1. Predicting Electric Energy Consumption Using Sandwich Structure of Attention in Double -LSTM
- Author
-
GAO Yan-lu, XU Yuan, ZHU Qun-xiong
- Subjects
time series ,energy consumption prediction ,attention mechanism ,long and short-term memory network ,Computer software ,QA76.75-76.765 ,Technology (General) ,T1-995 - Abstract
The rapid growth of the global population and technological progress has significantly increased the world's total power generation.Electric energy consumption forecasts play an essential role in power system dispatch and power generation management.Aim at the complex characteristics of time series of energy consumption data,and to improve the prediction accuracy of power consumption,a novel sandwich structure is proposed,in which an Attention mechanism is placed in the double layer long short-term memory artificial neural network,namely A-DLSTM.This network structure uses the attention mechanism in the mezzanine to adaptively focus on different features in each single time unit and uses the two-layer LSTM network to capture the time information in the sequence to predict the sequence data.The experimental data comes from the UCI machine learning data set,and it is the electricity consumption of a family in the past five years.The parameters of the experiment are adjusting by the grid search method.The experiment compares the prediction performance of A-DLSTM and the existing model on energy consumption data.The network of this article reaches the state-of-the-art in terms of mean square error,root mean square error,average absolute error,and average absolute percentage error.By analyzing the heat map's attention layer,the factor that has the most significant impact on electricity consumption forecasting is determined.
- Published
- 2022
- Full Text
- View/download PDF