasizing the necessity for advanced computational techniques and sophisticated algorithms for effective image reconstruction. Evaluation methods are thoroughly discussed, incorporating visual assessments using the Blind/Referenceless Image Spatial Quality Evaluator (BRISQUE) metric and computational metrics such as Line Spread Function (LSF), Full Width at Half Maximum (FWHM), and Super-Resolution (SR) ratio. Additionally, statistical analyses, including power spectrum evaluations and target-wise spectral signatures, are employed to gauge the efficacy of super-resolution techniques. By enhancing both spatial resolution and revisit frequency, this study highlights significant advancements in remote sensing capabilities, providing valuable insights for applications across cryospheric, vegetation, oceanic, coastal, and domains. Ultimately, the findings underscore the potential of SOCM-3 to contribute meaningfully to our understanding of finescale oceanic phenomena and environmental monitoring., Comment: Preprint
- Published
- 2024
47. Observational constraints on Gong-Zhang parametrizations in $f(Q)$ gravity
- Author
-
Garg, Romanshu, Singh, G. P., and Singh, Ashutosh
- Subjects
General Relativity and Quantum Cosmology - Abstract
The expansion dynamics of the universe in $f(Q)$ gravity is examined with the Gong-Zhang kind of dark energy equation of state parameter. By considering the $f(Q)$ gravity form $f(Q)=Q+ \alpha Q^{n}$, we obtain the Hubble parameters in terms of redshift $z$. Using Bayesian statistical methods based on the $\chi^{2}$ minimization methodology, we constrain the model parameters by using the supernovae Pantheon sample with cosmic chronometer sample. The evolution of equation of state parameter, energy density, pressure with the statefinder diagnostic are thoroughly investigated to examine the universe evolution in model. We have also obtained the universe's current age for these models. The considered models may exhibit either the quintom evolution or the future decelerating universe evolution., Comment: 20 pages, 16 figures
- Published
- 2024
48. Measurements of $\psi{(2S)}$ and $\chi_{c1}(3872)$ production within fully reconstructed jets
- Author
-
LHCb collaboration, Aaij, R., Abdelmotteleb, A. S. W., Beteta, C. Abellan, Abudinén, F., Ackernley, T., Adefisoye, A. A., Adeva, B., Adinolfi, M., Adlarson, P., Agapopoulou, C., Aidala, C. A., Ajaltouni, Z., Akar, S., Akiba, K., Albicocco, P., Albrecht, J., Alessio, F., Alexander, M., Aliouche, Z., Cartelle, P. Alvarez, Amalric, R., Amato, S., Amey, J. L., Amhis, Y., An, L., Anderlini, L., Andersson, M., Andreianov, A., Andreola, P., Andreotti, M., Andreou, D., Anelli, A., Ao, D., Archilli, F., Argenton, M., Cuendis, S. Arguedas, Artamonov, A., Artuso, M., Aslanides, E., Da Silva, R. Ataíde, Atzeni, M., Audurier, B., Bacher, D., Perea, I. Bachiller, Bachmann, S., Bachmayer, M., Back, J. J., Rodriguez, P. Baladron, Balagura, V., Baldini, W., Balzani, L., Bao, H., Leite, J. Baptista de Souza, Pretel, C. Barbero, Barbetti, M., Barbosa, I. R., Barlow, R. J., Barnyakov, M., Barsuk, S., Barter, W., Bartolini, M., Bartz, J., Basels, J. M., Bashir, S., Bassi, G., Batsukh, B., Battista, P. B., Bay, A., Beck, A., Becker, M., Bedeschi, F., Bediaga, I. B., Behling, N. A., Belin, S., Bellee, V., Belous, K., Belov, I., Belyaev, I., Benane, G., Bencivenni, G., Ben-Haim, E., Berezhnoy, A., Bernet, R., Andres, S. Bernet, Bertolin, A., Betancourt, C., Betti, F., Bex, J., Bezshyiko, Ia., Bhom, J., Bieker, M. S., Biesuz, N. V., Billoir, P., Biolchini, A., Birch, M., Bishop, F. C. R., Bitadze, A., Bizzeti, A., Blake, T., Blanc, F., Blank, J. E., Blusk, S., Bocharnikov, V., Boelhauve, J. A., Garcia, O. Boente, Boettcher, T., Bohare, A., Boldyrev, A., Bolognani, C. S., Bolzonella, R., Bondar, N., Bordelius, A., Borgato, F., Borghi, S., Borsato, M., Borsuk, J. T., Bouchiba, S. A., Bovill, M., Bowcock, T. J. V., Boyer, A., Bozzi, C., Rodriguez, A. Brea, Breer, N., Brodzicka, J., Gonzalo, A. Brossa, Brown, J., Brundu, D., Buchanan, E., Buonaura, A., Buonincontri, L., Burke, A. T., Burr, C., Butter, J. S., Buytaert, J., Byczynski, W., Cadeddu, S., Cai, H., Caillet, A. C., Calabrese, R., Ramirez, S. Calderon, Calefice, L., Cali, S., Calvi, M., Gomez, M. Calvo, Magalhaes, P. Camargo, Bouzas, J. I. Cambon, Campana, P., Perez, D. H. Campora, Quezada, A. F. Campoverde, Capelli, S., Capriotti, L., Caravaca-Mora, R., Carbone, A., Salgado, L. Carcedo, Cardinale, R., Cardini, A., Carniti, P., Carus, L., Vidal, A. Casais, Caspary, R., Casse, G., Godinez, J. Castro, Cattaneo, M., Cavallero, G., Cavallini, V., Celani, S., Cervenkov, D., Cesare, S., Chadwick, A. J., Chahrour, I., Charles, M., Charpentier, Ph., Chatzianagnostou, E., Chefdeville, M., Chen, C., Chen, S., Chen, Z., Chernov, A., Chernyshenko, S., Chiotopoulos, X., Chobanova, V., Cholak, S., Chrzaszcz, M., Chubykin, A., Chulikov, V., Ciambrone, P., Vidal, X. Cid, Ciezarek, G., Cifra, P., Clarke, P. E. L., Clemencic, M., Cliff, H. V., Closier, J., Toapaxi, C. Cocha, Coco, V., Cogan, J., Cogneras, E., Cojocariu, L., Collins, P., Colombo, T., Colonna, M. C., Comerma-Montells, A., Congedo, L., Contu, A., Cooke, N., Corredoira, I., Correia, A., Corti, G., Meldrum, J. J. Cottee, Couturier, B., Craik, D. C., Torres, M. Cruz, Rivera, E. Curras, Currie, R., Da Silva, C. L., Dadabaev, S., Dai, L., Dai, X., Dall'Occo, E., Dalseno, J., D'Ambrosio, C., Daniel, J., Danilina, A., d'Argent, P., Davidson, A., Davies, J. E., Davis, A., Francisco, O. De Aguiar, De Angelis, C., De Benedetti, F., de Boer, J., De Bruyn, K., De Capua, S., De Cian, M., Da Graca, U. De Freitas Carneiro, De Lucia, E., De Miranda, J. M., De Paula, L., De Serio, M., De Simone, P., De Vellis, F., de Vries, J. A., Debernardis, F., Decamp, D., Dedu, V., Dekkers, S., Del Buono, L., Delaney, B., Dembinski, H. -P., Deng, J., Denysenko, V., Deschamps, O., Dettori, F., Dey, B., Di Nezza, P., Diachkov, I., Didenko, S., Ding, S., Dittmann, L., Dobishuk, V., Docheva, A. D., Dong, C., Donohoe, A. M., Dordei, F., Reis, A. C. dos, Dowling, A. D., Duan, W., Duda, P., Dudek, M. W., Dufour, L., Duk, V., Durante, P., Duras, M. M., Durham, J. M., Durmus, O. D., Dziurda, A., Dzyuba, A., Easo, S., Eckstein, E., Egede, U., Egorychev, A., Egorychev, V., Eisenhardt, S., Ejopu, E., Eklund, L., Elashri, M., Ellbracht, J., Ely, S., Ene, A., Epple, E., Eschle, J., Esen, S., Evans, T., Fabiano, F., Falcao, L. N., Fan, Y., Fang, B., Fantini, L., Faria, M., Farmer, K., Fazzini, D., Felkowski, L., Feng, M., Feo, M., Casani, A. Fernandez, Gomez, M. Fernandez, Fernez, A. D., Ferrari, F., Rodrigues, F. Ferreira, Ferrillo, M., Ferro-Luzzi, M., Filippov, S., Fini, R. A., Fiorini, M., Fischer, K. L., Fitzgerald, D. S., Fitzpatrick, C., Fleuret, F., Fontana, M., Foreman, L. F., Forty, R., Foulds-Holt, D., Lima, V. Franco, Sevilla, M. Franco, Frank, M., Franzoso, E., Frau, G., Frei, C., Friday, D. A., Fu, J., Führing, Q., Fujii, Y., Fulghesu, T., Gabriel, E., Galati, G., Galati, M. D., Torreira, A. Gallas, Galli, D., Gambetta, S., Gandelman, M., Gandini, P., Ganie, B., Gao, H., Gao, R., Gao, T. Q., Gao, Y., Garau, M., Martin, L. M. Garcia, Moreno, P. Garcia, Pardiñas, J. García, Garg, K. G., Garrido, L., Gaspar, C., Geertsema, R. E., Gerken, L. L., Gersabeck, E., Gersabeck, M., Gershon, T., Ghizzo, S. G., Ghorbanimoghaddam, Z., Giambastiani, L., Giasemis, F. I., Gibson, V., Giemza, H. K., Gilman, A. L., Giovannetti, M., Gioventù, A., Girardey, L., Gironell, P. Gironella, Giugliano, C., Giza, M. A., Gkougkousis, E. L., Glaser, F. C., Gligorov, V. V., Göbel, C., Golobardes, E., Golubkov, D., Golutvin, A., Gomes, A., Fernandez, S. Gomez, Abrantes, F. Goncalves, Goncerz, M., Gong, G., Gooding, J. A., Gorelov, I. V., Gotti, C., Grabowski, J. P., Cardoso, L. A. Granado, Graugés, E., Graverini, E., Grazette, L., Graziani, G., Grecu, A. T., Greeven, L. M., Grieser, N. A., Grillo, L., Gromov, S., Gu, C., Guarise, M., Guerry, L., Guittiere, M., Guliaeva, V., Günther, P. A., Guseinov, A. -K., Gushchin, E., Guz, Y., Gys, T., Habermann, K., Hadavizadeh, T., Hadjivasiliou, C., Haefeli, G., Haen, C., Haimberger, J., Hajheidari, M., Hallett, G., Halvorsen, M. M., Hamilton, P. M., Hammerich, J., Han, Q., Han, X., Hansmann-Menzemer, S., Hao, L., Harnew, N., Hartmann, M., Hashmi, S., He, J., Hemmer, F., Henderson, C., Henderson, R. D. L., Hennequin, A. M., Hennessy, K., Henry, L., Herd, J., Gascon, P. Herrero, Heuel, J., Hicheur, A., Mendizabal, G. Hijano, Hill, D., Hollitt, S. E., Horswill, J., Hou, R., Hou, Y., Howarth, N., Hu, J., Hu, W., Hu, X., Huang, W., Hulsbergen, W., Hunter, R. J., Hushchyn, M., Hutchcroft, D., Ilin, D., Ilten, P., Inglessi, A., Iniukhin, A., Ishteev, A., Ivshin, K., Jacobsson, R., Jage, H., Elles, S. J. Jaimes, Jakobsen, S., Jans, E., Jashal, B. K., Jawahery, A., Jevtic, V., Jiang, E., Jiang, X., Jiang, Y., Jiang, Y. J., John, M., Rajan, A. John Rubesh, Johnson, D., Jones, C. R., Jones, T. P., Joshi, S., Jost, B., Castella, J. Juan, Jurik, N., Juszczak, I., Kaminaris, D., Kandybei, S., Kane, M., Kang, Y., Kar, C., Karacson, M., Karpenkov, D., Kauniskangas, A., Kautz, J. W., Kazanecki, M. K., Keizer, F., Kenzie, M., Ketel, T., Khanji, B., Kharisova, A., Kholodenko, S., Khreich, G., Kirn, T., Kirsebom, V. S., Kitouni, O., Klaver, S., Kleijne, N., Klimaszewski, K., Kmiec, M. R., Koliiev, S., Kolk, L., Konoplyannikov, A., Kopciewicz, P., Koppenburg, P., Korolev, M., Kostiuk, I., Kot, O., Kotriakhova, S., Kozachuk, A., Kravchenko, P., Kravchuk, L., Kreps, M., Krokovny, P., Krupa, W., Krzemien, W., Kshyvanskyi, O., Kubat, J., Kubis, S., Kucharczyk, M., Kudryavtsev, V., Kulikova, E., Kupsc, A., Kutsenko, B. K., Lacarrere, D., Gonzalez, P. Laguarta, Lai, A., Lampis, A., Lancierini, D., Gomez, C. Landesa, Lane, J. J., Lane, R., Lanfranchi, G., Langenbruch, C., Langer, J., Lantwin, O., Latham, T., Lazzari, F., Lazzeroni, C., Gac, R. Le, Lee, H., Lefèvre, R., Leflat, A., Legotin, S., Lehuraux, M., Cid, E. Lemos, Leroy, O., Lesiak, T., Lesser, E. D., Leverington, B., Li, A., Li, C., Li, H., Li, K., Li, L., Li, P., Li, P. -R., Li, Q., Li, S., Li, T., Li, Y., Lian, Z., Liang, X., Libralon, S., Lin, C., Lin, T., Lindner, R., Lisovskyi, V., Litvinov, R., Liu, F. L., Liu, G., Liu, K., Liu, S., Liu, W., Liu, Y., Liu, Y. L., Salvia, A. Lobo, Loi, A., Castro, J. Lomba, Long, T., Lopes, J. H., Huertas, A. Lopez, Soliño, S. López, Lu, Q., Lucarelli, C., Lucchesi, D., Martinez, M. Lucio, Lukashenko, V., Luo, Y., Lupato, A., Luppi, E., Lynch, K., Lyu, X. -R., Ma, G. M., Ma, R., Maccolini, S., Machefert, F., Maciuc, F., Mack, B., Mackay, I., Mackey, L. M., Mohan, L. R. Madhan, Madurai, M. J., Maevskiy, A., Magdalinski, D., Maisuzenko, D., Majewski, M. W., Malczewski, J. J., Malde, S., Malentacca, L., Malinin, A., Maltsev, T., Manca, G., Mancinelli, G., Mancuso, C., Escalero, R. Manera, Manuzzi, D., Marangotto, D., Marchand, J. F., Marchevski, R., Marconi, U., Mariani, E., Mariani, S., Benito, C. Marin, Marks, J., Marshall, A. M., Martel, L., Martelli, G., Martellotti, G., Martinazzoli, L., Martinelli, M., Santos, D. Martinez, Vidal, F. Martinez, Massafferri, A., Matev, R., Mathad, A., Matiunin, V., Matteuzzi, C., Mattioli, K. R., Mauri, A., Maurice, E., Mauricio, J., Mayencourt, P., de Cos, J. Mazorra, Mazurek, M., McCann, M., Mcconnell, L., McGrath, T. H., McHugh, N. T., McNab, A., McNulty, R., Meadows, B., Meier, G., Melnychuk, D., Meng, F. M., Merk, M., Merli, A., Garcia, L. Meyer, Miao, D., Miao, H., Mikhasenko, M., Milanes, D. A., Minotti, A., Minucci, E., Miralles, T., Mitreska, B., Mitzel, D. S., Modak, A., Mohammed, R. A., Moise, R. D., Mokhnenko, S., Cardenas, E. F. Molina, Mombächer, T., Monk, M., Monteil, S., Gomez, A. Morcillo, Morello, G., Morello, M. J., Morgenthaler, M. P., Morris, A. B., Morris, A. G., Mountain, R., Mu, H., Mu, Z. M., Muhammad, E., Muheim, F., Mulder, M., Müller, K., Muñoz-Rojas, F., Murta, R., Naik, P., Nakada, T., Nandakumar, R., Nanut, T., Nasteva, I., Needham, M., Neri, N., Neubert, S., Neufeld, N., Neustroev, P., Nicolini, J., Nicotra, D., Niel, E. M., Nikitin, N., Nogarolli, P., Nogga, P., Nolte, N. S., Normand, C., Fernandez, J. Novoa, Nowak, G., Nunez, C., Nur, H. N., Oblakowska-Mucha, A., Obraztsov, V., Oeser, T., Okamura, S., Okhotnikov, A., Okhrimenko, O., Oldeman, R., Oliva, F., Olocco, M., Onderwater, C. J. G., O'Neil, R. H., Osthues, D., Goicochea, J. M. Otalora, Owen, P., Oyanguren, A., Ozcelik, O., Paciolla, F., Padee, A., Padeken, K. O., Pagare, B., Pais, P. R., Pajero, T., Palano, A., Palutan, M., Panshin, G., Paolucci, L., Papanestis, A., Pappagallo, M., Pappalardo, L. L., Pappenheimer, C., Parkes, C., Passalacqua, B., Passaleva, G., Passaro, D., Pastore, A., Patel, M., Patoc, J., Patrignani, C., Paul, A., Pawley, C. J., Pellegrino, A., Peng, J., Altarelli, M. Pepe, Perazzini, S., Pereima, D., Da Costa, H. Pereira, Castro, A. Pereiro, Perret, P., Perro, A., Petridis, K., Petrolini, A., Pfaller, J. P., Pham, H., Pica, L., Piccini, M., Pietrzyk, B., Pietrzyk, G., Pinci, D., Pisani, F., Pizzichemi, M., Placinta, V., Casasus, M. Plo, Poeschl, T., Polci, F., Lener, M. Poli, Poluektov, A., Polukhina, N., Polyakov, I., Polycarpo, E., Ponce, S., Popov, D., Poslavskii, S., Prasanth, K., Prouve, C., Provenzano, D., Pugatch, V., Punzi, G., Qasim, S., Qian, Q. Q., Qian, W., Qin, N., Qu, S., Quagliani, R., Trejo, R. I. Rabadan, Rademacker, J. H., Rama, M., García, M. Ramírez, De Oliveira, V. Ramos, Pernas, M. Ramos, Rangel, M. S., Ratnikov, F., Raven, G., De Miguel, M. Rebollo, Redi, F., Reich, J., Reiss, F., Ren, Z., Resmi, P. K., Ribatti, R., Ricart, G. R., Riccardi, D., Ricciardi, S., Richardson, K., Richardson-Slipper, M., Rinnert, K., Robbe, P., Robertson, G., Rodrigues, E., Fernandez, E. Rodriguez, Lopez, J. A. Rodriguez, Rodriguez, E. Rodriguez, Roensch, J., Rogachev, A., Rogovskiy, A., Rolf, D. L., Roloff, P., Romanovskiy, V., Lamas, M. Romero, Vidal, A. Romero, Romolini, G., Ronchetti, F., Rong, T., Rotondo, M., Roy, S. R., Rudolph, M. S., Diaz, M. Ruiz, Fernandez, R. A. Ruiz, Vidal, J. Ruiz, Ryzhikov, A., Ryzka, J., Saavedra-Arias, J. J., Silva, J. J. Saborido, Sadek, R., Sagidova, N., Sahoo, D., Sahoo, N., Saitta, B., Salomoni, M., Gras, C. Sanchez, Sanderswood, I., Santacesaria, R., Rios, C. Santamarina, Santimaria, M., Santoro, L., Santovetti, E., Saputi, A., Saranin, D., Sarnatskiy, A., Sarpis, G., Sarpis, M., Satriano, C., Satta, A., Saur, M., Savrina, D., Sazak, H., Sborzacchi, F., Smead, L. G. Scantlebury, Scarabotto, A., Schael, S., Scherl, S., Schiller, M., Schindler, H., Schmelling, M., Schmidt, B., Schmitt, S., Schmitz, H., Schneider, O., Schopper, A., Schulte, N., Schulte, S., Schune, M. H., Schwemmer, R., Schwering, G., Sciascia, B., Sciuccati, A., Sellam, S., Semennikov, A., Senger, T., Soares, M. Senghi, Sergi, A., Serra, N., Sestini, L., Seuthe, A., Shang, Y., Shangase, D. M., Shapkin, M., Sharma, R. S., Shchemerov, I., Shchutska, L., Shears, T., Shekhtman, L., Shen, Z., Sheng, S., Shevchenko, V., Shi, B., Shi, Q., Shimizu, Y., Shmanin, E., Shorkin, R., Shupperd, J. D., Coutinho, R. Silva, Simi, G., Simone, S., Skidmore, N., Skwarnicki, T., Slater, M. W., Smallwood, J. C., Smith, E., Smith, K., Smith, M., Snoch, A., Lavra, L. Soares, Sokoloff, M. D., Soler, F. J. P., Solomin, A., Solovev, A., Solovyev, I., Song, R., Song, Y., Song, Y. S., De Almeida, F. L. Souza, De Paula, B. Souza, Norella, E. Spadaro, Spedicato, E., Speer, J. G., Spiridenkov, E., Spradlin, P., Sriskaran, V., Stagni, F., Stahl, M., Stahl, S., Stanislaus, S., Stein, E. N., Steinkamp, O., Stenyakin, O., Stevens, H., Strekalina, D., Su, Y., Suljik, F., Sun, J., Sun, L., Sun, Y., Sundfeld, D., Sutcliffe, W., Swallow, P. N., Swystun, F., Szabelski, A., Szumlak, T., Tan, Y., Tat, M. D., Terentev, A., Terzuoli, F., Teubert, F., Thomas, E., Thompson, D. J. D., Tilquin, H., Tisserand, V., T'Jampens, S., Tobin, M., Tomassetti, L., Tonani, G., Tong, X., Machado, D. Torres, Toscano, L., Tou, D. Y., Trippl, C., Tuci, G., Tuning, N., Uecker, L. H., Ukleja, A., Unverzagt, D. J., Ursov, E., Usachov, A., Ustyuzhanin, A., Uwer, U., Vagnoni, V., Cadenas, V. Valcarce, Valenti, G., Canudas, N. Valls, Van Hecke, H., van Herwijnen, E., Van Hulse, C. B., Van Laak, R., van Veghel, M., Vasquez, G., Gomez, R. Vazquez, Regueiro, P. Vazquez, Sierra, C. Vázquez, Vecchi, S., Velthuis, J. J., Veltri, M., Venkateswaran, A., Vesterinen, M., Benet, D. Vico, Villalba, P. Vidrier, Diaz, M. Vieites, Vilasis-Cardona, X., Figueras, E. Vilella, Villa, A., Vincent, P., Volle, F. C., Bruch, D. vom, Voropaev, N., Vos, K., Vouters, G., Vrahas, C., Wagner, J., Walsh, J., Walton, E. J., Wan, G., Wang, C., Wang, G., Wang, J., Wang, M., Wang, N. W., Wang, R., Wang, X., Wang, X. W., Wang, Y., Wang, Z., Ward, J. A., Waterlaat, M., Watson, N. K., Websdale, D., Wei, Y., Wendel, J., Westhenry, B. D. C., White, C., Whitehead, M., Whiter, E., Wiederhold, A. R., Wiedner, D., Wilkinson, G., Wilkinson, M. K., Williams, M., Williams, M. R. J., Williams, R., Williams, Z., Wilson, F. F., Wislicki, W., Witek, M., Witola, L., Wormser, G., Wotton, S. A., Wu, H., Wu, J., Wu, Y., Wu, Z., Wyllie, K., Xian, S., Xiang, Z., Xie, Y., Xu, A., Xu, J., Xu, L., Xu, M., Xu, Z., Yang, D., Yang, K., Yang, S., Yang, X., Yang, Y., Yang, Z., Yeroshenko, V., Yeung, H., Yin, H., Yin, X., Yu, C. Y., Yu, J., Yuan, X., Yuan, Y, Zaffaroni, E., Zavertyaev, M., Zdybal, M., Zenesini, F., Zeng, C., Zeng, M., Zhang, C., Zhang, D., Zhang, J., Zhang, L., Zhang, S., Zhang, Y., Zhang, Y. Z., Zhao, Y., Zharkova, A., Zhelezov, A., Zheng, S. Z., Zheng, X. Z., Zheng, Y., Zhou, T., Zhou, X., Zhou, Y., Zhovkovska, V., Zhu, L. Z., Zhu, X., Zhukov, V., Zhuo, J., Zou, Q., Zuliani, D., and Zunica, G.
- Subjects
High Energy Physics - Experiment - Abstract
This paper presents the first measurement of $\psi{(2S)}$ and $\chi_{c1}(3872)$ meson production within fully reconstructed jets. Each quarkonium state (tag) is reconstructed via its decay to the $J/\psi$($\rightarrow\mu^+\mu^-$)$\pi^+\pi^-$ final state in the forward region using proton-proton collision data collected by the LHCb experiment at the center-of-mass-energy of $13 \text{TeV}$ in 2016, corresponding to an integrated luminosity of $1.64 \text{fb}^{-1}$. The fragmentation function, presented as the ratio of the quarkonium-tag transverse momentum to the full jet transverse momentum ($p_{\mathrm{T}}(\text{tag})/p_{\mathrm{T}}(\text{jet})$), is measured differentially in $p_{\mathrm{T}}(\text{jet})$ and $p_{\mathrm{T}}(\text{tag})$ bins. The distributions are separated into promptly produced quarkonia from proton-proton collisions and quarkonia produced from displaced $b$-hadron decays. While the displaced quarkonia fragmentation functions are in general well described by parton-shower predictions, the prompt quarkonium distributions differ significantly from fixed-order non-relativistic QCD (NRQCD) predictions followed by a QCD parton shower., Comment: All figures and tables, along with machine-readable versions and any supplementary material and additional information, are available at https://lbfence.cern.ch/alcm/public/analysis/full-details/1618/ (LHCb public pages)
- Published
- 2024
49. SPIRE: Synergistic Planning, Imitation, and Reinforcement Learning for Long-Horizon Manipulation
- Author
-
Zhou, Zihan, Garg, Animesh, Fox, Dieter, Garrett, Caelan, and Mandlekar, Ajay
- Subjects
Computer Science - Robotics ,Computer Science - Artificial Intelligence ,Computer Science - Computer Vision and Pattern Recognition ,Computer Science - Machine Learning - Abstract
Robot learning has proven to be a general and effective technique for programming manipulators. Imitation learning is able to teach robots solely from human demonstrations but is bottlenecked by the capabilities of the demonstrations. Reinforcement learning uses exploration to discover better behaviors; however, the space of possible improvements can be too large to start from scratch. And for both techniques, the learning difficulty increases proportional to the length of the manipulation task. Accounting for this, we propose SPIRE, a system that first uses Task and Motion Planning (TAMP) to decompose tasks into smaller learning subproblems and second combines imitation and reinforcement learning to maximize their strengths. We develop novel strategies to train learning agents when deployed in the context of a planning system. We evaluate SPIRE on a suite of long-horizon and contact-rich robot manipulation problems. We find that SPIRE outperforms prior approaches that integrate imitation learning, reinforcement learning, and planning by 35% to 50% in average task performance, is 6 times more data efficient in the number of human demonstrations needed to train proficient agents, and learns to complete tasks nearly twice as efficiently. View https://sites.google.com/view/spire-corl-2024 for more details., Comment: Conference on Robot Learning (CoRL) 2024
- Published
- 2024
50. Early formation of supermassive black holes from the collapse of strongly self-interacting dark matter
- Author
-
Roberts, M. Grant, Braff, Lila, Garg, Aarna, Profumo, Stefano, Jeltema, Tesla, and O'Donnell, Jackson
- Subjects
Astrophysics - Astrophysics of Galaxies ,Astrophysics - Cosmology and Nongalactic Astrophysics ,Astrophysics - High Energy Astrophysical Phenomena - Abstract
Evidence for high-redshift supermassive black holes challenges standard scenarios for how such objects form in the early universe. Here, we entertain the possibility that a fraction of the cosmological dark matter could be ultra-strongly self interacting. This would imply that gravothermal collapse occur at early times in the cores of dark matter halos, followed by accretion. We study under which conditions on the abundance and interaction strength and structure of such ultra self-interacting dark matter the black holes resulting from the end-point of gravothermal core collapse can seed the observed, early-forming supermassive black holes. We find, depending on the velocity dependence of the self-interaction cross section, a bimodal structure in the favored parameter space, where data points to either a small collapsing dark matter fraction with a large cross section, or a large fraction and a relatively small cross section. While self-interaction cross sections with different velocity dependence can explain observations, we find that the best, self-consistent results correspond to a Rutherford-like self-interaction, typical of long-range dark-sector forces with light mediators. We discuss complementary observational probes if this scenario is realized in nature, focusing especially on the expected intermediate mass black holes predicted to exist in smaller galaxies., Comment: 28 pages, 6 Figures
- Published
- 2024
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.