6 results on '"García Vicente, C."'
Search Results
2. Detección automática de la apnea del sueño infantil utilizando técnicas de deep learning y explainable artificial intelligence en señales de flujo aéreo
- Author
-
Barroso García, V., Vaquerizo Villar, F., Gutiérrez Tobal, G.C., García Vicente, C., Alvarez González, D., Gozal, D., Hornero Sánchez, R., Barroso García, V., Vaquerizo Villar, F., Gutiérrez Tobal, G.C., García Vicente, C., Alvarez González, D., Gozal, D., and Hornero Sánchez, R.
- Abstract
La alta prevalencia de la apnea obstructiva del sueño (AOS) pediátrica y las limitaciones de la prueba diagnóstica estándar han fomentado el estudio de estrategias alternativas que ayuden a su diagnóstico automático. Los métodos propuestos suelen basarse en técnicas de feature engineering, lo que implica una complejidad y subjetividad inherente. Otros utilizan técnicas de deep learning, que mejoran el rendimiento diagnóstico pero carecen de transparencia e interpretabilidad. En este trabajo proponemos evaluar un modelo explicable basado en redes neuronales convolucionales (CNN) para estimar la severidad de la AOS infantil utilizando la señal de flujo (FA). Para ello, se analizaron 1638 registros de FA, que fueron divididos en segmentos de 10 minutos. El modelo CNN estimó el número de eventos apneicos por segmento. Después, se aplicó el algoritmo Grad-CAM para identificar las regiones de FA en las que se fija la CNN al hacer su predicción. El modelo propuesto mostró una alta concordancia entre el índice de apnea-hipopnea estimado y el real (coeficiente de correlación intraclase = 0.87 en el grupo de test), así como un alto rendimiento diagnóstico (kappa de 4 clases = 0.38 y precisiones del 81.05%, 85.62% y 92.81% para 1, 5 y 10 eventos/h en el grupo de test). Grad-CAM reveló que la CNN se centra en el comienzo y el final del evento apneico, es decir, donde la señal FA cambia bruscamente de amplitud. Así, nuestra propuesta sería muy útil para identificar automáticamente los patrones respiratorios asociados con la AOS infantil y ayudar en su diagnóstico.
- Published
- 2023
3. ECG-ENET: Red neuronal convolucional explicable para la ayuda en el diagnóstico de la apnea del sueño infantil
- Author
-
García Vicente, C., Gutiérrez Tobal, G. C., Jiménez García, J., Martín Montero, A., Gozal, D., Hornero, R., García Vicente, C., Gutiérrez Tobal, G. C., Jiménez García, J., Martín Montero, A., Gozal, D., and Hornero, R.
- Abstract
La apnea obstructiva del sueño (AOS) consiste en un trastorno respiratorio, que en niños se ha vinculado con el sistema cardíaco y un aumento del riesgo cardiovascular. El diagnóstico estándar es la polisomnografía (PSG), pero su coste, complejidad e incomodidad, especialmente en niños, limitan su disponibilidad y contribuyen a un infra diagnóstico de la enfermedad. Para abordar esta situación, se propone por primera vez una alternativa simplificada utilizando el electrocardiograma (ECG) nocturno y una red neuronal convolucional (CNN) que estima la severidad de la AOS pediátrica. Además, se plantea el método Gradient-weighted Class Activation Mapping (GradCAM) para interpretar los resultados de la CNN. Para ello, se han analizado 1610 registros de ECG de niños. El rendimiento de nuestro enfoque superó los mejores resultados de estudios previos (Cohen’s kappa de 4 clases 0,359 vs. 0,166 y precisión de 4 clases 56,52% vs. 41,89%). Además, GradCAM identificó patrones bradicardia-taquicardia en las zonas de transición desde un evento de apnea a zonas post-apnea, destacando las regiones entre ondas T y P. Nuestros resultados muestran que la implementación de una CNN explicable mediante el ECG puede ser útil en el diagnóstico de la AOS pediátrica y ayudaría a los facultativos a mejorar la confianza en sistemas automatizados e identificar patrones cardíacos asociados con la enfermedad. Todo ello convierte nuestra propuesta en una alternativa prometedora a la PSG, con el potencial de facilitar un diagnóstico objetivo, rápido, de menor coste y preciso de la AOS.
- Published
- 2023
4. ECG-based convolutional neural network in pediatric obstructive sleep apnea diagnosis.
- Author
-
García-Vicente C, Gutiérrez-Tobal GC, Jiménez-García J, Martín-Montero A, Gozal D, and Hornero R
- Subjects
- Humans, Child, Neural Networks, Computer, Algorithms, Polysomnography, Electrocardiography, Sleep, Sleep Apnea, Obstructive diagnosis
- Abstract
Obstructive sleep apnea (OSA) is a prevalent respiratory condition in children and is characterized by partial or complete obstruction of the upper airway during sleep. The respiratory events in OSA induce transient alterations of the cardiovascular system that ultimately can lead to increased cardiovascular risk in affected children. Therefore, a timely and accurate diagnosis is of utmost importance. However, polysomnography (PSG), the standard diagnostic test for pediatric OSA, is complex, uncomfortable, costly, and relatively inaccessible, particularly in low-resource environments, thereby resulting in substantial underdiagnosis. Here, we propose a novel deep-learning approach to simplify the diagnosis of pediatric OSA using raw electrocardiogram tracing (ECG). Specifically, a new convolutional neural network (CNN)-based regression model was implemented to automatically predict pediatric OSA by estimating its severity based on the apnea-hypopnea index (AHI) and deriving 4 OSA severity categories. For this purpose, overnight ECGs from 1,610 PSG recordings obtained from the Childhood Adenotonsillectomy Trial (CHAT) database were used. The database was randomly divided into approximately 60%, 20%, and 20% for training, validation, and testing, respectively. The diagnostic performance of the proposed CNN model largely outperformed the most accurate previous algorithms that relied on ECG-derived features (4-class Cohen's kappa coefficient of 0.373 versus 0.166). Specifically, for AHI cutoff values of 1, 5, and 10 events/hour, the binary classification achieved sensitivities of 84.19%, 76.67%, and 53.66%; specificities of 46.15%, 91.39%, and 98.06%; and accuracies of 75.92%, 86.96%, and 91.97%, respectively. Therefore, pediatric OSA can be readily identified by our proposed CNN model, which provides a simpler, faster, and more accessible diagnostic test that can be implemented in clinical practice., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2023 The Authors. Published by Elsevier Ltd.. All rights reserved.)
- Published
- 2023
- Full Text
- View/download PDF
5. [Exophthalmos caused by orbital metastasis of prostatic carcinoma].
- Author
-
Romero Pérez P, Pelluch Auladell A, Lobato Encinas JJ, Megías Garrigos J, García Vicente C, Pérez-Llorca LA, and Mira Llinares A
- Subjects
- Adenocarcinoma complications, Adenocarcinoma therapy, Aged, Antineoplastic Agents therapeutic use, Cyproterone analogs & derivatives, Cyproterone therapeutic use, Cyproterone Acetate, Humans, Male, Orbital Neoplasms complications, Orchiectomy, Palliative Care, Prostatic Neoplasms therapy, Adenocarcinoma secondary, Exophthalmos etiology, Orbital Neoplasms secondary, Prostatic Neoplasms complications
- Abstract
A case of orbital metastasis from Whitmore stage D adenocarcinoma of the prostate is described. Clinically, it presented as rapidly progressing exophthalmos of the right eye with elevation (ptosis) and abduction paralysis. The associated clinical picture of a one-year history of prostatism prompted patient referral to our department. When a patient presents with an orbital tumor and a history of cancer localized to another site, the metastatic origin of the condition should be suspected and metastasis to other sites sought. A negative finding warrants performing orbital biopsy to confirm the diagnosis. Although excision of single metastatic tumors in this site has been described, coexisting metastasis to bone and lymph nodes, the hormone dependence that these present and prostatic cancer contraindicate resection of the orbital metastatic tumor. Following bilateral orchiectomy and hormone therapy with antiandrogens micturitional symptomatology improved, tumor size was reduced, and exophthalmos disappeared. The case described herein is not the first case of this type of metastatic lesion reported in the literature; 28 cases have been reported to date. This uncommon clinical presentation with extraurological manifestations gives us an idea of the broad clinical spectrum the biological behaviour of this tumor type can adopt.
- Published
- 1991
6. [DIDMOAD syndrome. An endocrinological study of 4 cases].
- Author
-
Carro Martínez A, Mauri Dot M, Ercilla González G, García Vicente C, and Barceló Lucerga B
- Subjects
- Adolescent, Adrenal Cortex immunology, Adult, Autoantibodies analysis, Female, HLA Antigens analysis, Humans, Islets of Langerhans immunology, Male, Stomach immunology, Thyroid Gland immunology, Wolfram Syndrome diagnosis, Wolfram Syndrome immunology
- Published
- 1988
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.