107 results on '"Garcia-Marcos M"'
Search Results
2. Sa1564 CHARACTERISTICS OF NON-ALCOHOLIC FATTY LIVER DISEASE IN PATIENTS WITH HUMAN IMMUNODEFICIENCY VIRUS AND METABOLIC SYNDROME
- Author
-
Jiménez, Edgar S. García, primary, Garcia, Marcos M. Bocaletti, additional, Ibarra, Julio C. Huerta, additional, Sánchez, Karina Reyes, additional, Zavala, Monserrat Álvarez, additional, Salazar, Aldo D. Loza, additional, Hernández, Luz A. González, additional, Ruiz, Roberto González, additional, Ledesma, Juan M. Aldana, additional, Villanueva, Jaime F. Andrade, additional, and Velasco, Jose Antonio Velarde Ruiz, additional
- Published
- 2020
- Full Text
- View/download PDF
3. In vitro growth in acute myeloblastic leukaemia: relationship with other clinico-biological characteristics of the disease
- Author
-
Del Canizo, M. C., Brufau, A., Ameida, J., Galende, J., Garcia Marcos, M. A., Mota, A., Garcia, R., Fernandez Calvo, J., Ramos, F., Fisac, P., Orfao, A., and San Miguel, J. F.
- Published
- 1998
4. Phenotypic changes in acute myeloid leukaemia: implications in the detection of minimal residual disease
- Author
-
Macedo, A., San Miguel, J. F., Vidriales, M. B., Lopez-Berges, M. C., Garcia-Marcos, M. A., Gonzalez, M., Landolfi, C., and Orfao, A.
- Published
- 1996
5. Guidelines for the use and interpretation of assays for monitoring autophagy
- Author
-
Klionsky, D.J. Abdalla, F.C. Abeliovich, H. Abraham, R.T. Acevedo-Arozena, A. Adeli, K. Agholme, L. Agnello, M. Agostinis, P. Aguirre-Ghiso, J.A. Ahn, H.J. Ait-Mohamed, O. Ait-Si-Ali, S. Akematsu, T. Akira, S. Al-Younes, H.M. Al-Zeer, M.A. Albert, M.L. Albin, R.L. Alegre-Abarrategui, J. Aleo, M.F. Alirezaei, M. Almasan, A. Almonte-Becerril, M. Amano, A. Amaravadi, R. Amarnath, S. Amer, A.O. Andrieu-Abadie, N. Anantharam, V. Ann, D.K. Anoopkumar-Dukie, S. Aoki, H. Apostolova, N. Arancia, G. Aris, J.P. Asanuma, K. Asare, N.Y.O. Ashida, H. Askanas, V. Askew, D.S. Auberger, P. Baba, M. Backues, S.K. Baehrecke, E.H. Bahr, B.A. Bai, X.-Y. Bailly, Y. Baiocchi, R. Baldini, G. Balduini, W. Ballabio, A. Bamber, B.A. Bampton, E.T.W. Bánhegyi, G. Bartholomew, C.R. Bassham, D.C. Bast Jr., R.C. Batoko, H. Bay, B.-H. Beau, I. Béchet, D.M. Begley, T.J. Behl, C. Behrends, C. Bekri, S. Bellaire, B. Bendall, L.J. Benetti, L. Berliocchi, L. Bernardi, H. Bernassola, F. Besteiro, S. Bhatia-Kissova, I. Bi, X. Biard-Piechaczyk, M. Blum, J.S. Boise, L.H. Bonaldo, P. Boone, D.L. Bornhauser, B.C. Bortoluci, K.R. Bossis, I. Bost, F. Bourquin, J.-P. Boya, P. Boyer-Guittaut, M. Bozhkov, P.V. Brady, N.R. Brancolini, C. Brech, A. Brenman, J.E. Brennand, A. Bresnick, E.H. Brest, P. Bridges, D. Bristol, M.L. Brookes, P.S. Brown, E.J. Brumell, J.H. Brunetti-Pierri, N. Brunk, U.T. Bulman, D.E. Bultman, S.J. Bultynck, G. Burbulla, L.F. Bursch, W. Butchar, J.P. Buzgariu, W. Bydlowski, S.P. Cadwell, K. Cahová, M. Cai, D. Cai, J. Cai, Q. Calabretta, B. Calvo-Garrido, J. Camougrand, N. Campanella, M. Campos-Salinas, J. Candi, E. Cao, L. Caplan, A.B. Carding, S.R. Cardoso, S.M. Carew, J.S. Carlin, C.R. Carmignac, V. Carneiro, L.A.M. Carra, S. Caruso, R.A. Casari, G. Casas, C. Castino, R. Cebollero, E. Cecconi, F. Celli, J. Chaachouay, H. Chae, H.-J. Chai, C.-Y. Chan, D.C. Chan, E.Y. Chang, R.C.-C. Che, C.-M. Chen, C.-C. Chen, G.-C. Chen, G.-Q. Chen, M. Chen, Q. Chen, S.S.-L. Chen, W. Chen, X. Chen, X. Chen, X. Chen, Y.-G. Chen, Y. Chen, Y. Chen, Y.-J. Chen, Z. Cheng, A. Cheng, C.H.K. Cheng, Y. Cheong, H. Cheong, J.-H. Cherry, S. Chess-Williams, R. Cheung, Z.H. Chevet, E. Chiang, H.-L. Chiarelli, R. Chiba, T. Chin, L.-S. Chiou, S.-H. Chisari, F.V. Cho, C.H. Cho, D.-H. Choi, A.M.K. Choi, D. Choi, K.S. Choi, M.E. Chouaib, S. Choubey, D. Choubey, V. Chu, C.T. Chuang, T.-H. Chueh, S.-H. Chun, T. Chwae, Y.-J. Chye, M.-L. Ciarcia, R. Ciriolo, M.R. Clague, M.J. Clark, R.S.B. Clarke, P.G.H. Clarke, R. Codogno, P. Coller, H.A. Colombo, M.I. Comincini, S. Condello, M. Condorelli, F. Cookson, M.R. Coombs, G.H. Coppens, I. Corbalan, R. Cossart, P. Costelli, P. Costes, S. Coto-Montes, A. Couve, E. Coxon, F.P. Cregg, J.M. Crespo, J.L. Cronjé, M.J. Cuervo, A.M. Cullen, J.J. Czaja, M.J. D'Amelio, M. Darfeuille-Michaud, A. Davids, L.M. Davies, F.E. De Felici, M. De Groot, J.F. De Haan, C.A.M. De Martino, L. De Milito, A. De Tata, V. Debnath, J. Degterev, A. Dehay, B. Delbridge, L.M.D. Demarchi, F. Deng, Y.Z. Dengjel, J. Dent, P. Denton, D. Deretic, V. Desai, S.D. Devenish, R.J. Di Gioacchino, M. Di Paolo, G. Di Pietro, C. Díaz-Araya, G. Díaz-Laviada, I. Diaz-Meco, M.T. Diaz-Nido, J. Dikic, I. Dinesh-Kumar, S.P. Ding, W.-X. Distelhorst, C.W. Diwan, A. Djavaheri-Mergny, M. Dokudovskaya, S. Dong, Z. Dorsey, F.C. Dosenko, V. Dowling, J.J. Doxsey, S. Dreux, M. Drew, M.E. Duan, Q. Duchosal, M.A. Duff, K. Dugail, I. Durbeej, M. Duszenko, M. Edelstein, C.L. Edinger, A.L. Egea, G. Eichinger, L. Eissa, N.T. Ekmekcioglu, S. El-Deiry, W.S. Elazar, Z. Elgendy, M. Ellerby, L.M. Er Eng, K. Engelbrecht, A.-M. Engelender, S. Erenpreisa, J. Escalante, R. Esclatine, A. Eskelinen, E.-L. Espert, L. Espina, V. Fan, H. Fan, J. Fan, Q.-W. Fan, Z. Fang, S. Fang, Y. Fanto, M. Fanzani, A. Farkas, T. Farré, J.-C. Faure, M. Fechheimer, M. Feng, C.G. Feng, J. Feng, Q. Feng, Y. Fésüs, L. Feuer, R. Figueiredo-Pereira, M.E. Fimia, G.M. Fingar, D.C. Finkbeiner, S. Finkel, T. Finley, K.D. Fiorito, F. Fisher, E.A. Fisher, P.B. Flajolet, M. Florez-McClure, M.L. Florio, S. Fon, E.A. Fornai, F. Fortunato, F. Fotedar, R. Fowler, D.H. Fox, H.S. Franco, R. Frankel, L.B. Fransen, M. Fuentes, J.M. Fueyo, J. Fujii, J. Fujisaki, K. Fujita, E. Fukuda, M. Furukawa, R.H. Gaestel, M. Gailly, P. Gajewska, M. Galliot, B. Galy, V. Ganesh, S. Ganetzky, B. Ganley, I.G. Gao, F.-B. Gao, G.F. Gao, J. Garcia, L. Garcia-Manero, G. Garcia-Marcos, M. Garmyn, M. Gartel, A.L. Gatti, E. Gautel, M. Gawriluk, T.R. Gegg, M.E. Geng, J. Germain, M. Gestwicki, J.E. Gewirtz, D.A. Ghavami, S. Ghosh, P. Giammarioli, A.M. Giatromanolaki, A.N. Gibson, S.B. Gilkerson, R.W. Ginger, M.L. Ginsberg, H.N. Golab, J. Goligorsky, M.S. Golstein, P. Gomez-Manzano, C. Goncu, E. Gongora, C. Gonzalez, C.D. Gonzalez, R. González-Estévez, C. González-Polo, R.A. Gonzalez-Rey, E. Gorbunov, N.V. Gorski, S. Goruppi, S. Gottlieb, R.A. Gozuacik, D. Granato, G.E. Grant, G.D. Green, K.N. Gregorc, A. Gros, F. Grose, C. Grunt, T.W. Gual, P. Guan, J.-L. Guan, K.-L. Guichard, S.M. Gukovskaya, A.S. Gukovsky, I. Gunst, J. Gustafsson, A.B. Halayko, A.J. Hale, A.N. Halonen, S.K. Hamasaki, M. Han, F. Han, T. Hancock, M.K. Hansen, M. Harada, H. Harada, M. Hardt, S.E. Harper, J.W. Harris, A.L. Harris, J. Harris, S.D. Hashimoto, M. Haspel, J.A. Hayashi, S.-I. Hazelhurst, L.A. He, C. He, Y.-W. Hébert, M.-J. Heidenreich, K.A. Helfrich, M.H. Helgason, G.V. Henske, E.P. Herman, B. Herman, P.K. Hetz, C. Hilfiker, S. Hill, J.A. Hocking, L.J. Hofman, P. Hofmann, T.G. Höhfeld, J. Holyoake, T.L. Hong, M.-H. Hood, D.A. Hotamisligil, G.S. Houwerzijl, E.J. Høyer-Hansen, M. Hu, B. Hu, C.-A.A. Hu, H.-M. Hua, Y. Huang, C. Huang, J. Huang, S. Huang, W.-P. Huber, T.B. Huh, W.-K. Hung, T.-H. Hupp, T.R. Hur, G.M. Hurley, J.B. Hussain, S.N.A. Hussey, P.J. Hwang, J.J. Hwang, S. Ichihara, A. Ilkhanizadeh, S. Inoki, K. Into, T. Iovane, V. Iovanna, J.L. Ip, N.Y. Isaka, Y. Ishida, H. Isidoro, C. Isobe, K.-I. Iwasaki, A. Izquierdo, M. Izumi, Y. Jaakkola, P.M. Jäättelä, M. Jackson, G.R. Jackson, W.T. Janji, B. Jendrach, M. Jeon, J.-H. Jeung, E.-B. Jiang, H. Jiang, H. Jiang, J.X. Jiang, M. Jiang, Q. Jiang, X. Jiménez, A. Jin, M. Jin, S. Joe, C.O. Johansen, T. Johnson, D.E. Johnson, G.V.W. Jones, N.L. Joseph, B. Joseph, S.K. Joubert, A.M. Juhász, G. Juillerat-Jeanneret, L. Jung, C.H. Jung, Y.-K. Kaarniranta, K. Kaasik, A. Kabuta, T. Kadowaki, M. Kagedal, K. Kamada, Y. Kaminskyy, V.O. Kampinga, H.H. Kanamori, H. Kang, C. Kang, K.B. Il Kang, K. Kang, R. Kang, Y.-A. Kanki, T. Kanneganti, T.-D. Kanno, H. Kanthasamy, A.G. Kanthasamy, A. Karantza, V. Kaushal, G.P. Kaushik, S. Kawazoe, Y. Ke, P.-Y. Kehrl, J.H. Kelekar, A. Kerkhoff, C. Kessel, D.H. Khalil, H. Kiel, J.A.K.W. Kiger, A.A. Kihara, A. Kim, D.R. Kim, D.-H. Kim, D.-H. Kim, E.-K. Kim, H.-R. Kim, J.-S. Kim, J.H. Kim, J.C. Kim, J.K. Kim, P.K. Kim, S.W. Kim, Y.-S. Kim, Y. Kimchi, A. Kimmelman, A.C. King, J.S. Kinsella, T.J. Kirkin, V. Kirshenbaum, L.A. Kitamoto, K. Kitazato, K. Klein, L. Klimecki, W.T. Klucken, J. Knecht, E. Ko, B.C.B. Koch, J.C. Koga, H. Koh, J.-Y. Koh, Y.H. Koike, M. Komatsu, M. Kominami, E. Kong, H.J. Kong, W.-J. Korolchuk, V.I. Kotake, Y. Koukourakis, M.I. Kouri Flores, J.B. Kovács, A.L. Kraft, C. Krainc, D. Krämer, H. Kretz-Remy, C. Krichevsky, A.M. Kroemer, G. Krüger, R. Krut, O. Ktistakis, N.T. Kuan, C.-Y. Kucharczyk, R. Kumar, A. Kumar, R. Kumar, S. Kundu, M. Kung, H.-J. Kurz, T. Kwon, H.J. La Spada, A.R. Lafont, F. Lamark, T. Landry, J. Lane, J.D. Lapaquette, P. Laporte, J.F. László, L. Lavandero, S. Lavoie, J.N. Layfield, R. Lazo, P.A. Le, W. Le Cam, L. Ledbetter, D.J. Lee, A.J.X. Lee, B.-W. Lee, G.M. Lee, J. Lee, J.-H. Lee, M. Lee, M.-S. Lee, S.H. Leeuwenburgh, C. Legembre, P. Legouis, R. Lehmann, M. Lei, H.-Y. Lei, Q.-Y. Leib, D.A. Leiro, J. Lemasters, J.J. Lemoine, A. Lesniak, M.S. Lev, D. Levenson, V.V. Levine, B. Levy, E. Li, F. Li, J.-L. Li, L. Li, S. Li, W. Li, X.-J. Li, Y.-B. Li, Y.-P. Liang, C. Liang, Q. Liao, Y.-F. Liberski, P.P. Lieberman, A. Lim, H.J. Lim, K.-L. Lim, K. Lin, C.-F. Lin, F.-C. Lin, J. Lin, J.D. Lin, K. Lin, W.-W. Lin, W.-C. Lin, Y.-L. Linden, R. Lingor, P. Lippincott-Schwartz, J. Lisanti, M.P. Liton, P.B. Liu, B. Liu, C.-F. Liu, K. Liu, L. Liu, Q.A. Liu, W. Liu, Y.-C. Liu, Y. Lockshin, R.A. Lok, C.-N. Lonial, S. Loos, B. Lopez-Berestein, G. López-Otín, C. Lossi, L. Lotze, M.T. Lõw, P. Lu, B. Lu, B. Lu, B. Lu, Z. Luciano, F. Lukacs, N.W. Lund, A.H. Lynch-Day, M.A. Ma, Y. Macian, F. MacKeigan, J.P. Macleod, K.F. Madeo, F. Maiuri, L. Maiuri, M.C. Malagoli, D. Malicdan, M.C.V. Malorni, W. Man, N. Mandelkow, E.-M. Manon, S. Manov, I. Mao, K. Mao, X. Mao, Z. Marambaud, P. Marazziti, D. Marcel, Y.L. Marchbank, K. Marchetti, P. Marciniak, S.J. Marcondes, M. Mardi, M. Marfe, G. Mariño, G. Markaki, M. Marten, M.R. Martin, S.J. Martinand-Mari, C. Martinet, W. Martinez-Vicente, M. Masini, M. Matarrese, P. Matsuo, S. Matteoni, R. Mayer, A. Mazure, N.M. McConkey, D.J. McConnell, M.J. McDermott, C. McDonald, C. McInerney, G.M. McKenna, S.L. McLaughlin, B. McLean, P.J. McMaster, C.R. McQuibban, G.A. Meijer, A.J. Meisler, M.H. Meléndez, A. Melia, T.J. Melino, G. Mena, M.A. Menendez, J.A. Menna-Barreto, R.F.S. Menon, M.B. Menzies, F.M. Mercer, C.A. Merighi, A. Merry, D.E. Meschini, S. Meyer, C.G. Meyer, T.F. Miao, C.-Y. Miao, J.-Y. Michels, P.A.M. Michiels, C. Mijaljica, D. Milojkovic, A. Minucci, S. Miracco, C. Miranti, C.K. Mitroulis, I. Miyazawa, K. Mizushima, N. Mograbi, B. Mohseni, S. Molero, X. Mollereau, B. Mollinedo, F. Momoi, T. Monastyrska, I. Monick, M.M. Monteiro, M.J. Moore, M.N. Mora, R. Moreau, K. Moreira, P.I. Moriyasu, Y. Moscat, J. Mostowy, S. Mottram, J.C. Motyl, T. Moussa, C.E.-H. Müller, S. Muller, S. Münger, K. Münz, C. Murphy, L.O. Murphy, M.E. Musarò, A. Mysorekar, I. Nagata, E. Nagata, K. Nahimana, A. Nair, U. Nakagawa, T. Nakahira, K. Nakano, H. Nakatogawa, H. Nanjundan, M. Naqvi, N.I. Narendra, D.P. Narita, M. Navarro, M. Nawrocki, S.T. Nazarko, T.Y. Nemchenko, A. Netea, M.G. Neufeld, T.P. Ney, P.A. Nezis, I.P. Nguyen, H.P. Nie, D. Nishino, I. Nislow, C. Nixon, R.A. Noda, T. Noegel, A.A. Nogalska, A. Noguchi, S. Notterpek, L. Novak, I. Nozaki, T. Nukina, N. Nürnberger, T. Nyfeler, B. Obara, K. Oberley, T.D. Oddo, S. Ogawa, M. Ohashi, T. Okamoto, K. Oleinick, N.L. Oliver, F.J. Olsen, L.J. Olsson, S. Opota, O. Osborne, T.F. Ostrander, G.K. Otsu, K. Ou, J.-H.J. Ouimet, M. Overholtzer, M. Ozpolat, B. Paganetti, P. Pagnini, U. Pallet, N. Palmer, G.E. Palumbo, C. Pan, T. Panaretakis, T. Pandey, U.B. Papackova, Z. Papassideri, I. Paris, I. Park, J. Park, O.K. Parys, J.B. Parzych, K.R. Patschan, S. Patterson, C. Pattingre, S. Pawelek, J.M. Peng, J. Perlmutter, D.H. Perrotta, I. Perry, G. Pervaiz, S. Peter, M. Peters, G.J. Petersen, M. Petrovski, G. Phang, J.M. Piacentini, M. Pierre, P. Pierrefite-Carle, V. Pierron, G. Pinkas-Kramarski, R. Piras, A. Piri, N. Platanias, L.C. Pöggeler, S. Poirot, M. Poletti, A. Poüs, C. Pozuelo-Rubio, M. Prætorius-Ibba, M. Prasad, A. Prescott, M. Priault, M. Produit-Zengaffinen, N. Progulske-Fox, A. Proikas-Cezanne, T. Przedborski, S. Przyklenk, K. Puertollano, R. Puyal, J. Qian, S.-B. Qin, L. Qin, Z.-H. Quaggin, S.E. Raben, N. Rabinowich, H. Rabkin, S.W. Rahman, I. Rami, A. Ramm, G. Randall, G. Randow, F. Rao, V.A. Rathmell, J.C. Ravikumar, B. Ray, S.K. Reed, B.H. Reed, J.C. Reggiori, F. Régnier-Vigouroux, A. Reichert, A.S. Reiners Jr., J.J. Reiter, R.J. Ren, J. Revuelta, J.L. Rhodes, C.J. Ritis, K. Rizzo, E. Robbins, J. Roberge, M. Roca, H. Roccheri, M.C. Rocchi, S. Rodemann, H.P. De Córdoba, S.R. Rohrer, B. Roninson, I.B. Rosen, K. Rost-Roszkowska, M.M. Rouis, M. Rouschop, K.M.A. Rovetta, F. Rubin, B.P. Rubinsztein, D.C. Ruckdeschel, K. Rucker III, E.B. Rudich, A. Rudolf, E. Ruiz-Opazo, N. Russo, R. Rusten, T.E. Ryan, K.M. Ryter, S.W. Sabatini, D.M. Sadoshima, J. Saha, T. Saitoh, T. Sakagami, H. Sakai, Y. Salekdeh, G.H. Salomoni, P. Salvaterra, P.M. Salvesen, G. Salvioli, R. Sanchez, A.M.J. Sánchez-Alcázar, J.A. Sánchez-Prieto, R. Sandri, M. Sankar, U. Sansanwal, P. Santambrogio, L. Saran, S. Sarkar, S. Sarwal, M. Sasakawa, C. Sasnauskiene, A. Sass, M. Sato, K. Sato, M. Schapira, A.H.V. Scharl, M. Schätzl, H.M. Scheper, W. Schiaffino, S. Schneider, C. Schneider, M.E. Schneider-Stock, R. Schoenlein, P.V. Schorderet, D.F. Schüller, C. Schwartz, G.K. Scorrano, L. Sealy, L. Seglen, P.O. Segura-Aguilar, J. Seiliez, I. Seleverstov, O. Sell, C. Seo, J.B. Separovic, D. Setaluri, V. Setoguchi, T. Settembre, C. Shacka, J.J. Shanmugam, M. Shapiro, I.M. Shaulian, E. Shaw, R.J. Shelhamer, J.H. Shen, H.-M. Shen, W.-C. Sheng, Z.-H. Shi, Y. Shibuya, K. Shidoji, Y. Shieh, J.-J. Shih, C.-M. Shimada, Y. Shimizu, S. Shintani, T. Shirihai, O.S. Shore, G.C. Sibirny, A.A. Sidhu, S.B. Sikorska, B. Silva-Zacarin, E.C.M. Simmons, A. Simon, A.K. Simon, H.-U. Simone, C. Simonsen, A. Sinclair, D.A. Singh, R. Sinha, D. Sinicrope, F.A. Sirko, A. Siu, P.M. Sivridis, E. Skop, V. Skulachev, V.P. Slack, R.S. Smaili, S.S. Smith, D.R. Soengas, M.S. Soldati, T. Song, X. Sood, A.K. Soong, T.W. Sotgia, F. Spector, S.A. Spies, C.D. Springer, W. Srinivasula, S.M. Stefanis, L. Steffan, J.S. Stendel, R. Stenmark, H. Stephanou, A. Stern, S.T. Sternberg, C. Stork, B. Strålfors, P. Subauste, C.S. Sui, X. Sulzer, D. Sun, J. Sun, S.-Y. Sun, Z.-J. Sung, J.J.Y. Suzuki, K. Suzuki, T. Swanson, M.S. Swanton, C. Sweeney, S.T. Sy, L.-K. Szabadkai, G. Tabas, I. Taegtmeyer, H. Tafani, M. Takács-Vellai, K. Takano, Y. Takegawa, K. Takemura, G. Takeshita, F. Talbot, N.J. Tan, K.S.W. Tanaka, K. Tanaka, K. Tang, D. Tang, D. Tanida, I. Tannous, B.A. Tavernarakis, N. Taylor, G.S. Taylor, G.A. Taylor, J.P. Terada, A.S. Terman, A. Tettamanti, G. Thevissen, K. Thompson, C.B. Thorburn, A. Thumm, M. Tian, F. Tian, Y. Tocchini-Valentini, G. Tolkovsky, A.M. Tomino, Y. Tönges, L. Tooze, S.A. Tournier, C. Tower, J. Towns, R. Trajkovic, V. Travassos, L.H. Tsai, T.-F. Tschan, M.P. Tsubata, T. Tsung, A. Turk, B. Turner, L.S. Tyagi, S.C. Uchiyama, Y. Ueno, T. Umekawa, M. Umemiya-Shirafuji, R. Unni, V.K. Vaccaro, M.I. Valente, E.M. Van Den Berghe, G. Van Der Klei, I.J. Van Doorn, W.G. Van Dyk, L.F. Van Egmond, M. Van Grunsven, L.A. Vandenabeele, P. Vandenberghe, W.P. Vanhorebeek, I. Vaquero, E.C. Velasco, G. Vellai, T. Vicencio, J.M. Vierstra, R.D. Vila, M. Vindis, C. Viola, G. Viscomi, M.T. Voitsekhovskaja, O.V. Von Haefen, C. Votruba, M. Wada, K. Wade-Martins, R. Walker, C.L. Walsh, C.M. Walter, J. Wan, X.-B. Wang, A. Wang, C. Wang, D. Wang, F. Wang, F. Wang, G. Wang, H. Wang, H.-G. Wang, H.-D. Wang, J. Wang, K. Wang, M. Wang, R.C. Wang, X. Wang, X. Wang, Y.-J. Wang, Y. Wang, Z. Wang, Z.C. Wang, Z. Wansink, D.G. Ward, D.M. Watada, H. Waters, S.L. Webster, P. Wei, L. Weihl, C.C. Weiss, W.A. Welford, S.M. Wen, L.-P. Whitehouse, C.A. Whitton, J.L. Whitworth, A.J. Wileman, T. Wiley, J.W. Wilkinson, S. Willbold, D. Williams, R.L. Williamson, P.R. Wouters, B.G. Wu, C. Wu, D.-C. Wu, W.K.K. Wyttenbach, A. Xavier, R.J. Xi, Z. Xia, P. Xiao, G. Xie, Z. Xie, Z. Xu, D.-Z. Xu, J. Xu, L. Xu, X. Yamamoto, A. Yamamoto, A. Yamashina, S. Yamashita, M. Yan, X. Yanagida, M. Yang, D.-S. Yang, E. Yang, J.-M. Yang, S.Y. Yang, W. Yang, W.Y. Yang, Z. Yao, M.-C. Yao, T.-P. Yeganeh, B. Yen, W.-L. Yin, J.-J. Yin, X.-M. Yoo, O.-J. Yoon, G. Yoon, S.-Y. Yorimitsu, T. Yoshikawa, Y. Yoshimori, T. Yoshimoto, K. You, H.J. Youle, R.J. Younes, A. Yu, L. Yu, L. Yu, S.-W. Yu, W.H. Yuan, Z.-M. Yue, Z. Yun, C.-H. Yuzaki, M. Zabirnyk, O. Silva-Zacarin, E. David Zacks, E. Zacksenhaus, L. Zaffaroni, N. Zakeri, Z. Zeh III, H.J. Zeitlin, S.O. Zhang, H. Zhang, H.-L. Zhang, J. Zhang, J.-P. Zhang, L. Zhang, L. Zhang, M.-Y. Zhang, X.D. Zhao, M. Zhao, Y.-F. Zhao, Y. Zhao, Z.J. Zheng, X. Zhivotovsky, B. Zhong, Q. Zhou, C.-Z. Zhu, C. Zhu, W.-G. Zhu, X.-F. Zhu, X. Zhu, Y. Zoladek, T. Zong, W.-X. Zorzano, A. Zschocke, J. Zuckerbraun, B.
- Abstract
In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. A key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process vs. those that measure flux through the autophagy pathway (i.e., the complete process); thus, a block in macroautophagy that results in autophagosome accumulation needs to be differentiated from stimuli that result in increased autophagic activity, defined as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (in most higher eukaryotes and some protists such as Dictyostelium) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the field understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular autophagy assays, we hope to encourage technical innovation in the field. © 2012 Landes Bioscience.
- Published
- 2012
6. Monocyte counts: an early index of haemopoietic reconstitution after peripheral blood stem cell transplantation
- Author
-
Arroyo, J. L., Gutierrez, N. C., Garcia-Marcos, M. A., Villarroel, R., Galindo, P., Fernandez, M. E., Izarra, A., Del Canizo, M. C., Caballero, M. D., and JESUS SAN MIGUEL
- Subjects
Hematology - Published
- 2000
7. Guidelines for the use and interpretation of assays for monitoring autophagy.
- Author
-
Klionsky, Dj, Abdalla, Fc, Abeliovich, H, Abraham, Rt, Acevedo-Arozena, A, Adeli, K, Agholme, L, Agnello, M, Agostinis, P, Aguirre-Ghiso, Ja, Ahn, Hj, Ait-Mohamed, O, Ait-Si-Ali, S, Akematsu, T, Akira, S, Al-Younes, Hm, Al-Zeer, Ma, Albert, Ml, Albin, Rl, Alegre-Abarrategui, J, Aleo, Mf, Alirezaei, M, Almasan, A, Almonte-Becerril, M, Amano, A, Amaravadi, R, Amarnath, S, Amer, Ao, Andrieu-Abadie, N, Anantharam, V, Ann, Dk, Anoopkumar-Dukie, S, Aoki, H, Apostolova, N, Arancia, G, Aris, Jp, Asanuma, K, Asare, Ny, Ashida, H, Askanas, V, Askew, D, Auberger, P, Baba, M, Backues, Sk, Baehrecke, Eh, Bahr, Ba, Bai, Xy, Bailly, Y, Baiocchi, R, Baldini, G, Balduini, W, Ballabio, A, Bamber, Ba, Bampton, Et, Bánhegyi, G, Bartholomew, Cr, Bassham, Dc, Bast RC, Jr, Batoko, H, Bay, Bh, Beau, I, Béchet, Dm, Begley, Tj, Behl, C, Behrends, C, Bekri, S, Bellaire, B, Bendall, Lj, Benetti, L, Berliocchi, L, Bernardi, H, Bernassola, F, Besteiro, S, Bhatia-Kissova, I, Bi, X, Biard-Piechaczyk, M, Blum, J, Boise, Lh, Bonaldo, P, Boone, Dl, Bornhauser, Bc, Bortoluci, Kr, Bossis, I, Bost, F, Bourquin, Jp, Boya, P, Boyer-Guittaut, M, Bozhkov, Pv, Brady, Nr, Brancolini, C, Brech, A, Brenman, Je, Brennand, A, Bresnick, Eh, Brest, P, Bridges, D, Bristol, Ml, Brookes, P, Brown, Ej, Brumell, Jh, Brunetti-Pierri, N, Brunk, Ut, Bulman, De, Bultman, Sj, Bultynck, G, Burbulla, Lf, Bursch, W, Butchar, Jp, Buzgariu, W, Bydlowski, Sp, Cadwell, K, Cahová, M, Cai, D, Cai, J, Cai, Q, Calabretta, B, Calvo-Garrido, J, Camougrand, N, Campanella, M, Campos-Salinas, J, Candi, E, Cao, L, Caplan, Ab, Carding, Sr, Cardoso, Sm, Carew, J, Carlin, Cr, Carmignac, V, Carneiro, La, Carra, S, Caruso, Ra, Casari, G, Casas, C, Castino, R, Cebollero, E, Cecconi, F, Celli, J, Chaachouay, H, Chae, Hj, Chai, Cy, Chan, Dc, Chan, Ey, Chang, Rc, Che, Cm, Chen, Cc, Chen, Gc, Chen, Gq, Chen, M, Chen, Q, Chen, S, Chen, W, Chen, X, Chen, Yg, Chen, Y, Chen, Yj, Chen, Z, Cheng, A, Cheng, Ch, Cheng, Y, Cheong, H, Cheong, Jh, Cherry, S, Chess-Williams, R, Cheung, Zh, Chevet, E, Chiang, Hl, Chiarelli, R, Chiba, T, Chin, L, Chiou, Sh, Chisari, Fv, Cho, Ch, Cho, Dh, Choi, Am, Choi, D, Choi, K, Choi, Me, Chouaib, S, Choubey, D, Choubey, V, Chu, Ct, Chuang, Th, Chueh, Sh, Chun, T, Chwae, Yj, Chye, Ml, Ciarcia, R, Ciriolo, Mr, Clague, Mj, Clark, R, Clarke, Pg, Clarke, R, Codogno, P, Coller, Ha, Colombo, Mi, Comincini, S, Condello, M, Condorelli, F, Cookson, Mr, Coombs, Gh, Coppens, I, Corbalan, R, Cossart, P, Costelli, P, Costes, S, Coto-Montes, A, Couve, E, Coxon, Fp, Cregg, Jm, Crespo, Jl, Cronjé, Mj, Cuervo, Am, Cullen, Jj, Czaja, Mj, D'Amelio, M, Darfeuille-Michaud, A, Davids, Lm, Davies, Fe, De Felici, M, de Groot, Jf, de Haan, Ca, De Martino, L, De Milito, A, De Tata, V, Debnath, J, Degterev, A, Dehay, B, Delbridge, Lm, Demarchi, F, Deng, Yz, Dengjel, J, Dent, P, Denton, D, Deretic, V, Desai, Sd, Devenish, Rj, Di Gioacchino, M, Di Paolo, G, Di Pietro, C, Díaz-Araya, G, Díaz-Laviada, I, Diaz-Meco, Mt, Diaz-Nido, J, Dikic, I, Dinesh-Kumar, Sp, Ding, Wx, Distelhorst, Cw, Diwan, A, Djavaheri-Mergny, M, Dokudovskaya, S, Dong, Z, Dorsey, Fc, Dosenko, V, Dowling, Jj, Doxsey, S, Dreux, M, Drew, Me, Duan, Q, Duchosal, Ma, Duff, K, Dugail, I, Durbeej, M, Duszenko, M, Edelstein, Cl, Edinger, Al, Egea, G, Eichinger, L, Eissa, Nt, Ekmekcioglu, S, El-Deiry, W, Elazar, Z, Elgendy, M, Ellerby, Lm, Eng, Ke, Engelbrecht, Am, Engelender, S, Erenpreisa, J, Escalante, R, Esclatine, A, Eskelinen, El, Espert, L, Espina, V, Fan, H, Fan, J, Fan, Qw, Fan, Z, Fang, S, Fang, Y, Fanto, M, Fanzani, A, Farkas, T, Farré, Jc, Faure, M, Fechheimer, M, Feng, Cg, Feng, J, Feng, Q, Feng, Y, Fésüs, L, Feuer, R, Figueiredo-Pereira, Me, Fimia, Gm, Fingar, Dc, Finkbeiner, S, Finkel, T, Finley, Kd, Fiorito, F, Fisher, Ea, Fisher, Pb, Flajolet, M, Florez-McClure, Ml, Florio, S, Fon, Ea, Fornai, F, Fortunato, F, Fotedar, R, Fowler, Dh, Fox, H, Franco, R, Frankel, Lb, Fransen, M, Fuentes, Jm, Fueyo, J, Fujii, J, Fujisaki, K, Fujita, E, Fukuda, M, Furukawa, Rh, Gaestel, M, Gailly, P, Gajewska, M, Galliot, B, Galy, V, Ganesh, S, Ganetzky, B, Ganley, Ig, Gao, Fb, Gao, Gf, Gao, J, Garcia, L, Garcia-Manero, G, Garcia-Marcos, M, Garmyn, M, Gartel, Al, Gatti, E, Gautel, M, Gawriluk, Tr, Gegg, Me, Geng, J, Germain, M, Gestwicki, Je, Gewirtz, Da, Ghavami, S, Ghosh, P, Giammarioli, Am, Giatromanolaki, An, Gibson, Sb, Gilkerson, Rw, Ginger, Ml, Ginsberg, Hn, Golab, J, Goligorsky, M, Golstein, P, Gomez-Manzano, C, Goncu, E, Gongora, C, Gonzalez, Cd, Gonzalez, R, González-Estévez, C, González-Polo, Ra, Gonzalez-Rey, E, Gorbunov, Nv, Gorski, S, Goruppi, S, Gottlieb, Ra, Gozuacik, D, Granato, Ge, Grant, Gd, Green, Kn, Gregorc, A, Gros, F, Grose, C, Grunt, Tw, Gual, P, Guan, Jl, Guan, Kl, Guichard, Sm, Gukovskaya, A, Gukovsky, I, Gunst, J, Gustafsson, Ab, Halayko, Aj, Hale, An, Halonen, Sk, Hamasaki, M, Han, F, Han, T, Hancock, Mk, Hansen, M, Harada, H, Harada, M, Hardt, Se, Harper, Jw, Harris, Al, Harris, J, Harris, Sd, Hashimoto, M, Haspel, Ja, Hayashi, S, Hazelhurst, La, He, C, He, Yw, Hébert, Mj, Heidenreich, Ka, Helfrich, Mh, Helgason, Gv, Henske, Ep, Herman, B, Herman, Pk, Hetz, C, Hilfiker, S, Hill, Ja, Hocking, Lj, Hofman, P, Hofmann, Tg, Höhfeld, J, Holyoake, Tl, Hong, Mh, Hood, Da, Hotamisligil, G, Houwerzijl, Ej, Høyer-Hansen, M, Hu, B, Hu, Ca, Hu, Hm, Hua, Y, Huang, C, Huang, J, Huang, S, Huang, Wp, Huber, Tb, Huh, Wk, Hung, Th, Hupp, Tr, Hur, Gm, Hurley, Jb, Hussain, Sn, Hussey, Pj, Hwang, Jj, Hwang, S, Ichihara, A, Ilkhanizadeh, S, Inoki, K, Into, T, Iovane, V, Iovanna, Jl, Ip, Ny, Isaka, Y, Ishida, H, Isidoro, C, Isobe, K, Iwasaki, A, Izquierdo, M, Izumi, Y, Jaakkola, Pm, Jäättelä, M, Jackson, Gr, Jackson, Wt, Janji, B, Jendrach, M, Jeon, Jh, Jeung, Eb, Jiang, H, Jiang, Jx, Jiang, M, Jiang, Q, Jiang, X, Jiménez, A, Jin, M, Jin, S, Joe, Co, Johansen, T, Johnson, De, Johnson, Gv, Jones, Nl, Joseph, B, Joseph, Sk, Joubert, Am, Juhász, G, Juillerat-Jeanneret, L, Jung, Ch, Jung, Yk, Kaarniranta, K, Kaasik, A, Kabuta, T, Kadowaki, M, Kagedal, K, Kamada, Y, Kaminskyy, Vo, Kampinga, Hh, Kanamori, H, Kang, C, Kang, Kb, Kang, Ki, Kang, R, Kang, Ya, Kanki, T, Kanneganti, Td, Kanno, H, Kanthasamy, Ag, Kanthasamy, A, Karantza, V, Kaushal, Gp, Kaushik, S, Kawazoe, Y, Ke, Py, Kehrl, Jh, Kelekar, A, Kerkhoff, C, Kessel, Dh, Khalil, H, Kiel, Ja, Kiger, Aa, Kihara, A, Kim, Dr, Kim, Dh, Kim, Ek, Kim, Hr, Kim, J, Kim, Jh, Kim, Jc, Kim, Jk, Kim, Pk, Kim, Sw, Kim, Y, Kimchi, A, Kimmelman, Ac, King, J, Kinsella, Tj, Kirkin, V, Kirshenbaum, La, Kitamoto, K, Kitazato, K, Klein, L, Klimecki, Wt, Klucken, J, Knecht, E, Ko, Bc, Koch, Jc, Koga, H, Koh, Jy, Koh, Yh, Koike, M, Komatsu, M, Kominami, E, Kong, Hj, Kong, Wj, Korolchuk, Vi, Kotake, Y, Koukourakis, Mi, Kouri Flores, Jb, Kovács, Al, Kraft, C, Krainc, D, Krämer, H, Kretz-Remy, C, Krichevsky, Am, Kroemer, G, Krüger, R, Krut, O, Ktistakis, Nt, Kuan, Cy, Kucharczyk, R, Kumar, A, Kumar, R, Kumar, S, Kundu, M, Kung, Hj, Kurz, T, Kwon, Hj, La Spada, Ar, Lafont, F, Lamark, T, Landry, J, Lane, Jd, Lapaquette, P, Laporte, Jf, László, L, Lavandero, S, Lavoie, Jn, Layfield, R, Lazo, Pa, Le, W, Le Cam, L, Ledbetter, Dj, Lee, Aj, Lee, Bw, Lee, Gm, Lee, J, Lee, Jh, Lee, M, Lee, Sh, Leeuwenburgh, C, Legembre, P, Legouis, R, Lehmann, M, Lei, Hy, Lei, Qy, Leib, Da, Leiro, J, Lemasters, Jj, Lemoine, A, Lesniak, M, Lev, D, Levenson, Vv, Levine, B, Levy, E, Li, F, Li, Jl, Li, L, Li, S, Li, W, Li, Xj, Li, Yb, Li, Yp, Liang, C, Liang, Q, Liao, Yf, Liberski, Pp, Lieberman, A, Lim, Hj, Lim, Kl, Lim, K, Lin, Cf, Lin, Fc, Lin, J, Lin, Jd, Lin, K, Lin, Ww, Lin, Wc, Lin, Yl, Linden, R, Lingor, P, Lippincott-Schwartz, J, Lisanti, Mp, Liton, Pb, Liu, B, Liu, Cf, Liu, K, Liu, L, Liu, Qa, Liu, W, Liu, Yc, Liu, Y, Lockshin, Ra, Lok, Cn, Lonial, S, Loos, B, Lopez-Berestein, G, López-Otín, C, Lossi, L, Lotze, Mt, Lőw, P, Lu, B, Lu, Z, Luciano, F, Lukacs, Nw, Lund, Ah, Lynch-Day, Ma, Ma, Y, Macian, F, Mackeigan, Jp, Macleod, Kf, Madeo, F, Maiuri, L, Maiuri, Mc, Malagoli, D, Malicdan, Mc, Malorni, W, Man, N, Mandelkow, Em, Manon, S, Manov, I, Mao, K, Mao, X, Mao, Z, Marambaud, P, Marazziti, D, Marcel, Yl, Marchbank, K, Marchetti, P, Marciniak, Sj, Marcondes, M, Mardi, M, Marfe, G, Mariño, G, Markaki, M, Marten, Mr, Martin, Sj, Martinand-Mari, C, Martinet, W, Martinez-Vicente, M, Masini, M, Matarrese, P, Matsuo, S, Matteoni, R, Mayer, A, Mazure, Nm, Mcconkey, Dj, Mcconnell, Mj, Mcdermott, C, Mcdonald, C, Mcinerney, Gm, Mckenna, Sl, Mclaughlin, B, Mclean, Pj, Mcmaster, Cr, Mcquibban, Ga, Meijer, Aj, Meisler, Mh, Meléndez, A, Melia, Tj, Melino, G, Mena, Ma, Menendez, Ja, Menna-Barreto, Rf, Menon, Mb, Menzies, Fm, Mercer, Ca, Merighi, A, Merry, De, Meschini, S, Meyer, Cg, Meyer, Tf, Miao, Cy, Miao, Jy, Michels, Pa, Michiels, C, Mijaljica, D, Milojkovic, A, Minucci, S, Miracco, C, Miranti, Ck, Mitroulis, I, Miyazawa, K, Mizushima, N, Mograbi, B, Mohseni, S, Molero, X, Mollereau, B, Mollinedo, F, Momoi, T, Monastyrska, I, Monick, Mm, Monteiro, Mj, Moore, Mn, Mora, R, Moreau, K, Moreira, Pi, Moriyasu, Y, Moscat, J, Mostowy, S, Mottram, Jc, Motyl, T, Moussa, Ce, Müller, S, Muller, S, Münger, K, Münz, C, Murphy, Lo, Murphy, Me, Musarò, A, Mysorekar, I, Nagata, E, Nagata, K, Nahimana, A, Nair, U, Nakagawa, T, Nakahira, K, Nakano, H, Nakatogawa, H, Nanjundan, M, Naqvi, Ni, Narendra, Dp, Narita, M, Navarro, M, Nawrocki, St, Nazarko, Ty, Nemchenko, A, Netea, Mg, Neufeld, Tp, Ney, Pa, Nezis, Ip, Nguyen, Hp, Nie, D, Nishino, I, Nislow, C, Nixon, Ra, Noda, T, Noegel, Aa, Nogalska, A, Noguchi, S, Notterpek, L, Novak, I, Nozaki, T, Nukina, N, Nürnberger, T, Nyfeler, B, Obara, K, Oberley, Td, Oddo, S, Ogawa, M, Ohashi, T, Okamoto, K, Oleinick, Nl, Oliver, Fj, Olsen, Lj, Olsson, S, Opota, O, Osborne, Tf, Ostrander, Gk, Otsu, K, Ou, Jh, Ouimet, M, Overholtzer, M, Ozpolat, B, Paganetti, P, Pagnini, U, Pallet, N, Palmer, Ge, Palumbo, C, Pan, T, Panaretakis, T, Pandey, Ub, Papackova, Z, Papassideri, I, Paris, I, Park, J, Park, Ok, Parys, Jb, Parzych, Kr, Patschan, S, Patterson, C, Pattingre, S, Pawelek, Jm, Peng, J, Perlmutter, Dh, Perrotta, I, Perry, G, Pervaiz, S, Peter, M, Peters, Gj, Petersen, M, Petrovski, G, Phang, Jm, Piacentini, M, Pierre, P, Pierrefite-Carle, V, Pierron, G, Pinkas-Kramarski, R, Piras, A, Piri, N, Platanias, Lc, Pöggeler, S, Poirot, M, Poletti, A, Poüs, C, Pozuelo-Rubio, M, Prætorius-Ibba, M, Prasad, A, Prescott, M, Priault, M, Produit-Zengaffinen, N, Progulske-Fox, A, Proikas-Cezanne, T, Przedborski, S, Przyklenk, K, Puertollano, R, Puyal, J, Qian, Sb, Qin, L, Qin, Zh, Quaggin, Se, Raben, N, Rabinowich, H, Rabkin, Sw, Rahman, I, Rami, A, Ramm, G, Randall, G, Randow, F, Rao, Va, Rathmell, Jc, Ravikumar, B, Ray, Sk, Reed, Bh, Reed, Jc, Reggiori, F, Régnier-Vigouroux, A, Reichert, A, Reiners JJ, Jr, Reiter, Rj, Ren, J, Revuelta, Jl, Rhodes, Cj, Ritis, K, Rizzo, E, Robbins, J, Roberge, M, Roca, H, Roccheri, Mc, Rocchi, S, Rodemann, Hp, Rodríguez de Córdoba, S, Rohrer, B, Roninson, Ib, Rosen, K, Rost-Roszkowska, Mm, Rouis, M, Rouschop, Km, Rovetta, F, Rubin, Bp, Rubinsztein, Dc, Ruckdeschel, K, Rucker EB, 3rd, Rudich, A, Rudolf, E, Ruiz-Opazo, N, Russo, R, Rusten, Te, Ryan, Km, Ryter, Sw, Sabatini, Dm, Sadoshima, J, Saha, T, Saitoh, T, Sakagami, H, Sakai, Y, Salekdeh, Gh, Salomoni, P, Salvaterra, Pm, Salvesen, G, Salvioli, R, Sanchez, Am, Sánchez-Alcázar, Ja, Sánchez-Prieto, R, Sandri, M, Sankar, U, Sansanwal, P, Santambrogio, L, Saran, S, Sarkar, S, Sarwal, M, Sasakawa, C, Sasnauskiene, A, Sass, M, Sato, K, Sato, M, Schapira, Ah, Scharl, M, Schätzl, Hm, Scheper, W, Schiaffino, S, Schneider, C, Schneider, Me, Schneider-Stock, R, Schoenlein, Pv, Schorderet, Df, Schüller, C, Schwartz, Gk, Scorrano, L, Sealy, L, Seglen, Po, Segura-Aguilar, J, Seiliez, I, Seleverstov, O, Sell, C, Seo, Jb, Separovic, D, Setaluri, V, Setoguchi, T, Settembre, C, Shacka, Jj, Shanmugam, M, Shapiro, Im, Shaulian, E, Shaw, Rj, Shelhamer, Jh, Shen, Hm, Shen, Wc, Sheng, Zh, Shi, Y, Shibuya, K, Shidoji, Y, Shieh, Jj, Shih, Cm, Shimada, Y, Shimizu, S, Shintani, T, Shirihai, O, Shore, Gc, Sibirny, Aa, Sidhu, Sb, Sikorska, B, Silva-Zacarin, Ec, Simmons, A, Simon, Ak, Simon, Hu, Simone, C, Simonsen, A, Sinclair, Da, Singh, R, Sinha, D, Sinicrope, Fa, Sirko, A, Siu, Pm, Sivridis, E, Skop, V, Skulachev, Vp, Slack, R, Smaili, S, Smith, Dr, Soengas, M, Soldati, T, Song, X, Sood, Ak, Soong, Tw, Sotgia, F, Spector, Sa, Spies, Cd, Springer, W, Srinivasula, Sm, Stefanis, L, Steffan, J, Stendel, R, Stenmark, H, Stephanou, A, Stern, St, Sternberg, C, Stork, B, Strålfors, P, Subauste, C, Sui, X, Sulzer, D, Sun, J, Sun, Sy, Sun, Zj, Sung, Jj, Suzuki, K, Suzuki, T, Swanson, M, Swanton, C, Sweeney, St, Sy, Lk, Szabadkai, G, Tabas, I, Taegtmeyer, H, Tafani, M, Takács-Vellai, K, Takano, Y, Takegawa, K, Takemura, G, Takeshita, F, Talbot, Nj, Tan, K, Tanaka, K, Tang, D, Tanida, I, Tannous, Ba, Tavernarakis, N, Taylor, G, Taylor, Ga, Taylor, Jp, Terada, L, Terman, A, Tettamanti, G, Thevissen, K, Thompson, Cb, Thorburn, A, Thumm, M, Tian, F, Tian, Y, Tocchini-Valentini, G, Tolkovsky, Am, Tomino, Y, Tönges, L, Tooze, Sa, Tournier, C, Tower, J, Towns, R, Trajkovic, V, Travassos, Lh, Tsai, Tf, Tschan, Mp, Tsubata, T, Tsung, A, Turk, B, Turner, L, Tyagi, Sc, Uchiyama, Y, Ueno, T, Umekawa, M, Umemiya-Shirafuji, R, Unni, Vk, Vaccaro, Mi, Valente, Em, Van den Berghe, G, van der Klei, Ij, van Doorn, W, van Dyk, Lf, van Egmond, M, van Grunsven, La, Vandenabeele, P, Vandenberghe, Wp, Vanhorebeek, I, Vaquero, Ec, Velasco, G, Vellai, T, Vicencio, Jm, Vierstra, Rd, Vila, M, Vindis, C, Viola, G, Viscomi, Maria Teresa, Voitsekhovskaja, Ov, von Haefen, C, Votruba, M, Wada, K, Wade-Martins, R, Walker, Cl, Walsh, Cm, Walter, J, Wan, Xb, Wang, A, Wang, C, Wang, D, Wang, F, Wang, G, Wang, H, Wang, Hg, Wang, Hd, Wang, J, Wang, K, Wang, M, Wang, Rc, Wang, X, Wang, Yj, Wang, Y, Wang, Z, Wang, Zc, Wansink, Dg, Ward, Dm, Watada, H, Waters, Sl, Webster, P, Wei, L, Weihl, Cc, Weiss, Wa, Welford, Sm, Wen, Lp, Whitehouse, Ca, Whitton, Jl, Whitworth, Aj, Wileman, T, Wiley, Jw, Wilkinson, S, Willbold, D, Williams, Rl, Williamson, Pr, Wouters, Bg, Wu, C, Wu, Dc, Wu, Wk, Wyttenbach, A, Xavier, Rj, Xi, Z, Xia, P, Xiao, G, Xie, Z, Xu, Dz, Xu, J, Xu, L, Xu, X, Yamamoto, A, Yamashina, S, Yamashita, M, Yan, X, Yanagida, M, Yang, D, Yang, E, Yang, Jm, Yang, Sy, Yang, W, Yang, Wy, Yang, Z, Yao, Mc, Yao, Tp, Yeganeh, B, Yen, Wl, Yin, Jj, Yin, Xm, Yoo, Oj, Yoon, G, Yoon, Sy, Yorimitsu, T, Yoshikawa, Y, Yoshimori, T, Yoshimoto, K, You, Hj, Youle, Rj, Younes, A, Yu, L, Yu, Sw, Yu, Wh, Yuan, Zm, Yue, Z, Yun, Ch, Yuzaki, M, Zabirnyk, O, Silva-Zacarin, E, Zacks, D, Zacksenhaus, E, Zaffaroni, N, Zakeri, Z, Zeh HJ, 3rd, Zeitlin, So, Zhang, H, Zhang, Hl, Zhang, J, Zhang, Jp, Zhang, L, Zhang, My, Zhang, Xd, Zhao, M, Zhao, Yf, Zhao, Y, Zhao, Zj, Zheng, X, Zhivotovsky, B, Zhong, Q, Zhou, Cz, Zhu, C, Zhu, Wg, Zhu, Xf, Zhu, X, Zhu, Y, Zoladek, T, Zong, Wx, Zorzano, A, Zschocke, J, Zuckerbraun, B., Viscomi M. T. (ORCID:0000-0002-9096-4967), Klionsky, Dj, Abdalla, Fc, Abeliovich, H, Abraham, Rt, Acevedo-Arozena, A, Adeli, K, Agholme, L, Agnello, M, Agostinis, P, Aguirre-Ghiso, Ja, Ahn, Hj, Ait-Mohamed, O, Ait-Si-Ali, S, Akematsu, T, Akira, S, Al-Younes, Hm, Al-Zeer, Ma, Albert, Ml, Albin, Rl, Alegre-Abarrategui, J, Aleo, Mf, Alirezaei, M, Almasan, A, Almonte-Becerril, M, Amano, A, Amaravadi, R, Amarnath, S, Amer, Ao, Andrieu-Abadie, N, Anantharam, V, Ann, Dk, Anoopkumar-Dukie, S, Aoki, H, Apostolova, N, Arancia, G, Aris, Jp, Asanuma, K, Asare, Ny, Ashida, H, Askanas, V, Askew, D, Auberger, P, Baba, M, Backues, Sk, Baehrecke, Eh, Bahr, Ba, Bai, Xy, Bailly, Y, Baiocchi, R, Baldini, G, Balduini, W, Ballabio, A, Bamber, Ba, Bampton, Et, Bánhegyi, G, Bartholomew, Cr, Bassham, Dc, Bast RC, Jr, Batoko, H, Bay, Bh, Beau, I, Béchet, Dm, Begley, Tj, Behl, C, Behrends, C, Bekri, S, Bellaire, B, Bendall, Lj, Benetti, L, Berliocchi, L, Bernardi, H, Bernassola, F, Besteiro, S, Bhatia-Kissova, I, Bi, X, Biard-Piechaczyk, M, Blum, J, Boise, Lh, Bonaldo, P, Boone, Dl, Bornhauser, Bc, Bortoluci, Kr, Bossis, I, Bost, F, Bourquin, Jp, Boya, P, Boyer-Guittaut, M, Bozhkov, Pv, Brady, Nr, Brancolini, C, Brech, A, Brenman, Je, Brennand, A, Bresnick, Eh, Brest, P, Bridges, D, Bristol, Ml, Brookes, P, Brown, Ej, Brumell, Jh, Brunetti-Pierri, N, Brunk, Ut, Bulman, De, Bultman, Sj, Bultynck, G, Burbulla, Lf, Bursch, W, Butchar, Jp, Buzgariu, W, Bydlowski, Sp, Cadwell, K, Cahová, M, Cai, D, Cai, J, Cai, Q, Calabretta, B, Calvo-Garrido, J, Camougrand, N, Campanella, M, Campos-Salinas, J, Candi, E, Cao, L, Caplan, Ab, Carding, Sr, Cardoso, Sm, Carew, J, Carlin, Cr, Carmignac, V, Carneiro, La, Carra, S, Caruso, Ra, Casari, G, Casas, C, Castino, R, Cebollero, E, Cecconi, F, Celli, J, Chaachouay, H, Chae, Hj, Chai, Cy, Chan, Dc, Chan, Ey, Chang, Rc, Che, Cm, Chen, Cc, Chen, Gc, Chen, Gq, Chen, M, Chen, Q, Chen, S, Chen, W, Chen, X, Chen, Yg, Chen, Y, Chen, Yj, Chen, Z, Cheng, A, Cheng, Ch, Cheng, Y, Cheong, H, Cheong, Jh, Cherry, S, Chess-Williams, R, Cheung, Zh, Chevet, E, Chiang, Hl, Chiarelli, R, Chiba, T, Chin, L, Chiou, Sh, Chisari, Fv, Cho, Ch, Cho, Dh, Choi, Am, Choi, D, Choi, K, Choi, Me, Chouaib, S, Choubey, D, Choubey, V, Chu, Ct, Chuang, Th, Chueh, Sh, Chun, T, Chwae, Yj, Chye, Ml, Ciarcia, R, Ciriolo, Mr, Clague, Mj, Clark, R, Clarke, Pg, Clarke, R, Codogno, P, Coller, Ha, Colombo, Mi, Comincini, S, Condello, M, Condorelli, F, Cookson, Mr, Coombs, Gh, Coppens, I, Corbalan, R, Cossart, P, Costelli, P, Costes, S, Coto-Montes, A, Couve, E, Coxon, Fp, Cregg, Jm, Crespo, Jl, Cronjé, Mj, Cuervo, Am, Cullen, Jj, Czaja, Mj, D'Amelio, M, Darfeuille-Michaud, A, Davids, Lm, Davies, Fe, De Felici, M, de Groot, Jf, de Haan, Ca, De Martino, L, De Milito, A, De Tata, V, Debnath, J, Degterev, A, Dehay, B, Delbridge, Lm, Demarchi, F, Deng, Yz, Dengjel, J, Dent, P, Denton, D, Deretic, V, Desai, Sd, Devenish, Rj, Di Gioacchino, M, Di Paolo, G, Di Pietro, C, Díaz-Araya, G, Díaz-Laviada, I, Diaz-Meco, Mt, Diaz-Nido, J, Dikic, I, Dinesh-Kumar, Sp, Ding, Wx, Distelhorst, Cw, Diwan, A, Djavaheri-Mergny, M, Dokudovskaya, S, Dong, Z, Dorsey, Fc, Dosenko, V, Dowling, Jj, Doxsey, S, Dreux, M, Drew, Me, Duan, Q, Duchosal, Ma, Duff, K, Dugail, I, Durbeej, M, Duszenko, M, Edelstein, Cl, Edinger, Al, Egea, G, Eichinger, L, Eissa, Nt, Ekmekcioglu, S, El-Deiry, W, Elazar, Z, Elgendy, M, Ellerby, Lm, Eng, Ke, Engelbrecht, Am, Engelender, S, Erenpreisa, J, Escalante, R, Esclatine, A, Eskelinen, El, Espert, L, Espina, V, Fan, H, Fan, J, Fan, Qw, Fan, Z, Fang, S, Fang, Y, Fanto, M, Fanzani, A, Farkas, T, Farré, Jc, Faure, M, Fechheimer, M, Feng, Cg, Feng, J, Feng, Q, Feng, Y, Fésüs, L, Feuer, R, Figueiredo-Pereira, Me, Fimia, Gm, Fingar, Dc, Finkbeiner, S, Finkel, T, Finley, Kd, Fiorito, F, Fisher, Ea, Fisher, Pb, Flajolet, M, Florez-McClure, Ml, Florio, S, Fon, Ea, Fornai, F, Fortunato, F, Fotedar, R, Fowler, Dh, Fox, H, Franco, R, Frankel, Lb, Fransen, M, Fuentes, Jm, Fueyo, J, Fujii, J, Fujisaki, K, Fujita, E, Fukuda, M, Furukawa, Rh, Gaestel, M, Gailly, P, Gajewska, M, Galliot, B, Galy, V, Ganesh, S, Ganetzky, B, Ganley, Ig, Gao, Fb, Gao, Gf, Gao, J, Garcia, L, Garcia-Manero, G, Garcia-Marcos, M, Garmyn, M, Gartel, Al, Gatti, E, Gautel, M, Gawriluk, Tr, Gegg, Me, Geng, J, Germain, M, Gestwicki, Je, Gewirtz, Da, Ghavami, S, Ghosh, P, Giammarioli, Am, Giatromanolaki, An, Gibson, Sb, Gilkerson, Rw, Ginger, Ml, Ginsberg, Hn, Golab, J, Goligorsky, M, Golstein, P, Gomez-Manzano, C, Goncu, E, Gongora, C, Gonzalez, Cd, Gonzalez, R, González-Estévez, C, González-Polo, Ra, Gonzalez-Rey, E, Gorbunov, Nv, Gorski, S, Goruppi, S, Gottlieb, Ra, Gozuacik, D, Granato, Ge, Grant, Gd, Green, Kn, Gregorc, A, Gros, F, Grose, C, Grunt, Tw, Gual, P, Guan, Jl, Guan, Kl, Guichard, Sm, Gukovskaya, A, Gukovsky, I, Gunst, J, Gustafsson, Ab, Halayko, Aj, Hale, An, Halonen, Sk, Hamasaki, M, Han, F, Han, T, Hancock, Mk, Hansen, M, Harada, H, Harada, M, Hardt, Se, Harper, Jw, Harris, Al, Harris, J, Harris, Sd, Hashimoto, M, Haspel, Ja, Hayashi, S, Hazelhurst, La, He, C, He, Yw, Hébert, Mj, Heidenreich, Ka, Helfrich, Mh, Helgason, Gv, Henske, Ep, Herman, B, Herman, Pk, Hetz, C, Hilfiker, S, Hill, Ja, Hocking, Lj, Hofman, P, Hofmann, Tg, Höhfeld, J, Holyoake, Tl, Hong, Mh, Hood, Da, Hotamisligil, G, Houwerzijl, Ej, Høyer-Hansen, M, Hu, B, Hu, Ca, Hu, Hm, Hua, Y, Huang, C, Huang, J, Huang, S, Huang, Wp, Huber, Tb, Huh, Wk, Hung, Th, Hupp, Tr, Hur, Gm, Hurley, Jb, Hussain, Sn, Hussey, Pj, Hwang, Jj, Hwang, S, Ichihara, A, Ilkhanizadeh, S, Inoki, K, Into, T, Iovane, V, Iovanna, Jl, Ip, Ny, Isaka, Y, Ishida, H, Isidoro, C, Isobe, K, Iwasaki, A, Izquierdo, M, Izumi, Y, Jaakkola, Pm, Jäättelä, M, Jackson, Gr, Jackson, Wt, Janji, B, Jendrach, M, Jeon, Jh, Jeung, Eb, Jiang, H, Jiang, Jx, Jiang, M, Jiang, Q, Jiang, X, Jiménez, A, Jin, M, Jin, S, Joe, Co, Johansen, T, Johnson, De, Johnson, Gv, Jones, Nl, Joseph, B, Joseph, Sk, Joubert, Am, Juhász, G, Juillerat-Jeanneret, L, Jung, Ch, Jung, Yk, Kaarniranta, K, Kaasik, A, Kabuta, T, Kadowaki, M, Kagedal, K, Kamada, Y, Kaminskyy, Vo, Kampinga, Hh, Kanamori, H, Kang, C, Kang, Kb, Kang, Ki, Kang, R, Kang, Ya, Kanki, T, Kanneganti, Td, Kanno, H, Kanthasamy, Ag, Kanthasamy, A, Karantza, V, Kaushal, Gp, Kaushik, S, Kawazoe, Y, Ke, Py, Kehrl, Jh, Kelekar, A, Kerkhoff, C, Kessel, Dh, Khalil, H, Kiel, Ja, Kiger, Aa, Kihara, A, Kim, Dr, Kim, Dh, Kim, Ek, Kim, Hr, Kim, J, Kim, Jh, Kim, Jc, Kim, Jk, Kim, Pk, Kim, Sw, Kim, Y, Kimchi, A, Kimmelman, Ac, King, J, Kinsella, Tj, Kirkin, V, Kirshenbaum, La, Kitamoto, K, Kitazato, K, Klein, L, Klimecki, Wt, Klucken, J, Knecht, E, Ko, Bc, Koch, Jc, Koga, H, Koh, Jy, Koh, Yh, Koike, M, Komatsu, M, Kominami, E, Kong, Hj, Kong, Wj, Korolchuk, Vi, Kotake, Y, Koukourakis, Mi, Kouri Flores, Jb, Kovács, Al, Kraft, C, Krainc, D, Krämer, H, Kretz-Remy, C, Krichevsky, Am, Kroemer, G, Krüger, R, Krut, O, Ktistakis, Nt, Kuan, Cy, Kucharczyk, R, Kumar, A, Kumar, R, Kumar, S, Kundu, M, Kung, Hj, Kurz, T, Kwon, Hj, La Spada, Ar, Lafont, F, Lamark, T, Landry, J, Lane, Jd, Lapaquette, P, Laporte, Jf, László, L, Lavandero, S, Lavoie, Jn, Layfield, R, Lazo, Pa, Le, W, Le Cam, L, Ledbetter, Dj, Lee, Aj, Lee, Bw, Lee, Gm, Lee, J, Lee, Jh, Lee, M, Lee, Sh, Leeuwenburgh, C, Legembre, P, Legouis, R, Lehmann, M, Lei, Hy, Lei, Qy, Leib, Da, Leiro, J, Lemasters, Jj, Lemoine, A, Lesniak, M, Lev, D, Levenson, Vv, Levine, B, Levy, E, Li, F, Li, Jl, Li, L, Li, S, Li, W, Li, Xj, Li, Yb, Li, Yp, Liang, C, Liang, Q, Liao, Yf, Liberski, Pp, Lieberman, A, Lim, Hj, Lim, Kl, Lim, K, Lin, Cf, Lin, Fc, Lin, J, Lin, Jd, Lin, K, Lin, Ww, Lin, Wc, Lin, Yl, Linden, R, Lingor, P, Lippincott-Schwartz, J, Lisanti, Mp, Liton, Pb, Liu, B, Liu, Cf, Liu, K, Liu, L, Liu, Qa, Liu, W, Liu, Yc, Liu, Y, Lockshin, Ra, Lok, Cn, Lonial, S, Loos, B, Lopez-Berestein, G, López-Otín, C, Lossi, L, Lotze, Mt, Lőw, P, Lu, B, Lu, Z, Luciano, F, Lukacs, Nw, Lund, Ah, Lynch-Day, Ma, Ma, Y, Macian, F, Mackeigan, Jp, Macleod, Kf, Madeo, F, Maiuri, L, Maiuri, Mc, Malagoli, D, Malicdan, Mc, Malorni, W, Man, N, Mandelkow, Em, Manon, S, Manov, I, Mao, K, Mao, X, Mao, Z, Marambaud, P, Marazziti, D, Marcel, Yl, Marchbank, K, Marchetti, P, Marciniak, Sj, Marcondes, M, Mardi, M, Marfe, G, Mariño, G, Markaki, M, Marten, Mr, Martin, Sj, Martinand-Mari, C, Martinet, W, Martinez-Vicente, M, Masini, M, Matarrese, P, Matsuo, S, Matteoni, R, Mayer, A, Mazure, Nm, Mcconkey, Dj, Mcconnell, Mj, Mcdermott, C, Mcdonald, C, Mcinerney, Gm, Mckenna, Sl, Mclaughlin, B, Mclean, Pj, Mcmaster, Cr, Mcquibban, Ga, Meijer, Aj, Meisler, Mh, Meléndez, A, Melia, Tj, Melino, G, Mena, Ma, Menendez, Ja, Menna-Barreto, Rf, Menon, Mb, Menzies, Fm, Mercer, Ca, Merighi, A, Merry, De, Meschini, S, Meyer, Cg, Meyer, Tf, Miao, Cy, Miao, Jy, Michels, Pa, Michiels, C, Mijaljica, D, Milojkovic, A, Minucci, S, Miracco, C, Miranti, Ck, Mitroulis, I, Miyazawa, K, Mizushima, N, Mograbi, B, Mohseni, S, Molero, X, Mollereau, B, Mollinedo, F, Momoi, T, Monastyrska, I, Monick, Mm, Monteiro, Mj, Moore, Mn, Mora, R, Moreau, K, Moreira, Pi, Moriyasu, Y, Moscat, J, Mostowy, S, Mottram, Jc, Motyl, T, Moussa, Ce, Müller, S, Muller, S, Münger, K, Münz, C, Murphy, Lo, Murphy, Me, Musarò, A, Mysorekar, I, Nagata, E, Nagata, K, Nahimana, A, Nair, U, Nakagawa, T, Nakahira, K, Nakano, H, Nakatogawa, H, Nanjundan, M, Naqvi, Ni, Narendra, Dp, Narita, M, Navarro, M, Nawrocki, St, Nazarko, Ty, Nemchenko, A, Netea, Mg, Neufeld, Tp, Ney, Pa, Nezis, Ip, Nguyen, Hp, Nie, D, Nishino, I, Nislow, C, Nixon, Ra, Noda, T, Noegel, Aa, Nogalska, A, Noguchi, S, Notterpek, L, Novak, I, Nozaki, T, Nukina, N, Nürnberger, T, Nyfeler, B, Obara, K, Oberley, Td, Oddo, S, Ogawa, M, Ohashi, T, Okamoto, K, Oleinick, Nl, Oliver, Fj, Olsen, Lj, Olsson, S, Opota, O, Osborne, Tf, Ostrander, Gk, Otsu, K, Ou, Jh, Ouimet, M, Overholtzer, M, Ozpolat, B, Paganetti, P, Pagnini, U, Pallet, N, Palmer, Ge, Palumbo, C, Pan, T, Panaretakis, T, Pandey, Ub, Papackova, Z, Papassideri, I, Paris, I, Park, J, Park, Ok, Parys, Jb, Parzych, Kr, Patschan, S, Patterson, C, Pattingre, S, Pawelek, Jm, Peng, J, Perlmutter, Dh, Perrotta, I, Perry, G, Pervaiz, S, Peter, M, Peters, Gj, Petersen, M, Petrovski, G, Phang, Jm, Piacentini, M, Pierre, P, Pierrefite-Carle, V, Pierron, G, Pinkas-Kramarski, R, Piras, A, Piri, N, Platanias, Lc, Pöggeler, S, Poirot, M, Poletti, A, Poüs, C, Pozuelo-Rubio, M, Prætorius-Ibba, M, Prasad, A, Prescott, M, Priault, M, Produit-Zengaffinen, N, Progulske-Fox, A, Proikas-Cezanne, T, Przedborski, S, Przyklenk, K, Puertollano, R, Puyal, J, Qian, Sb, Qin, L, Qin, Zh, Quaggin, Se, Raben, N, Rabinowich, H, Rabkin, Sw, Rahman, I, Rami, A, Ramm, G, Randall, G, Randow, F, Rao, Va, Rathmell, Jc, Ravikumar, B, Ray, Sk, Reed, Bh, Reed, Jc, Reggiori, F, Régnier-Vigouroux, A, Reichert, A, Reiners JJ, Jr, Reiter, Rj, Ren, J, Revuelta, Jl, Rhodes, Cj, Ritis, K, Rizzo, E, Robbins, J, Roberge, M, Roca, H, Roccheri, Mc, Rocchi, S, Rodemann, Hp, Rodríguez de Córdoba, S, Rohrer, B, Roninson, Ib, Rosen, K, Rost-Roszkowska, Mm, Rouis, M, Rouschop, Km, Rovetta, F, Rubin, Bp, Rubinsztein, Dc, Ruckdeschel, K, Rucker EB, 3rd, Rudich, A, Rudolf, E, Ruiz-Opazo, N, Russo, R, Rusten, Te, Ryan, Km, Ryter, Sw, Sabatini, Dm, Sadoshima, J, Saha, T, Saitoh, T, Sakagami, H, Sakai, Y, Salekdeh, Gh, Salomoni, P, Salvaterra, Pm, Salvesen, G, Salvioli, R, Sanchez, Am, Sánchez-Alcázar, Ja, Sánchez-Prieto, R, Sandri, M, Sankar, U, Sansanwal, P, Santambrogio, L, Saran, S, Sarkar, S, Sarwal, M, Sasakawa, C, Sasnauskiene, A, Sass, M, Sato, K, Sato, M, Schapira, Ah, Scharl, M, Schätzl, Hm, Scheper, W, Schiaffino, S, Schneider, C, Schneider, Me, Schneider-Stock, R, Schoenlein, Pv, Schorderet, Df, Schüller, C, Schwartz, Gk, Scorrano, L, Sealy, L, Seglen, Po, Segura-Aguilar, J, Seiliez, I, Seleverstov, O, Sell, C, Seo, Jb, Separovic, D, Setaluri, V, Setoguchi, T, Settembre, C, Shacka, Jj, Shanmugam, M, Shapiro, Im, Shaulian, E, Shaw, Rj, Shelhamer, Jh, Shen, Hm, Shen, Wc, Sheng, Zh, Shi, Y, Shibuya, K, Shidoji, Y, Shieh, Jj, Shih, Cm, Shimada, Y, Shimizu, S, Shintani, T, Shirihai, O, Shore, Gc, Sibirny, Aa, Sidhu, Sb, Sikorska, B, Silva-Zacarin, Ec, Simmons, A, Simon, Ak, Simon, Hu, Simone, C, Simonsen, A, Sinclair, Da, Singh, R, Sinha, D, Sinicrope, Fa, Sirko, A, Siu, Pm, Sivridis, E, Skop, V, Skulachev, Vp, Slack, R, Smaili, S, Smith, Dr, Soengas, M, Soldati, T, Song, X, Sood, Ak, Soong, Tw, Sotgia, F, Spector, Sa, Spies, Cd, Springer, W, Srinivasula, Sm, Stefanis, L, Steffan, J, Stendel, R, Stenmark, H, Stephanou, A, Stern, St, Sternberg, C, Stork, B, Strålfors, P, Subauste, C, Sui, X, Sulzer, D, Sun, J, Sun, Sy, Sun, Zj, Sung, Jj, Suzuki, K, Suzuki, T, Swanson, M, Swanton, C, Sweeney, St, Sy, Lk, Szabadkai, G, Tabas, I, Taegtmeyer, H, Tafani, M, Takács-Vellai, K, Takano, Y, Takegawa, K, Takemura, G, Takeshita, F, Talbot, Nj, Tan, K, Tanaka, K, Tang, D, Tanida, I, Tannous, Ba, Tavernarakis, N, Taylor, G, Taylor, Ga, Taylor, Jp, Terada, L, Terman, A, Tettamanti, G, Thevissen, K, Thompson, Cb, Thorburn, A, Thumm, M, Tian, F, Tian, Y, Tocchini-Valentini, G, Tolkovsky, Am, Tomino, Y, Tönges, L, Tooze, Sa, Tournier, C, Tower, J, Towns, R, Trajkovic, V, Travassos, Lh, Tsai, Tf, Tschan, Mp, Tsubata, T, Tsung, A, Turk, B, Turner, L, Tyagi, Sc, Uchiyama, Y, Ueno, T, Umekawa, M, Umemiya-Shirafuji, R, Unni, Vk, Vaccaro, Mi, Valente, Em, Van den Berghe, G, van der Klei, Ij, van Doorn, W, van Dyk, Lf, van Egmond, M, van Grunsven, La, Vandenabeele, P, Vandenberghe, Wp, Vanhorebeek, I, Vaquero, Ec, Velasco, G, Vellai, T, Vicencio, Jm, Vierstra, Rd, Vila, M, Vindis, C, Viola, G, Viscomi, Maria Teresa, Voitsekhovskaja, Ov, von Haefen, C, Votruba, M, Wada, K, Wade-Martins, R, Walker, Cl, Walsh, Cm, Walter, J, Wan, Xb, Wang, A, Wang, C, Wang, D, Wang, F, Wang, G, Wang, H, Wang, Hg, Wang, Hd, Wang, J, Wang, K, Wang, M, Wang, Rc, Wang, X, Wang, Yj, Wang, Y, Wang, Z, Wang, Zc, Wansink, Dg, Ward, Dm, Watada, H, Waters, Sl, Webster, P, Wei, L, Weihl, Cc, Weiss, Wa, Welford, Sm, Wen, Lp, Whitehouse, Ca, Whitton, Jl, Whitworth, Aj, Wileman, T, Wiley, Jw, Wilkinson, S, Willbold, D, Williams, Rl, Williamson, Pr, Wouters, Bg, Wu, C, Wu, Dc, Wu, Wk, Wyttenbach, A, Xavier, Rj, Xi, Z, Xia, P, Xiao, G, Xie, Z, Xu, Dz, Xu, J, Xu, L, Xu, X, Yamamoto, A, Yamashina, S, Yamashita, M, Yan, X, Yanagida, M, Yang, D, Yang, E, Yang, Jm, Yang, Sy, Yang, W, Yang, Wy, Yang, Z, Yao, Mc, Yao, Tp, Yeganeh, B, Yen, Wl, Yin, Jj, Yin, Xm, Yoo, Oj, Yoon, G, Yoon, Sy, Yorimitsu, T, Yoshikawa, Y, Yoshimori, T, Yoshimoto, K, You, Hj, Youle, Rj, Younes, A, Yu, L, Yu, Sw, Yu, Wh, Yuan, Zm, Yue, Z, Yun, Ch, Yuzaki, M, Zabirnyk, O, Silva-Zacarin, E, Zacks, D, Zacksenhaus, E, Zaffaroni, N, Zakeri, Z, Zeh HJ, 3rd, Zeitlin, So, Zhang, H, Zhang, Hl, Zhang, J, Zhang, Jp, Zhang, L, Zhang, My, Zhang, Xd, Zhao, M, Zhao, Yf, Zhao, Y, Zhao, Zj, Zheng, X, Zhivotovsky, B, Zhong, Q, Zhou, Cz, Zhu, C, Zhu, Wg, Zhu, Xf, Zhu, X, Zhu, Y, Zoladek, T, Zong, Wx, Zorzano, A, Zschocke, J, Zuckerbraun, B., and Viscomi M. T. (ORCID:0000-0002-9096-4967)
- Abstract
In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. A key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process vs. those that measure flux through the autophagy pathway (i.e., the complete process); thus, a block in macroautophagy that results in autophagosome accumulation needs to be differentiated from stimuli that result in increased autophagic activity, defined as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (in most higher eukaryotes and some protists such as Dictyostelium) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the field understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused o
- Published
- 2012
8. Stimulation by P2X7 receptors of calcium-dependent production of reactive oxygen species (ROS) in rat submandibular glands
- Author
-
Fontanils, U., primary, Seil, M., additional, Pochet, S., additional, El Ouaaliti, M., additional, Garcia-Marcos, M., additional, Dehaye, J.P., additional, and Marino, A., additional
- Published
- 2010
- Full Text
- View/download PDF
9. Role of sodium in mitochondrial membrane depolarization induced by P2X7receptor activation in submandibular glands
- Author
-
Garcia-Marcos, M., primary, Fontanils, U., additional, Aguirre, A., additional, Pochet, S., additional, Dehaye, J.P., additional, and Marino, A., additional
- Published
- 2005
- Full Text
- View/download PDF
10. Cholesterol depletion perturbs calcium handling by rat submandibular glands
- Author
-
Garcia‐Marcos, M., primary, Tandel, S., additional, Pochet, S., additional, Genin, J., additional, De Lorenzi, M., additional, Gomez, F., additional, Kumps, A., additional, Marino, A., additional, and Dehaye, J.P., additional
- Published
- 2004
- Full Text
- View/download PDF
11. Role of sodium in mitochondrial membrane depolarization induced by P2X 7 receptor activation in submandibular glands
- Author
-
Garcia-Marcos, M., Fontanils, U., Aguirre, A., Pochet, S., Dehaye, J.P., and Marino, A.
- Published
- 2005
- Full Text
- View/download PDF
12. Value of colony forming unit-granulocyte macrophage assay in predicting relapse in acute myeloid leukaemia.
- Author
-
del Canizo, M C, primary, Mota, A, additional, Orfao, A, additional, Galende, J, additional, Caballero, M D, additional, Garcia Marcos, M A, additional, and San Miguel, J F, additional
- Published
- 1996
- Full Text
- View/download PDF
13. Role of sodium in mitochondrial membrane depolarization induced by P2X7 receptor activation in submandibular glands
- Author
-
Garcia-Marcos, M., Fontanils, U., Aguirre, A., Pochet, S., Dehaye, J.P., and Marino, A.
- Subjects
CELL membranes ,APOPTOSIS ,CELL death ,ORGANIC compounds - Abstract
Abstract: The effect of ATP on mitochondrial membrane depolarization in rat submandibular glands was investigated. Exposure of the cell suspension to high concentrations of ATP induced a sustained depolarization of mitochondrial membrane. This effect was blocked in the presence of magnesium and reproduced by low concentrations of 2′,3′-O-(4-benzoylbenzoyl)adenosine 5′-triphosphate (BzATP), suggesting the implication of the P2X
7 purinergic receptor. This point was confirmed by comparison of the response to ATP by wild-type and P2X7 knock-out (P2X7 R−/− ) mice. Mitochondria took up calcium after ATP stimulation but the depolarization of the mitochondrial membrane by ATP was not affected by the removal of calcium from the extracellular medium. It was nearly fully suppressed in the absence of sodium and partially blocked by the mitochondrial Na/Ca exchanger inhibitor 7-chloro-5-(2-chlorophenyl)-1,5-dihydro-4,1-benzothiazepin-2(3H)-one (CGP-37157). Both ATP and monensin increased the uptake of extracellular sodium (as shown by the depolarization of the plasma membrane) but the sodium ionophore did not affect the mitochondrial membrane potential. It is concluded that the activation of P2X7 receptors depolarizes the mitochondrial membrane. The uptake of extracellular sodium is necessary but not sufficient to induce this response. [Copyright &y& Elsevier]- Published
- 2005
- Full Text
- View/download PDF
14. Association between trisomy 8 and the immunophenotype of blast cells from acute leukemias secondary to a myelodysplastic syndrome or chronic myeloproliferative disorders.
- Author
-
Garcia-Isidoro, M., Tabernero, M. D., Najera, M. L., Lopez-Berges, M. C., Martinez, A., Durán, A., Garcia, J. L., Hernandez, J. M., Marcos, M. A. Garcia, Miguel, J. F. San, Orfao, A., Durán, A, Garcia Marcos, M A, and San Miguel, J F
- Abstract
In the present study we have used FISH to analyze the incidence of trisomy 8 in acute leukemias following either a primary myeloproliferative disorder (MPD) or a myelodysplastic syndrome (MDS) and correlated it with both the immunophenotype and the cell-cycle distribution of the leukemic blast cells. Six of the 21 (28%) acute leukemias studied displayed trisomy 8 by FISH. The number of trisomic cells in these cases ranged from 20 to 84%, with a mean of 46 +/- 24%. Trisomy 8 was associated with a homogeneous population of leukemic cells, phenotypically characterized by CD34+/HLADR+/CD13+/CD33+/CD11b-/ CD15-/CD14-. No significant differences were observed on the proliferative rate of cases with trisomy 8, as compared with blast cells from the remaining patients. Overall, our findings suggest that in acute leukemias secondary to MPD or MDS, trisomy 8 is associated with a blockade of myeloid maturation at an early step of the differentiation process. [ABSTRACT FROM AUTHOR]
- Published
- 1997
- Full Text
- View/download PDF
15. Interaction between clonal plasma cells and the immune system in plasma cell dyscrasias
- Author
-
Perez-Andres, M., Almeida, J., Martin-Ayuso, M., Moro, M. J., Garcia-Marcos, M. A., Moreno, I., Dominguez, M., Galende, J., Heras, N., Gonzalez, M. I., JESUS SAN MIGUEL, Orfao, A., and Red Espanola Mieloma, Multiple
16. The flow cytometric pattern of CD34, CD15 and CD13 expression in acute myeloblastic leukemia is highly characteristic of the presence of PML-RAR alpha gene rearrangements
- Author
-
Orfao, A., Chillon, M. C., Bortoluci, A. M., Lopez-Berges, M. C., Garcia-Sanz, R., Gonzalez, M., Tabernero, M. D., Garcia-Marcos, M. A., Rasillo, A. I., Jesus Maria Hernandez Rivas, and Miguel, J. F. S.
17. Interaction between clonal plasma cells and the immune system in plasma cell dyscrasias
- Author
-
Perez-Andres, M., Almeida, J., Martin-Ayuso, M., Moro, M. J., Garcia-Marcos, M. A., Inmaculada Moreno, Dominguez, M., Galende, J., Heras, N., Gonzales, M. I., San Miguel, J. F., and Orfao, A.
18. Stimulation by P2X7 receptors of calcium-dependent production of reactive oxygen species (ROS) in rat submandibular glands
- Author
-
Fontanils, U., Seil, M., Pochet, S., El Ouaaliti, M., Garcia-Marcos, M., Dehaye, J.P., and Marino, A.
- Subjects
- *
REACTIVE oxygen species , *SUBMANDIBULAR gland , *PURINERGIC receptors , *OXIDASES , *OXIDATION-reduction reaction , *ADENOSINE triphosphate , *NAD(P)H dehydrogenases - Abstract
Abstract: Background: Agonists of P2X7 receptors increase the production of reactive oxygen species (ROS) in immunocytes. In this work we tested this response and its effect on mitochondrial inner membrane potential (Δψm) in exocrine glands. Methods: The production of ROS by rat submandibular glands was investigated by measuring the oxidation of dichlorodihydrofluorescein (DCFH), a fluorescent probe. The Δψm was estimated with tetramethylrhodamine. Results: Activation of P2X7 receptors by ATP or Bz-ATP increased the production of ROS. This response was not modified by inhibitors of phospholipase A2 or of various kinases. The effect of ATP was calcium-dependent and was blocked by diphenyliodonium, an inhibitor of flavoproteins. It was not affected by rotenone, an inhibitor of the complex I of the mitochondrial electron transfer chain. Scavengers of ROS had no effect on the dissipation of Δψm by ATP. Conclusions: We conclude that, in rat submandibular glands, P2X7 receptors stimulate in a calcium-dependent manner an oxidase generating ROS, suggesting the involvement of the dual oxidase Duox2. The production of ROS does not contribute to the depolarization of mitochondria by purinergic agonists. General significance: Purinergic receptors could be regulators of the bactericidal properties of saliva by promoting both the secretion of peroxidase from acinar cells and by activating Duox2. [ABSTRACT FROM AUTHOR]
- Published
- 2010
- Full Text
- View/download PDF
19. Protocol to investigate G protein-coupled receptor signaling kinetics and concentration-dependent responses using ONE-GO biosensors.
- Author
-
Janicot R and Garcia-Marcos M
- Abstract
ONE vector G protein optical (ONE-GO) biosensors are versatile tools to measure the activity of G protein-coupled receptors (GPCRs) in cells. The availability of ONE-GO biosensors for ten active Gα subunits representative of all four G protein families (G
s , Gi/o , Gq/11 , and G12/13 ) permits the study of virtually any GPCR. Here, we present a protocol to implement ONE-GO biosensors in cell lines to investigate GPCR signaling kinetics and concentration-dependent responses. We describe steps for cell culture and transfection, response measurement, and data analysis. For complete details on the use and execution of this protocol, please refer to Janicot et al.1 ., Competing Interests: Declaration of interests The authors declare no competing interests., (Copyright © 2024 The Author(s). Published by Elsevier Inc. All rights reserved.)- Published
- 2024
- Full Text
- View/download PDF
20. Protocol for detecting endogenous GPCR activity in primary cell cultures using ONE-GO biosensors.
- Author
-
Janicot R and Garcia-Marcos M
- Abstract
ONE vector G protein Optical (ONE-GO) biosensors can measure the activity of endogenously expressed G protein-coupled receptors (GPCRs) in primary cells. By detecting G proteins that belong to all four families (G
s , Gi/o , Gq/11 , G12/13 ) across cell types, these biosensors provide high experimental versatility. We first describe steps to express ONE-GO biosensors in primary cells using lentiviral transduction. We then detail how to carry out measurements and subsequent analysis to quantify changes in bioluminescence resonance energy transfer (BRET) reporting on endogenous GPCR activity. For complete details on the use and execution of this protocol, please refer to Janicot et al.1 ., Competing Interests: Declaration of interests The authors declare no competing interests., (Copyright © 2024 The Author(s). Published by Elsevier Inc. All rights reserved.)- Published
- 2024
- Full Text
- View/download PDF
21. Direct detection of endogenous Gαi activity in cells with a sensitive conformational biosensor.
- Author
-
Luebbers A, Janicot R, Zhao J, Philibert CE, and Garcia-Marcos M
- Abstract
Activation of heterotrimeric G-proteins (Gαβγ) by G-protein-coupled receptors (GPCRs) is not only a mechanism broadly used by eukaryotes to transduce signals across the plasma membrane, but also the target for a large fraction of clinical drugs. However, approaches typically used to assess this signaling mechanism by directly measuring G-protein activity, like optical biosensors, suffer from limitations. On one hand, many of these biosensors require expression of exogenous GPCRs and/or G-proteins, compromising readout fidelity. On the other hand, biosensors that measure endogenous signaling may still interfere with the signaling process under investigation or suffer from having a small dynamic range of detection, hindering broad applicability. Here, we developed an optical biosensor that detects the endogenous G-protein active species Gαi-GTP upon stimulation of endogenous GPCRs more robustly than current state-of-the-art sensors for the same purpose. Its design is based on the principle of bystander Bioluminescence Resonance Energy Transfer (BRET) and leverages the Gαi-binding protein named GINIP as a high affinity and specific detector module of the GTP-bound conformation of Gαi. We optimized this design to prevent interference with G
i -dependent signaling (cAMP inhibition) and to enable implementation in different experimental systems with endogenous GPCRs, including neurotransmitter receptors in primary astroglial cells or opioid receptors in cell lines, which revealed opioid neuropeptide-mediated activation profiles different from those observed with other biosensors involving exogenous GPCRs and G-proteins. Overall, we introduce a biosensor that directly and sensitively detects endogenous activation of G-proteins by GPCRs across different experimental settings without interfering with the subsequent propagation of signaling., Competing Interests: CONFLICT OF INTEREST The authors declare that they have no conflicts of interest with the contents of this article.- Published
- 2024
- Full Text
- View/download PDF
22. Get Ready to Sharpen Your Tools: A Short Guide to Heterotrimeric G Protein Activity Biosensors.
- Author
-
Janicot R and Garcia-Marcos M
- Subjects
- Humans, Animals, Signal Transduction physiology, Biosensing Techniques methods, Receptors, G-Protein-Coupled metabolism, Heterotrimeric GTP-Binding Proteins metabolism
- Abstract
G protein-coupled receptors (GPCRs) are the largest class of transmembrane receptors encoded in the human genome, and they initiate cellular responses triggered by a plethora of extracellular stimuli ranging from neurotransmitters and hormones to photons. Upon stimulation, GPCRs activate heterotrimeric G proteins (G αβ γ) in the cytoplasm, which then convey signals to their effectors to elicit cellular responses. Given the broad biological and biomedical relevance of GPCRs and G proteins in physiology and disease, there is great interest in developing and optimizing approaches to measure their signaling activity with high accuracy and across experimental systems pertinent to their functions in cellular communication. This review provides a historical perspective on approaches to measure GPCR-G protein signaling, from quantification of second messengers and other indirect readouts of activity to biosensors that directly detect the activity of G proteins. The latter is the focus of a more detailed overview of the evolution of design principles for various optical biosensors of G protein activity with different experimental capabilities. We will highlight advantages and limitations of biosensors that detect different G protein activation hallmarks, like dissociation of G α and G β γ or nucleotide exchange on G α , as well as their suitability to detect signaling mediated by endogenous versus exogenous signaling components or in physiologically relevant systems like primary cells. Overall, this review intends to provide an assessment of the state-of-the-art for biosensors that directly measure G protein activity to allow readers to make informed decisions on the selection and implementation of currently available tools. SIGNIFICANCE STATEMENT: G protein activity biosensors have become essential and widespread tools to assess GPCR signaling and pharmacology. Yet, investigators face the challenge of choosing from a growing list of G protein activity biosensors. This review provides an overview of the features and capabilities of different optical biosensor designs for the direct detection of G protein activity in cells, with the aim of facilitating the rational selection of systems that align with the specific scientific questions and needs of investigators., (Copyright © 2024 by The American Society for Pharmacology and Experimental Therapeutics.)
- Published
- 2024
- Full Text
- View/download PDF
23. Smooth operator(s): dialing up and down neurotransmitter responses by G-protein regulators.
- Author
-
Philibert CE and Garcia-Marcos M
- Abstract
G-protein-coupled receptors (GPCRs) are essential mediators of neuromodulation and prominent pharmacological targets. While activation of heterotrimeric G-proteins (Gαβɣ) by GPCRs is essential in this process, much less is known about the postreceptor mechanisms that influence G-protein activity. Neurons express G-protein regulators that shape the amplitude and kinetics of GPCR-mediated synaptic responses. Although many of these operate by directly altering how G-proteins handle guanine-nucleotides enzymatically, recent discoveries have revealed alternative mechanisms by which GPCR-stimulated G-protein responses are modulated at the synapse. In this review, we cover the molecular basis for, and consequences of, the action of two G-protein regulators that do not affect the enzymatic activity of G-proteins directly: Gα inhibitory interacting protein (GINIP), which binds active Gα subunits, and potassium channel tetramerization domain-containing 12 (KCTD12), which binds active Gβγ subunits., Competing Interests: Declaration of interests None declared by authors., (Copyright © 2024 Elsevier Ltd. All rights reserved.)
- Published
- 2024
- Full Text
- View/download PDF
24. Direct interrogation of context-dependent GPCR activity with a universal biosensor platform.
- Author
-
Janicot R, Maziarz M, Park JC, Zhao J, Luebbers A, Green E, Philibert CE, Zhang H, Layne MD, Wu JC, and Garcia-Marcos M
- Subjects
- Humans, Receptors, G-Protein-Coupled metabolism, GTP-Binding Proteins metabolism, Signal Transduction, Biosensing Techniques
- Abstract
G protein-coupled receptors (GPCRs) are the largest family of druggable proteins encoded in the human genome, but progress in understanding and targeting them is hindered by the lack of tools to reliably measure their nuanced behavior in physiologically relevant contexts. Here, we developed a collection of compact ONE vector G-protein Optical (ONE-GO) biosensor constructs as a scalable platform that can be conveniently deployed to measure G-protein activation by virtually any GPCR with high fidelity even when expressed endogenously in primary cells. By characterizing dozens of GPCRs across many cell types like primary cardiovascular cells or neurons, we revealed insights into the molecular basis for G-protein coupling selectivity of GPCRs, pharmacogenomic profiles of anti-psychotics on naturally occurring GPCR variants, and G-protein subtype signaling bias by endogenous GPCRs depending on cell type or upon inducing disease-like states. In summary, this open-source platform makes the direct interrogation of context-dependent GPCR activity broadly accessible., Competing Interests: Declaration of interests The authors declare no conflict of interests., (Copyright © 2024 Elsevier Inc. All rights reserved.)
- Published
- 2024
- Full Text
- View/download PDF
25. Heterotrimeric G protein signaling without GPCRs: The Gα-binding-and-activating (GBA) motif.
- Author
-
Garcia-Marcos M
- Subjects
- Amino Acid Motifs, Cell Membrane metabolism, Signal Transduction, Humans, Animals, Protein Engineering, Heterotrimeric GTP-Binding Proteins chemistry, Heterotrimeric GTP-Binding Proteins genetics, Heterotrimeric GTP-Binding Proteins metabolism, Receptors, G-Protein-Coupled chemistry, Receptors, G-Protein-Coupled metabolism
- Abstract
Heterotrimeric G proteins (Gαβγ) are molecular switches that relay signals from 7-transmembrane receptors located at the cell surface to the cytoplasm. The function of these receptors is so intimately linked to heterotrimeric G proteins that they are named G protein-coupled receptors (GPCRs), showcasing the interdependent nature of this archetypical receptor-transducer axis of transmembrane signaling in eukaryotes. It is generally assumed that activation of heterotrimeric G protein signaling occurs exclusively by the action of GPCRs, but this idea has been challenged by the discovery of alternative mechanisms by which G proteins can propagate signals in the cell. This review will focus on a general principle of G protein signaling that operates without the direct involvement of GPCRs. The mechanism of G protein signaling reviewed here is mediated by a class of G protein regulators defined by containing an evolutionarily conserved sequence named the Gα-binding-and-activating (GBA) motif. Using the best characterized proteins with a GBA motif as examples, Gα-interacting vesicle-associated protein (GIV)/Girdin and dishevelled-associating protein with a high frequency of leucine residues (DAPLE), this review will cover (i) the mechanisms by which extracellular cues not relayed by GPCRs promote the coupling of GBA motif-containing regulators with G proteins, (ii) the structural and molecular basis for how GBA motifs interact with Gα subunits to facilitate signaling, (iii) the relevance of this mechanism in different cellular and pathological processes, including cancer and birth defects, and (iv) strategies to manipulate GBA-G protein coupling for experimental therapeutics purposes, including the development of rationally engineered proteins and chemical probes., Competing Interests: Conflict of interest The authors declare that they have no conflicts of interest with the contents of this article., (Copyright © 2024 The Author. Published by Elsevier Inc. All rights reserved.)
- Published
- 2024
- Full Text
- View/download PDF
26. Synaptic plasticity via receptor tyrosine kinase/G-protein-coupled receptor crosstalk.
- Author
-
Lao-Peregrin C, Xiang G, Kim J, Srivastava I, Fall AB, Gerhard DM, Kohtala P, Kim D, Song M, Garcia-Marcos M, Levitz J, and Lee FS
- Subjects
- Signal Transduction physiology, Receptor, trkB metabolism, Receptors, G-Protein-Coupled, Neuronal Plasticity physiology, Brain-Derived Neurotrophic Factor, Receptor Protein-Tyrosine Kinases
- Abstract
Cellular signaling involves a large repertoire of membrane receptors operating in overlapping spatiotemporal regimes and targeting many common intracellular effectors. However, both the molecular mechanisms and the physiological roles of crosstalk between receptors, especially those from different superfamilies, are poorly understood. We find that the receptor tyrosine kinase (RTK) TrkB and the G-protein-coupled receptor (GPCR) metabotropic glutamate receptor 5 (mGluR5) together mediate hippocampal synaptic plasticity in response to brain-derived neurotrophic factor (BDNF). Activated TrkB enhances constitutive mGluR5 activity to initiate a mode switch that drives BDNF-dependent sustained, oscillatory Ca
2+ signaling and enhanced MAP kinase activation. This crosstalk is mediated, in part, by synergy between Gβγ, released by TrkB, and Gαq -GTP, released by mGluR5, to enable physiologically relevant RTK/GPCR crosstalk., Competing Interests: Declaration of interests The authors declare that they have no competing interests., (Copyright © 2023 The Author(s). Published by Elsevier Inc. All rights reserved.)- Published
- 2024
- Full Text
- View/download PDF
27. SAX-7/L1CAM acts with the adherens junction proteins MAGI-1, HMR-1/Cadherin, and AFD-1/Afadin to promote glial-mediated dendrite extension.
- Author
-
Cebul ER, Marivin A, Wexler LR, Perrat PN, Bénard CY, Garcia-Marcos M, and Heiman MG
- Abstract
Adherens junctions (AJs) are a fundamental organizing structure for multicellular life. Although AJs are studied mainly in epithelia, their core function - stabilizing cell contacts by coupling adhesion molecules to the cytoskeleton - is important in diverse tissues. We find that two C. elegans sensory neurons, URX and BAG, require conserved AJ proteins for dendrite morphogenesis. We previously showed that URX and BAG dendrites attach to the embryonic nose via the adhesion molecule SAX-7/L1CAM, acting both in neurons and glia, and then extend by stretch during embryo elongation. Here, we find that a PDZ-binding motif (PB) in the SAX-7 cytoplasmic tail acts with other interaction motifs to promote dendrite extension. Using pull-down assays, we find that the SAX-7 PB binds the multi-PDZ scaffolding protein MAGI-1, which bridges it to the cadherin-catenin complex protein HMP-2/β-catenin. Using cell-specific rescue and depletion, we find that both MAGI-1 and HMR-1/Cadherin act in glia to non-autonomously promote dendrite extension. Double mutant analysis indicates that each protein can act independently of SAX-7, suggesting a multivalent adhesion complex. The SAX-7 PB motif also binds AFD-1/Afadin, loss of which further enhances sax-7 BAG dendrite defects. As MAGI-1, HMR-1, and AFD-1 are all found in epithelial AJs, we propose that an AJ-like complex in glia promotes dendrite extension.
- Published
- 2024
- Full Text
- View/download PDF
28. Dissecting the molecular basis for the modulation of neurotransmitter GPCR signaling by GINIP.
- Author
-
Luebbers A, Gonzalez-Hernandez AJ, Zhou M, Eyles SJ, Levitz J, and Garcia-Marcos M
- Subjects
- Receptors, G-Protein-Coupled metabolism, Protein Binding, Neurotransmitter Agents, Signal Transduction physiology, Heterotrimeric GTP-Binding Proteins chemistry, Heterotrimeric GTP-Binding Proteins metabolism
- Abstract
It is well established that G-protein-coupled receptors (GPCRs) stimulated by neurotransmitters are critical for neuromodulation. Much less is known about how heterotrimeric G-protein (Gαβγ) regulation after receptor-mediated activation contributes to neuromodulation. Recent evidence indicates that the neuronal protein GINIP shapes GPCR inhibitory neuromodulation via a unique mechanism of G-protein regulation that controls pain and seizure susceptibility. However, the molecular basis of this mechanism remains ill-defined because the structural determinants of GINIP responsible for binding and regulating G proteins are not known. Here, we combined hydrogen-deuterium exchange mass spectrometry, computational structure predictions, biochemistry, and cell-based biophysical assays to demonstrate an effector-like binding mode of GINIP to Gαi. Specific amino acids of GINIP's PHD domain first loop are essential for G-protein binding and subsequent regulation of Gαi-GTP and Gβγ signaling upon neurotransmitter GPCR stimulation. In summary, these findings shed light onto the molecular basis for a post-receptor mechanism of G-protein regulation that fine-tunes inhibitory neuromodulation., Competing Interests: Declaration of interests The authors declare no competing interests., (Copyright © 2023 Elsevier Ltd. All rights reserved.)
- Published
- 2024
- Full Text
- View/download PDF
29. Synaptic plasticity via receptor tyrosine kinase/G protein-coupled receptor crosstalk.
- Author
-
Lao-Peregrin C, Xiang G, Kim J, Srivastava I, Fall AB, Gerhard DM, Kohtala P, Kim D, Song M, Garcia-Marcos M, Levitz J, and Lee FS
- Abstract
Cellular signaling involves a large repertoire of membrane receptors operating in overlapping spatiotemporal regimes and targeting many common intracellular effectors. However, both the molecular mechanisms and physiological roles of crosstalk between receptors, especially those from different superfamilies, are poorly understood. We find that the receptor tyrosine kinase (RTK), TrkB, and the G protein-coupled receptor (GPCR), metabotropic glutamate receptor 5 (mGluR5), together mediate a novel form of hippocampal synaptic plasticity in response to brain-derived neurotrophic factor (BDNF). Activated TrkB enhances constitutive mGluR5 activity to initiate a mode-switch that drives BDNF-dependent sustained, oscillatory Ca
2+ signaling and enhanced MAP kinase activation. This crosstalk is mediated, in part, by synergy between Gβγ, released by TrkB, and Gαq -GTP, released by mGluR5, to enable a previously unidentified form of physiologically relevant RTK/GPCR crosstalk.- Published
- 2023
- Full Text
- View/download PDF
30. Fine-tuning GPCR-mediated neuromodulation by biasing signaling through different G protein subunits.
- Author
-
Park JC, Luebbers A, Dao M, Semeano A, Nguyen AM, Papakonstantinou MP, Broselid S, Yano H, Martemyanov KA, and Garcia-Marcos M
- Subjects
- Mice, Animals, Protein Subunits metabolism, Signal Transduction physiology, Receptors, G-Protein-Coupled genetics, Receptors, G-Protein-Coupled metabolism, Guanosine Triphosphate, Heterotrimeric GTP-Binding Proteins metabolism, GTP-Binding Protein beta Subunits genetics
- Abstract
G-protein-coupled receptors (GPCRs) mediate neuromodulation through the activation of heterotrimeric G proteins (Gαβγ). Classical models depict that G protein activation leads to a one-to-one formation of Gα-GTP and Gβγ species. Each of these species propagates signaling by independently acting on effectors, but the mechanisms by which response fidelity is ensured by coordinating Gα and Gβγ responses remain unknown. Here, we reveal a paradigm of G protein regulation whereby the neuronal protein GINIP (Gα inhibitory interacting protein) biases inhibitory GPCR responses to favor Gβγ over Gα signaling. Tight binding of GINIP to Gαi-GTP precludes its association with effectors (adenylyl cyclase) and, simultaneously, with regulator-of-G-protein-signaling (RGS) proteins that accelerate deactivation. As a consequence, Gαi-GTP signaling is dampened, whereas Gβγ signaling is enhanced. We show that this mechanism is essential to prevent the imbalances of neurotransmission that underlie increased seizure susceptibility in mice. Our findings reveal an additional layer of regulation within a quintessential mechanism of signal transduction that sets the tone of neurotransmission., Competing Interests: Declaration of interests The authors declare no competing interests., (Copyright © 2023 Elsevier Inc. All rights reserved.)
- Published
- 2023
- Full Text
- View/download PDF
31. Stickier G-protein conformations.
- Author
-
Garcia-Marcos M
- Subjects
- Protein Conformation, GTP-Binding Proteins chemistry
- Published
- 2023
- Full Text
- View/download PDF
32. Detecting GPCR Signals With Optical Biosensors of Gα-GTP in Cell Lines and Primary Cell Cultures.
- Author
-
Janicot R, Park JC, and Garcia-Marcos M
- Subjects
- Animals, Mice, Ligands, Primary Cell Culture, Cell Line, Guanosine Triphosphate, Signal Transduction
- Abstract
G protein-coupled receptors (GPCRs) are the largest class of transmembrane receptors and mediate a wide variety of physiological processes. GPCRs respond to a plethora of extracellular ligands and initiate signaling pathways inside cells via heterotrimeric G proteins (Gαβγ). Because of the critical role GPCRs play in regulating biological processes and as pharmacological targets, the availability of tools to measure their signaling activity are of high interest. Live-cell biosensors that detect the activity of G proteins in response to GPCR stimulation have emerged as a powerful approach to investigate GPCR/G protein signaling. Here, we detail methods to monitor G protein activity through direct measurement of GTP-bound Gα subunits using optical biosensors based on bioluminescence resonance energy transfer (BRET). More specifically, this article describes the use of two types of complementary biosensors. The first protocol explains how to use a multicomponent BRET biosensor that relies on expression of exogenous G proteins in cell lines. This protocol yields robust responses that are compatible with endpoint measurements of dose-dependent ligand effects or with kinetic measurements of subsecond resolution. The second protocol describes the implementation of unimolecular biosensors that detect the activation of endogenous G proteins in cell lines expressing exogenous GPCRs or in primary cells upon stimulation of endogenous GPCRs. Overall, using the biosensors as described in this article will help users characterize the mechanisms of action of many pharmacological agents and natural ligands that modulate GPCR and G protein signaling with high precision. © 2023 Wiley Periodicals LLC. Basic Protocol 1: Using bimolecular BRET biosensors to monitor Gα-GTP formation of tagged Gα in live cells Alternate Protocol 1: Measuring GPCR dose-dependent Gα-GTP responses in endpoint format Basic Protocol 2: Using unimolecular BRET biosensors to study endogenous G protein activity Alternate Protocol 2: Using unimolecular BRET biosensors to study endogenous G protein activity in mouse cortical neurons., (© 2023 Wiley Periodicals LLC.)
- Published
- 2023
- Full Text
- View/download PDF
33. Tails don't tell the whole story.
- Author
-
Garcia-Marcos M
- Subjects
- Humans, Animals, Molecular Chaperones metabolism, Mammals metabolism, Guanine Nucleotide Exchange Factors metabolism, Receptors, G-Protein-Coupled metabolism
- Abstract
Before engaging G protein-coupled receptors (GPCRs) to transduce extracellular signals, heterotrimeric G proteins (Gαβγ) must fold properly with the help of chaperones. In this issue of Structure, Papasergi-Scott et al. (2023) unveil the molecular basis for how mammalian Ric-8 chaperones achieve selectivity for their respective Gα subunit clients., Competing Interests: Declaration of interests The authors declare no competing interests., (Copyright © 2023 Elsevier Ltd. All rights reserved.)
- Published
- 2023
- Full Text
- View/download PDF
34. Small-molecule targeting of GPCR-independent noncanonical G-protein signaling in cancer.
- Author
-
Zhao J, DiGiacomo V, Ferreras-Gutierrez M, Dastjerdi S, Ibáñez de Opakua A, Park JC, Luebbers A, Chen Q, Beeler A, Blanco FJ, and Garcia-Marcos M
- Subjects
- Vesicular Transport Proteins metabolism, Microfilament Proteins metabolism, Signal Transduction, Receptors, G-Protein-Coupled metabolism, Heterotrimeric GTP-Binding Proteins metabolism, Neoplasms metabolism
- Abstract
Activation of heterotrimeric G-proteins (Gαβγ) by G-protein-coupled receptors (GPCRs) is a quintessential mechanism of cell signaling widely targeted by clinically approved drugs. However, it has become evident that heterotrimeric G-proteins can also be activated via GPCR-independent mechanisms that remain untapped as pharmacological targets. GIV/Girdin has emerged as a prototypical non-GPCR activator of G proteins that promotes cancer metastasis. Here, we introduce IGGi-11, a first-in-class small-molecule inhibitor of noncanonical activation of heterotrimeric G-protein signaling. IGGi-11 binding to G-protein α-subunits (Gαi) specifically disrupted their engagement with GIV/Girdin, thereby blocking noncanonical G-protein signaling in tumor cells and inhibiting proinvasive traits of metastatic cancer cells. In contrast, IGGi-11 did not interfere with canonical G-protein signaling mechanisms triggered by GPCRs. By revealing that small molecules can selectively disable noncanonical mechanisms of G-protein activation dysregulated in disease, these findings warrant the exploration of therapeutic modalities in G-protein signaling that go beyond targeting GPCRs.
- Published
- 2023
- Full Text
- View/download PDF
35. Dissecting the molecular basis for the modulation of neurotransmitter GPCR signaling by GINIP.
- Author
-
Luebbers A, Zhou M, Eyles SJ, and Garcia-Marcos M
- Abstract
It is well-established that activation of heterotrimeric G-proteins (Gαβγ) by G-protein-coupled receptors (GPCRs) stimulated by neurotransmitters is a key mechanism underlying neuromodulation. Much less is known about how G-protein regulation after receptor-mediated activation contributes to neuromodulation. Recent evidence indicates that the neuronal protein GINIP shapes GPCR inhibitory neuromodulation via a unique mechanism of G-protein regulation that controls neurological processes like pain and seizure susceptibility. However, the molecular basis of this mechanism remains ill-defined because the structural determinants of GINIP responsible for binding Gαi subunits and regulating G-protein signaling are not known. Here, we combined hydrogen-deuterium exchange mass-spectrometry, protein folding predictions, bioluminescence resonance energy transfer assays, and biochemical experiments to identify the first loop of the PHD domain of GINIP as an obligatory requirement for Gαi binding. Surprisingly, our results support a model in which GINIP undergoes a long-range conformational change to accommodate Gαi binding to this loop. Using cell-based assays, we demonstrate that specific amino acids in the first loop of the PHD domain are essential for the regulation of Gαi-GTP and free Gβγ signaling upon neurotransmitter GPCR stimulation. In summary, these findings shed light onto the molecular basis for a post-receptor mechanism of G-protein regulation that fine-tunes inhibitory neuromodulation., Competing Interests: CONFLICT OF INTEREST: The authors declare that they have no conflicts of interest with the contents of this article.
- Published
- 2023
- Full Text
- View/download PDF
36. Small-molecule targeting of GPCR-independent non-canonical G protein signaling inhibits cancer progression.
- Author
-
Zhao J, DiGiacomo V, Ferreras-Gutierrez M, Dastjerdi S, de Opakua AI, Park JC, Luebbers A, Chen Q, Beeler A, Blanco FJ, and Garcia-Marcos M
- Abstract
Activation of heterotrimeric G-proteins (Gαβγ) by G-protein-coupled receptors (GPCRs) is a quintessential mechanism of cell signaling widely targeted by clinically-approved drugs. However, it has become evident that heterotrimeric G-proteins can also be activated via GPCR-independent mechanisms that remain untapped as pharmacological targets. GIV/Girdin has emerged as a prototypical non-GPCR activator of G proteins that promotes cancer metastasis. Here, we introduce IGGi-11, a first-in-class smallmolecule inhibitor of non-canonical activation of heterotrimeric G-protein signaling. IGGi-11 binding to G-protein α-subunits (Gαi) specifically disrupted their engagement with GIV/Girdin, thereby blocking non-canonical G-protein signaling in tumor cells, and inhibiting pro-invasive traits of metastatic cancer cells in vitro and in mice. In contrast, IGGi-11 did not interfere with canonical G-protein signaling mechanisms triggered by GPCRs. By revealing that small molecules can selectively disable non-canonical mechanisms of G-protein activation dysregulated in disease, these findings warrant the exploration of therapeutic modalities in G-protein signaling that go beyond targeting GPCRs.
- Published
- 2023
- Full Text
- View/download PDF
37. DAPLE orchestrates apical actomyosin assembly from junctional polarity complexes.
- Author
-
Marivin A, Ho RX, and Garcia-Marcos M
- Subjects
- Actin Cytoskeleton metabolism, Actins metabolism, Adaptor Proteins, Signal Transducing metabolism, Cell Cycle Proteins metabolism, Cell Shape, Cytoskeletal Proteins metabolism, Epithelial Cells metabolism, Heterotrimeric GTP-Binding Proteins metabolism, Protein Kinase C metabolism, Actomyosin metabolism, Cell Polarity, Intracellular Signaling Peptides and Proteins metabolism, Microfilament Proteins metabolism
- Abstract
Establishment of apicobasal polarity and the organization of the cytoskeleton must operate coordinately to ensure proper epithelial cell shape and function. However, the precise molecular mechanisms by which polarity complexes directly instruct the cytoskeletal machinery to determine cell shape are poorly understood. Here, we define a mechanism by which the PAR polarity complex (PAR3-PAR6-aPKC) at apical cell junctions leads to efficient assembly of the apical actomyosin network to maintain epithelial cell morphology. We found that the PAR polarity complex recruits the protein DAPLE to apical cell junctions, which in turn triggers a two-pronged mechanism that converges upon assembly of apical actomyosin. More specifically, DAPLE directly recruits the actin-stabilizing protein CD2AP to apical junctions and, concomitantly, activates heterotrimeric G protein signaling in a GPCR-independent manner to favor RhoA-myosin activation. These observations establish DAPLE as a direct molecular link between junctional polarity complexes and the formation of apical cytoskeletal assemblies that support epithelial cell shape., (© 2022 Marivin et al.)
- Published
- 2022
- Full Text
- View/download PDF
38. Complementary biosensors reveal different G-protein signaling modes triggered by GPCRs and non-receptor activators.
- Author
-
Garcia-Marcos M
- Subjects
- Guanine Nucleotide Exchange Factors metabolism, HEK293 Cells, Humans, Biosensing Techniques, Heterotrimeric GTP-Binding Proteins metabolism, Receptors, G-Protein-Coupled metabolism, Signal Transduction
- Abstract
It has become evident that activation of heterotrimeric G-proteins by cytoplasmic proteins that are not G-protein-coupled receptors (GPCRs) plays a role in physiology and disease. Despite sharing the same biochemical guanine nucleotide exchange factor (GEF) activity as GPCRs in vitro, the mechanisms by which these cytoplasmic proteins trigger G-protein-dependent signaling in cells have not been elucidated. Heterotrimeric G-proteins can give rise to two active signaling species, Gα-GTP and dissociated Gβγ, with different downstream effectors, but how non-receptor GEFs affect the levels of these two species in cells is not known. Here, a systematic comparison of GPCRs and three unrelated non-receptor proteins with GEF activity in vitro (GIV/Girdin, AGS1/Dexras1, and Ric-8A) revealed high divergence in their contribution to generating Gα-GTP and free Gβγ in cells directly measured with live-cell biosensors. These findings demonstrate fundamental differences in how receptor and non-receptor G-protein activators promote signaling in cells despite sharing similar biochemical activities in vitro., Competing Interests: MG No competing interests declared, (© 2021, Garcia-Marcos.)
- Published
- 2021
- Full Text
- View/download PDF
39. Naturally occurring hotspot cancer mutations in Gα 13 promote oncogenic signaling.
- Author
-
Maziarz M, Federico A, Zhao J, Dujmusic L, Zhao Z, Monti S, Varelas X, and Garcia-Marcos M
- Subjects
- ADP Ribose Transferases pharmacology, Acyltransferases, Adaptor Proteins, Signal Transducing antagonists & inhibitors, Adaptor Proteins, Signal Transducing genetics, Adaptor Proteins, Signal Transducing metabolism, Animals, Botulinum Toxins pharmacology, GTP-Binding Protein alpha Subunits, G12-G13 metabolism, HEK293 Cells, Humans, Mice, Mutagenesis, Site-Directed, NIH 3T3 Cells, RNA Interference, RNA, Small Interfering metabolism, Rho Guanine Nucleotide Exchange Factors metabolism, Transcription Factors antagonists & inhibitors, Transcription Factors genetics, Transcription Factors metabolism, Transcriptional Activation drug effects, Up-Regulation, Urinary Bladder Neoplasms genetics, Urinary Bladder Neoplasms metabolism, Urinary Bladder Neoplasms pathology, YAP-Signaling Proteins, rho GTP-Binding Proteins metabolism, Carcinogenesis genetics, GTP-Binding Protein alpha Subunits, G12-G13 genetics, Signal Transduction
- Abstract
Heterotrimeric G-proteins are signaling switches broadly divided into four families based on the sequence and functional similarity of their Gα subunits: G
s , Gi/o , Gq/11 , and G12/13 Artificial mutations that activate Gα subunits of each of these families have long been known to induce oncogenic transformation in experimental systems. With the advent of next-generation sequencing, activating hotspot mutations in Gs , Gi/o , or Gq/11 proteins have also been identified in patient tumor samples. In contrast, patient tumor-associated G12/13 mutations characterized to date lead to inactivation rather than activation. By using bioinformatic pathway analysis and signaling assays, here we identified cancer-associated hotspot mutations in Arg-200 of Gα13 (encoded by GNA13 ) as potent activators of oncogenic signaling. First, we found that components of a G12/13 -dependent signaling cascade that culminates in activation of the Hippo pathway effectors YAP and TAZ is frequently altered in bladder cancer. Up-regulation of this signaling cascade correlates with increased YAP/TAZ activation transcriptional signatures in this cancer type. Among the G12/13 pathway alterations were mutations in Arg-200 of Gα13 , which we validated to promote YAP/TAZ-dependent (TEAD) and MRTF-A/B-dependent (SRE.L) transcriptional activity. We further showed that this mechanism relies on the same RhoGEF-RhoGTPase cascade components that are up-regulated in bladder cancers. Moreover, Gα13 Arg-200 mutants induced oncogenic transformation in vitro as determined by focus formation assays. In summary, our findings on Gα13 mutants establish that naturally occurring hotspot mutations in Gα subunits of any of the four families of heterotrimeric G-proteins are putative cancer drivers., Competing Interests: Conflict of interest—The authors declare that they have no conflicts of interest with the contents of this article., (© 2020 Maziarz et al.)- Published
- 2020
- Full Text
- View/download PDF
40. Receptor tyrosine kinases activate heterotrimeric G proteins via phosphorylation within the interdomain cleft of Gαi.
- Author
-
Kalogriopoulos NA, Lopez-Sanchez I, Lin C, Ngo T, Midde KK, Roy S, Aznar N, Murray F, Garcia-Marcos M, Kufareva I, Ghassemian M, and Ghosh P
- Subjects
- Animals, COS Cells, Chlorocebus aethiops, ErbB Receptors metabolism, HEK293 Cells, HeLa Cells, Heterotrimeric GTP-Binding Proteins physiology, Humans, Phosphorylation, Receptor Protein-Tyrosine Kinases physiology, Signal Transduction, Tyrosine metabolism, GTP-Binding Protein alpha Subunits metabolism, Heterotrimeric GTP-Binding Proteins metabolism, Receptor Protein-Tyrosine Kinases metabolism
- Abstract
The molecular mechanisms by which receptor tyrosine kinases (RTKs) and heterotrimeric G proteins, two major signaling hubs in eukaryotes, independently relay signals across the plasma membrane have been extensively characterized. How these hubs cross-talk has been a long-standing question, but answers remain elusive. Using linear ion-trap mass spectrometry in combination with biochemical, cellular, and computational approaches, we unravel a mechanism of activation of heterotrimeric G proteins by RTKs and chart the key steps that mediate such activation. Upon growth factor stimulation, the guanine-nucleotide exchange modulator dissociates Gαi•βγ trimers, scaffolds monomeric Gαi with RTKs, and facilitates the phosphorylation on two tyrosines located within the interdomain cleft of Gαi. Phosphorylation triggers the activation of Gαi and inhibits second messengers (cAMP). Tumor-associated mutants reveal how constitutive activation of this pathway impacts cell's decision to "go" vs. "grow." These insights define a tyrosine-based G protein signaling paradigm and reveal its importance in eukaryotes., Competing Interests: The authors declare no competing interest.
- Published
- 2020
- Full Text
- View/download PDF
41. Optogenetic activation of heterotrimeric G-proteins by LOV2GIVe, a rationally engineered modular protein.
- Author
-
Garcia-Marcos M, Parag-Sharma K, Marivin A, Maziarz M, Luebbers A, and Nguyen LT
- Subjects
- Animals, Avena genetics, Escherichia coli genetics, Humans, Saccharomyces cerevisiae genetics, Heterotrimeric GTP-Binding Proteins chemistry, Heterotrimeric GTP-Binding Proteins genetics, Heterotrimeric GTP-Binding Proteins metabolism, Optogenetics methods, Plant Proteins chemistry, Plant Proteins genetics, Plant Proteins metabolism, Protein Engineering methods, Recombinant Fusion Proteins chemistry, Recombinant Fusion Proteins genetics, Recombinant Fusion Proteins metabolism
- Abstract
Heterotrimeric G-proteins are signal transducers involved in mediating the action of many natural extracellular stimuli and many therapeutic agents. Non-invasive approaches to manipulate the activity of G-proteins with high precision are crucial to understand their regulation in space and time. Here, we developed LOV2GIVe, an engineered modular protein that allows the activation of heterotrimeric G-proteins with blue light. This optogenetic construct relies on a versatile design that differs from tools previously developed for similar purposes, that is metazoan opsins, which are light-activated G-protein-coupled receptors (GPCRs). Instead, LOV2GIVe consists of the fusion of a G-protein activating peptide derived from a non-GPCR regulator of G-proteins to a small plant protein domain, such that light uncages the G-protein activating module. Targeting LOV2GIVe to cell membranes allowed for light-dependent activation of Gi proteins in different experimental systems. In summary, LOV2GIVe expands the armamentarium and versatility of tools available to manipulate heterotrimeric G-protein activity., Competing Interests: MG, KP, AM, MM, AL, LN No competing interests declared, (© 2020, Garcia-Marcos et al.)
- Published
- 2020
- Full Text
- View/download PDF
42. Revealing the Activity of Trimeric G-proteins in Live Cells with a Versatile Biosensor Design.
- Author
-
Maziarz M, Park JC, Leyme A, Marivin A, Garcia-Lopez A, Patel PP, and Garcia-Marcos M
- Subjects
- Amino Acid Motifs, Animals, Cells, Cultured, GTP-Binding Protein alpha Subunits, Gq-G11 chemistry, GTP-Binding Protein alpha Subunits, Gq-G11 genetics, Guanine Nucleotide Exchange Factors antagonists & inhibitors, Guanosine Triphosphate chemistry, HEK293 Cells, HeLa Cells, Humans, Mice, Mice, Inbred C57BL, Mutation, Neoplasms genetics, Neoplasms metabolism, Neurons chemistry, Neurons metabolism, Neurons physiology, Signal Transduction, Urinary Bladder Neoplasms genetics, Urinary Bladder Neoplasms metabolism, Bioluminescence Resonance Energy Transfer Techniques instrumentation, Bioluminescence Resonance Energy Transfer Techniques methods, Biosensing Techniques instrumentation, Biosensing Techniques methods, Guanosine Triphosphate metabolism, Heterotrimeric GTP-Binding Proteins metabolism, Receptors, G-Protein-Coupled metabolism
- Abstract
Heterotrimeric G-proteins (Gαβγ) are the main transducers of signals from GPCRs, mediating the action of countless natural stimuli and therapeutic agents. However, there are currently no robust approaches to directly measure the activity of endogenous G-proteins in cells. Here, we describe a suite of optical biosensors that detect endogenous active G-proteins with sub-second resolution in live cells. Using a modular design principle, we developed genetically encoded, unimolecular biosensors for endogenous Gα-GTP and free Gβγ: the two active species of heterotrimeric G-proteins. This design was leveraged to generate biosensors with specificity for different heterotrimeric G-proteins or for other G-proteins, such as Rho GTPases. Versatility was further validated by implementing the biosensors in multiple contexts, from characterizing cancer-associated G-protein mutants to neurotransmitter signaling in primary neurons. Overall, the versatile biosensor design introduced here enables studying the activity of endogenous G-proteins in live cells with high fidelity, temporal resolution, and convenience., Competing Interests: Declaration of Interests M.G.-M. is listed as an inventor in a provisional patent filed by Boston University related to the content of this manuscript., (Copyright © 2020 Elsevier Inc. All rights reserved.)
- Published
- 2020
- Full Text
- View/download PDF
43. Correction: DAPLE protein inhibits nucleotide exchange on Gαs and Gαq via the same motif that activates Gα i .
- Author
-
Marivin A, Maziarz M, Zhao J, DiGiacomo V, Calvo IO, Mann EA, Ear J, Blanco-Canosa JB, Ross EM, Ghosh P, and Garcia-Marcos M
- Published
- 2020
- Full Text
- View/download PDF
44. Do All Roads Lead to Rome in G-Protein Activation?
- Author
-
Ghosh P and Garcia-Marcos M
- Subjects
- GTP-Binding Proteins chemistry, Humans, Protein Conformation, Receptors, G-Protein-Coupled metabolism, GTP-Binding Proteins metabolism
- Abstract
High-resolution structural studies on G-protein-coupled receptors (GPCRs) have flourished recently, providing long-sought insights into the dynamic process of guanine nucleotide-binding protein (G-protein) activation. In parallel, analogous studies are starting to shed light on how the same G-proteins are activated by non-GPCR proteins. Can we learn about common themes and variations in G-protein activation from them?, (Copyright © 2019 Elsevier Ltd. All rights reserved.)
- Published
- 2020
- Full Text
- View/download PDF
45. DAPLE protein inhibits nucleotide exchange on Gα s and Gα q via the same motif that activates Gαi.
- Author
-
Marivin A, Maziarz M, Zhao J, DiGiacomo V, Olmos Calvo I, Mann EA, Ear J, Blanco-Canosa JB, Ross EM, Ghosh P, and Garcia-Marcos M
- Subjects
- Amino Acid Sequence, Animals, Cattle, HEK293 Cells, Humans, Models, Biological, Mutant Proteins metabolism, Peptides metabolism, Protein Binding, GTP-Binding Protein alpha Subunits metabolism, Guanine Nucleotide Exchange Factors metabolism, Intracellular Signaling Peptides and Proteins chemistry, Intracellular Signaling Peptides and Proteins metabolism, Microfilament Proteins chemistry, Microfilament Proteins metabolism
- Abstract
Besides being regulated by G-protein-coupled receptors, the activity of heterotrimeric G proteins is modulated by many cytoplasmic proteins. GIV/Girdin and DAPLE ( D vl- a ssociating p rotein with a high frequency of le ucine) are the best-characterized members of a group of cytoplasmic regulators that contain a Gα-binding and -activating (GBA) motif and whose dysregulation underlies human diseases, including cancer and birth defects. GBA motif-containing proteins were originally reported to modulate G proteins by binding Gα subunits of the G
i/o family (Gαi ) over other families (such as Gs , Gq/11 , or G12/13 ), and promoting nucleotide exchange in vitro However, some evidence suggests that this is not always the case, as phosphorylation of the GBA motif of GIV promotes its binding to Gαs and inhibits nucleotide exchange. The G-protein specificity of DAPLE and how it might affect nucleotide exchange on G proteins besides Gαi remain to be investigated. Here, we show that DAPLE's GBA motif, in addition to Gαi , binds efficiently to members of the Gs and Gq/11 families (Gαs and Gαq , respectively), but not of the G12/13 family (Gα12 ) in the absence of post-translational phosphorylation. We pinpointed Met-1669 as the residue in the GBA motif of DAPLE that diverges from that in GIV and enables better binding to Gαs and Gαq Unlike the nucleotide-exchange acceleration observed for Gαi , DAPLE inhibited nucleotide exchange on Gαs and Gαq These findings indicate that GBA motifs have versatility in their G-protein-modulating effect, i.e. they can bind to Gα subunits of different classes and either stimulate or inhibit nucleotide exchange depending on the G-protein subtype., (© 2020 Marivin et al.)- Published
- 2020
- Full Text
- View/download PDF
46. Probing the mutational landscape of regulators of G protein signaling proteins in cancer.
- Author
-
DiGiacomo V, Maziarz M, Luebbers A, Norris JM, Laksono P, and Garcia-Marcos M
- Subjects
- Amino Acid Sequence, Carcinogenesis genetics, HEK293 Cells, Heterotrimeric GTP-Binding Proteins chemistry, Heterotrimeric GTP-Binding Proteins metabolism, Humans, Models, Molecular, Neoplasms metabolism, Protein Binding, Protein Domains, RGS Proteins chemistry, RGS Proteins metabolism, Receptors, G-Protein-Coupled chemistry, Receptors, G-Protein-Coupled metabolism, Sequence Homology, Amino Acid, Heterotrimeric GTP-Binding Proteins genetics, Mutation, Neoplasms genetics, RGS Proteins genetics, Receptors, G-Protein-Coupled genetics, Signal Transduction
- Abstract
The advent of deep-sequencing techniques has revealed that mutations in G protein-coupled receptor (GPCR) signaling pathways in cancer are more prominent than was previously appreciated. An emergent theme is that cancer-associated mutations tend to cause enhanced GPCR pathway activation to favor oncogenicity. Regulators of G protein signaling (RGS) proteins are critical modulators of GPCR signaling that dampen the activity of heterotrimeric G proteins through their GTPase-accelerating protein (GAP) activity, which is conferred by a conserved domain dubbed the "RGS-box." Here, we developed an experimental pipeline to systematically assess the mutational landscape of RGS GAPs in cancer. A pan-cancer bioinformatics analysis of the 20 RGS domains with GAP activity revealed hundreds of low-frequency mutations spread throughout the conserved RGS domain structure with a slight enrichment at positions that interface with G proteins. We empirically tested multiple mutations representing all RGS GAP subfamilies and sampling both G protein interface and noninterface positions with a scalable, yeast-based assay. Last, a subset of mutants was validated using G protein activity biosensors in mammalian cells. Our findings reveal that a sizable fraction of RGS protein mutations leads to a loss of function through various mechanisms, including disruption of the G protein-binding interface, loss of protein stability, or allosteric effects on G protein coupling. Moreover, our results also validate a scalable pipeline for the rapid characterization of cancer-associated mutations in RGS proteins., (Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.)
- Published
- 2020
- Full Text
- View/download PDF
47. DAPLE and MPDZ bind to each other and cooperate to promote apical cell constriction.
- Author
-
Marivin A and Garcia-Marcos M
- Subjects
- Animals, Genes, Dominant, HEK293 Cells, Humans, Intercellular Junctions metabolism, Membrane Proteins chemistry, Neurulation, PDZ Domains, Protein Binding, Xenopus laevis metabolism, Cell Polarity, Intracellular Signaling Peptides and Proteins metabolism, Membrane Proteins metabolism, Microfilament Proteins metabolism
- Abstract
D ishevelled- A ssociating P rotein with a high frequency of LE ucines (DAPLE) belongs to a group of unconventional activators of heterotrimeric G-proteins that are cytoplasmic factors rather than membrane proteins of the G-protein-coupled receptor superfamily. During neurulation, DAPLE localizes to apical junctions of neuroepithelial cells and promotes apical cell constriction via G-protein activation. While junctional localization of DAPLE is necessary for this function, the factors it associates with at apical junctions or how they contribute to DAPLE-mediated apical constriction are unknown. MPDZ is a multi-PDZ ( P SD95/ D LG1/ Z O-1) domain scaffold present at apical cell junctions whose mutation in humans is linked to nonsyndromic congenital hydrocephalus (NSCH). DAPLE contains a PDZ-binding motif (PBM) and is also mutated in human NSCH, so we investigated the functional relationship between both proteins. DAPLE colocalized with MPDZ at apical cell junctions and bound directly to the PDZ3 domain of MPDZ via its PBM. Much like DAPLE, MPDZ is induced during neurulation in Xenopus and is required for apical constriction of neuroepithelial cells and subsequent neural plate bending. MPDZ depletion also blunted DAPLE--mediated apical constriction of cultured cells. These results show that DAPLE and MPDZ, two factors genetically linked to NSCH, function as cooperative partners at apical junctions and are required for proper tissue remodeling during early stages of neurodevelopment.
- Published
- 2019
- Full Text
- View/download PDF
48. GPCR-independent activation of G proteins promotes apical cell constriction in vivo.
- Author
-
Marivin A, Morozova V, Walawalkar I, Leyme A, Kretov DA, Cifuentes D, Dominguez I, and Garcia-Marcos M
- Subjects
- Actomyosin metabolism, Animals, Cells, Cultured, Constriction, Embryo, Nonmammalian metabolism, Guanine Nucleotide Exchange Factors genetics, Guanine Nucleotide Exchange Factors metabolism, Heterotrimeric GTP-Binding Proteins genetics, Humans, Intracellular Signaling Peptides and Proteins genetics, Microfilament Proteins genetics, Neural Plate metabolism, Neurulation, Protein Interaction Domains and Motifs, Receptors, G-Protein-Coupled genetics, Signal Transduction, Xenopus laevis embryology, Xenopus laevis physiology, Zebrafish embryology, Zebrafish physiology, Embryo, Nonmammalian cytology, Heterotrimeric GTP-Binding Proteins metabolism, Intracellular Signaling Peptides and Proteins metabolism, Microfilament Proteins metabolism, Morphogenesis, Neural Plate cytology, Receptors, G-Protein-Coupled metabolism
- Abstract
Heterotrimeric G proteins are signaling switches that control organismal morphogenesis across metazoans. In invertebrates, specific GPCRs instruct G proteins to promote collective apical cell constriction in the context of epithelial tissue morphogenesis. In contrast, tissue-specific factors that instruct G proteins during analogous processes in vertebrates are largely unknown. Here, we show that DAPLE, a non-GPCR protein linked to human neurodevelopmental disorders, is expressed specifically in the neural plate of Xenopus laevis embryos to trigger a G protein signaling pathway that promotes apical cell constriction during neurulation. DAPLE localizes to apical cell-cell junctions in the neuroepithelium, where it activates G protein signaling to drive actomyosin-dependent apical constriction and subsequent bending of the neural plate. This function is mediated by a Gα-binding-and-activating (GBA) motif that was acquired by DAPLE in vertebrates during evolution. These findings reveal that regulation of tissue remodeling during vertebrate development can be driven by an unconventional mechanism of heterotrimeric G protein activation that operates in lieu of GPCRs., (© 2019 Marivin et al.)
- Published
- 2019
- Full Text
- View/download PDF
49. Atypical activation of the G protein Gα q by the oncogenic mutation Q209P.
- Author
-
Maziarz M, Leyme A, Marivin A, Luebbers A, Patel PP, Chen Z, Sprang SR, and Garcia-Marcos M
- Subjects
- GTP-Binding Protein alpha Subunits, Gq-G11 chemistry, Humans, Models, Molecular, Protein Conformation, alpha-Helical, Signal Transduction genetics, Carcinogenesis genetics, GTP-Binding Protein alpha Subunits, Gq-G11 genetics, GTP-Binding Protein alpha Subunits, Gq-G11 metabolism, Mutation
- Abstract
The causative role of G protein-coupled receptor (GPCR) pathway mutations in uveal melanoma (UM) has been well-established. Nearly all UMs bear an activating mutation in a GPCR pathway mediated by G proteins of the G
q/11 family, driving tumor initiation and possibly metastatic progression. Thus, targeting this pathway holds therapeutic promise for managing UM. However, direct targeting of oncogenic Gαq/11 mutants, present in ∼90% of UMs, is complicated by the belief that these mutants structurally resemble active Gαq/11 WT. This notion is solidly founded on previous studies characterizing Gα mutants in which a conserved catalytic glutamine (Gln-209 in Gαq ) is replaced by leucine, which leads to GTPase function deficiency and constitutive activation. Whereas Q209L accounts for approximately half of GNAQ mutations in UM, Q209P is as frequent as Q209L and also promotes oncogenesis, but has not been characterized at the molecular level. Here, we characterized the biochemical and signaling properties of Gαq Q209P and found that it is also GTPase-deficient and activates downstream signaling as efficiently as Gαq Q209L. However, Gαq Q209P had distinct molecular and functional features, including in the switch II region of Gαq Q209P, which adopted a conformation different from that of Gαq Q209L or active WT Gαq , resulting in altered binding to effectors, Gβγ, and regulators of G-protein signaling (RGS) proteins. Our findings reveal that the molecular properties of Gαq Q209P are fundamentally different from those in other active Gαq proteins and could be leveraged as a specific vulnerability for the ∼20% of UMs bearing this mutation., (© 2018 Maziarz et al.)- Published
- 2018
- Full Text
- View/download PDF
50. A biochemical and genetic discovery pipeline identifies PLCδ4b as a nonreceptor activator of heterotrimeric G-proteins.
- Author
-
Maziarz M, Broselid S, DiGiacomo V, Park JC, Luebbers A, Garcia-Navarrete L, Blanco-Canosa JB, Baillie GS, and Garcia-Marcos M
- Subjects
- Amino Acid Motifs, Crystallography, X-Ray, GTP-Binding Protein alpha Subunits chemistry, GTP-Binding Protein alpha Subunits genetics, GTP-Binding Protein alpha Subunits metabolism, Guanine Nucleotide Exchange Factors chemistry, Guanine Nucleotide Exchange Factors genetics, Guanine Nucleotide Exchange Factors metabolism, Heterotrimeric GTP-Binding Proteins chemistry, Heterotrimeric GTP-Binding Proteins genetics, Humans, Phospholipase C delta metabolism, Protein Binding, Receptors, G-Protein-Coupled chemistry, Receptors, G-Protein-Coupled genetics, Receptors, G-Protein-Coupled metabolism, Repressor Proteins chemistry, Repressor Proteins genetics, Repressor Proteins metabolism, Signal Transduction, Heterotrimeric GTP-Binding Proteins metabolism, Phospholipase C delta chemistry, Phospholipase C delta genetics
- Abstract
Recent evidence has revealed that heterotrimeric G-proteins can be activated by cytoplasmic proteins that share an evolutionarily conserved sequence called the Gα-binding-and-activating (GBA) motif. This mechanism provides an alternative to canonical activation by G-protein-coupled receptors (GPCRs) and plays important roles in cell function, and its dysregulation is linked to diseases such as cancer. Here, we describe a discovery pipeline that uses biochemical and genetic approaches to validate GBA candidates identified by sequence similarity. First, putative GBA motifs discovered in bioinformatics searches were synthesized on peptide arrays and probed in batch for Gα
i3 binding. Then, cDNAs encoding proteins with Gαi3 -binding sequences were expressed in a genetically-modified yeast strain that reports mammalian G-protein activity in the absence of GPCRs. The resulting GBA motif candidates were characterized by comparison of their biochemical, structural, and signaling properties with those of all previously described GBA motifs in mammals (GIV/Girdin, DAPLE, Calnuc, and NUCB2). We found that the phospholipase Cδ4 (PLCδ4) GBA motif binds G-proteins with high affinity, has guanine nucleotide exchange factor activity in vitro , and activates G-protein signaling in cells, as indicated by bioluminescence resonance energy transfer (BRET)-based biosensors of G-protein activity. Interestingly, the PLCδ4 isoform b (PLCδ4b), which lacks the domains required for PLC activity, bound and activated G-proteins more efficiently than the full-length isoform a, suggesting that PLCδ4b functions as a G-protein regulator rather than as a PLC. In summary, we have identified PLCδ4 as a nonreceptor activator of G-proteins and established an experimental pipeline to discover and characterize GBA motif-containing proteins., (© 2018 Maziarz et al.)- Published
- 2018
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.