101,061 results on '"Gandhi SO"'
Search Results
2. System Test Case Design from Requirements Specifications: Insights and Challenges of Using ChatGPT
- Author
-
Bhatia, Shreya, Gandhi, Tarushi, Kumar, Dhruv, and Jalote, Pankaj
- Subjects
Computer Science - Software Engineering ,Computer Science - Artificial Intelligence - Abstract
System testing is essential in any software development project to ensure that the final products meet the requirements. Creating comprehensive test cases for system testing from requirements is often challenging and time-consuming. This paper explores the effectiveness of using Large Language Models (LLMs) to generate test case designs from Software Requirements Specification (SRS) documents. In this study, we collected the SRS documents of five software engineering projects containing functional and non-functional requirements, which were implemented, tested, and delivered by respective developer teams. For generating test case designs, we used ChatGPT-4o Turbo model. We employed prompt-chaining, starting with an initial context-setting prompt, followed by prompts to generate test cases for each use case. We assessed the quality of the generated test case designs through feedback from the same developer teams as mentioned above. Our experiments show that about 87 percent of the generated test cases were valid, with the remaining 13 percent either not applicable or redundant. Notably, 15 percent of the valid test cases were previously not considered by developers in their testing. We also tasked ChatGPT with identifying redundant test cases, which were subsequently validated by the respective developers to identify false positives and to uncover any redundant test cases that may have been missed by the developers themselves. This study highlights the potential of leveraging LLMs for test generation from the Requirements Specification document and also for assisting developers in quickly identifying and addressing redundancies, ultimately improving test suite quality and efficiency of the testing procedure.
- Published
- 2024
3. Surveying the Effects of Quality, Diversity, and Complexity in Synthetic Data From Large Language Models
- Author
-
Havrilla, Alex, Dai, Andrew, O'Mahony, Laura, Oostermeijer, Koen, Zisler, Vera, Albalak, Alon, Milo, Fabrizio, Raparthy, Sharath Chandra, Gandhi, Kanishk, Abbasi, Baber, Phung, Duy, Iyer, Maia, Mahan, Dakota, Blagden, Chase, Gureja, Srishti, Hamdy, Mohammed, Li, Wen-Ding, Paolini, Giovanni, Ammanamanchi, Pawan Sasanka, and Meyerson, Elliot
- Subjects
Computer Science - Machine Learning ,Computer Science - Artificial Intelligence ,Computer Science - Computation and Language - Abstract
Synthetic data generation with Large Language Models is a promising paradigm for augmenting natural data over a nearly infinite range of tasks. Given this variety, direct comparisons among synthetic data generation algorithms are scarce, making it difficult to understand where improvement comes from and what bottlenecks exist. We propose to evaluate algorithms via the makeup of synthetic data generated by each algorithm in terms of data quality, diversity, and complexity. We choose these three characteristics for their significance in open-ended processes and the impact each has on the capabilities of downstream models. We find quality to be essential for in-distribution model generalization, diversity to be essential for out-of-distribution generalization, and complexity to be beneficial for both. Further, we emphasize the existence of Quality-Diversity trade-offs in training data and the downstream effects on model performance. We then examine the effect of various components in the synthetic data pipeline on each data characteristic. This examination allows us to taxonomize and compare synthetic data generation algorithms through the components they utilize and the resulting effects on data QDC composition. This analysis extends into a discussion on the importance of balancing QDC in synthetic data for efficient reinforcement learning and self-improvement algorithms. Analogous to the QD trade-offs in training data, often there exist trade-offs between model output quality and output diversity which impact the composition of synthetic data. We observe that many models are currently evaluated and optimized only for output quality, thereby limiting output diversity and the potential for self-improvement. We argue that balancing these trade-offs is essential to the development of future self-improvement algorithms and highlight a number of works making progress in this direction.
- Published
- 2024
4. Time Resolved Absorption of Six Chemical Species With MAROON-X Points to Strong Drag in the Ultra Hot Jupiter TOI-1518 b
- Author
-
Simonnin, A., Parmentier, V., Wardenier, J. P., Chauvin, G., Chiavassa, A., N'Diaye, M., Tan, X., Bean, J., Line, M., Kitzmann, D., Kasper, D., Seifhart, A., Brogi, M., Lee, E. K. H., Pelletier, S., Pino, L., Prinoth, B., Seidel, J. V., Mansfield, M. Weiner, Benneke, B., Désert, J-M., Gandhi, S., Hammond, M., Palma-Bifani, P., Rauscher, E., and Smith, P.
- Subjects
Astrophysics - Earth and Planetary Astrophysics - Abstract
Wind dynamics play a pivotal role in governing transport processes within planetary atmospheres, influencing atmospheric chemistry, cloud formation, and the overall energy budget. Understanding the strength and patterns of winds is crucial for comprehensive insights into the physics of ultra-hot Jupiter atmospheres. Current research has proposed two contrasting mechanisms that limit wind speeds in these atmospheres, each predicting a different scaling of wind speed with planet temperature. However, the sparse nature of existing observations hinders the determination of population trends and the validation of these proposed mechanisms. This study focuses on unraveling the wind dynamics and the chemical composition in the atmosphere of the ultra-hot Jupiter TOI-1518 b. Two transit observations using the high-resolution (R{\lambda} = 85 000), optical (spectral coverage between 490 and 920 nm) spectrograph MAROON-X were obtained and analyzed to explore the chemical composition and wind dynamics using the cross-correlation techniques, global circulating models, and atmospheric retrieval. We report the detection of 14 species in the atmosphere of TOI-1518 b through cross-correlation analysis. Additionally, we measure the time-varying cross-correlation trails for 6 different species, compare them with predictions from General Circulation Models (GCM) and conclude that a strong drag is present in TOI-1518b's atmosphere. The ionized species require stronger drags than neutral species, likely due to the increased magnetic effects in the upper atmosphere. Furthermore, we detect vanadium oxide (VO) using the most up-to-date line list. This result is promising in detecting VO in other systems where inaccuracies in previous line lists have hindered detection. We use a retrieval analysis to further characterize the abundances of the different species detected., Comment: 18 pages, 24 figures, submitted to A&A, early submission due to Postdoc applications
- Published
- 2024
5. Uncertainty propagation and covariance analysis of 181Ta(n,{\gamma})182Ta nuclear reaction
- Author
-
Singh, Namrata, Choudhary, Mahesh, Gandhi, A., Sharma, Aman, Upadhyay, Mahima, Dubey, Punit, Hingu, Akash, Mishra, G., De, Sukanya, Mitra, A., Danu, L. S., Kumar, Ajay, Thomas, R. G., Sood, Saurav, Prasad, Sajin, and Kumar, A.
- Subjects
Nuclear Experiment - Abstract
The neutron capture cross-section for the $^{181}$Ta(n,$\gamma$)$^{182}$Ta reaction has been experimentally measured at the neutron energies 0.53 and 1.05 MeV using off-line $\gamma$-ray spectrometry. $^{115}$In(n,n'$\gamma$)$^{115m}$In is used as a reference monitor reaction cross-section. The neutron was produced via the $^{7}$Li(p,n)$^{7}$Be reaction. The present study measures the cross-sections with their uncertainties and correlation matrix. The self-attenuation process, $\gamma$-ray correction factor, and low background neutron energy contribution have been calculated. The measured neutron spectrum averaged cross-sections of $^{181}$Ta(n,$\gamma$)$^{182}$Ta are discussed and compared with the existing data from the EXFOR database and also with the ENDF/B-VIII.0, TENDL-2019, JENDL-5, JEFF-3.3 evaluated data libraries.
- Published
- 2024
6. TIDE: Training Locally Interpretable Domain Generalization Models Enables Test-time Correction
- Author
-
Agarwal, Aishwarya, Karanam, Srikrishna, and Gandhi, Vineet
- Subjects
Computer Science - Computer Vision and Pattern Recognition - Abstract
We consider the problem of single-source domain generalization. Existing methods typically rely on extensive augmentations to synthetically cover diverse domains during training. However, they struggle with semantic shifts (e.g., background and viewpoint changes), as they often learn global features instead of local concepts that tend to be domain invariant. To address this gap, we propose an approach that compels models to leverage such local concepts during prediction. Given no suitable dataset with per-class concepts and localization maps exists, we first develop a novel pipeline to generate annotations by exploiting the rich features of diffusion and large-language models. Our next innovation is TIDE, a novel training scheme with a concept saliency alignment loss that ensures model focus on the right per-concept regions and a local concept contrastive loss that promotes learning domain-invariant concept representations. This not only gives a robust model but also can be visually interpreted using the predicted concept saliency maps. Given these maps at test time, our final contribution is a new correction algorithm that uses the corresponding local concept representations to iteratively refine the prediction until it aligns with prototypical concept representations that we store at the end of model training. We evaluate our approach extensively on four standard DG benchmark datasets and substantially outperform the current state-ofthe-art (12% improvement on average) while also demonstrating that our predictions can be visually interpreted, Comment: 14 pages, 11 figures
- Published
- 2024
7. Superconducting $p$-wave pairing effects on one-dimensional non-Hermitian quasicrystals with power law hopping
- Author
-
Gandhi, Shaina and Bandyopadhyay, Jayendra N.
- Subjects
Condensed Matter - Superconductivity ,Condensed Matter - Disordered Systems and Neural Networks ,Condensed Matter - Other Condensed Matter ,Quantum Physics - Abstract
We study the effects of superconducting $p$-wave pairing on the non-Hermitian Aubry-Andr\'e-Harper model with power-law hopping. For the case of short-range hopping, weak pairing leads to oscillating quasi-Majorana zero modes, turning to edge-localized Majorana zero modes as pairing strength increases. For the case of long-range hopping, we observe the emergence of massive Dirac modes having oscillatory behavior, similar to Majorana modes with weak pairing. The massive Dirac modes localize at the edges as the pairing strength grows. The superconducting pairing spoils the plateaus observed in the fractal dimension of all the energy eigenstates of the Aubry-Andr\'e-Harper model with power-law hopping. The number of plateaus decreases with the increasing pairing strength for the weak non-Hermiticity in the system. The phase diagram of the system reveals that real and complex energy spectrums correlate differently with the localization properties of the eigenstates depending on the strength of pairing and hopping range., Comment: 11 pages, 6 figures
- Published
- 2024
8. Automatic Discovery and Assessment of Interpretable Systematic Errors in Semantic Segmentation
- Author
-
Singh, Jaisidh, Singh, Sonam, Kale, Amit Arvind, and Gandhi, Harsh K
- Subjects
Computer Science - Computer Vision and Pattern Recognition - Abstract
This paper presents a novel method for discovering systematic errors in segmentation models. For instance, a systematic error in the segmentation model can be a sufficiently large number of misclassifications from the model as a parking meter for a target class of pedestrians. With the rapid deployment of these models in critical applications such as autonomous driving, it is vital to detect and interpret these systematic errors. However, the key challenge is automatically discovering such failures on unlabelled data and forming interpretable semantic sub-groups for intervention. For this, we leverage multimodal foundation models to retrieve errors and use conceptual linkage along with erroneous nature to study the systematic nature of these errors. We demonstrate that such errors are present in SOTA segmentation models (UperNet ConvNeXt and UperNet Swin) trained on the Berkeley Deep Drive and benchmark the approach qualitatively and quantitatively, showing its effectiveness by discovering coherent systematic errors for these models. Our work opens up the avenue to model analysis and intervention that have so far been underexplored in semantic segmentation., Comment: 7 pages main paper (without references), total 13 pages & 9 figures
- Published
- 2024
9. Improving training time and GPU utilization in geo-distributed language model training
- Author
-
Palak, Gandhi, Rohan, Tandon, Karan, Bhattacherjee, Debopam, and Padmanabhan, Venkata N.
- Subjects
Computer Science - Distributed, Parallel, and Cluster Computing ,Computer Science - Artificial Intelligence ,Computer Science - Machine Learning - Abstract
The widespread adoption of language models (LMs) across multiple industries has caused huge surge in demand for GPUs. Training LMs requires tens of thousands of GPUs and housing them in the same datacenter (DCs) is becoming challenging. We focus on training such models across multiple DCs connected via Wide-Area-Network (WAN). We build ATLAS that speeds up such training time using novel temporal bandwidth sharing and many other design choices. While ATLAS improves the training time, it does not eliminate the bubbles (idle GPU cycles). We built BUBBLETEA that runs prefill-as-a-service (part of LM inference) during the bubbles that improves the GPU utilization substantially without any impact of training. Together, ATLAS and BUBBLETEA improve training time by up to 17X and achieve GPU utilization of up to 94%.
- Published
- 2024
10. IdentifyMe: A Challenging Long-Context Mention Resolution Benchmark
- Author
-
Manikantan, Kawshik, Tapaswi, Makarand, Gandhi, Vineet, and Toshniwal, Shubham
- Subjects
Computer Science - Computation and Language ,Computer Science - Artificial Intelligence ,Computer Science - Machine Learning ,I.2.7 - Abstract
Recent evaluations of LLMs on coreference resolution have revealed that traditional output formats and evaluation metrics do not fully capture the models' referential understanding. To address this, we introduce IdentifyMe, a new benchmark for mention resolution presented in a multiple-choice question (MCQ) format, commonly used for evaluating LLMs. IdentifyMe features long narratives and employs heuristics to exclude easily identifiable mentions, creating a more challenging task. The benchmark also consists of a curated mixture of different mention types and corresponding entities, allowing for a fine-grained analysis of model performance. We evaluate both closed- and open source LLMs on IdentifyMe and observe a significant performance gap (20-30%) between the state-of-the-art sub-10B open models vs. closed ones. We observe that pronominal mentions, which have limited surface information, are typically much harder for models to resolve than nominal mentions. Additionally, we find that LLMs often confuse entities when their mentions overlap in nested structures. The highest-scoring model, GPT-4o, achieves 81.9% accuracy, highlighting the strong referential capabilities of state-of-the-art LLMs while also indicating room for further improvement., Comment: 9 pages, 5 figures
- Published
- 2024
11. BudgetMLAgent: A Cost-Effective LLM Multi-Agent system for Automating Machine Learning Tasks
- Author
-
Gandhi, Shubham, Patwardhan, Manasi, Vig, Lovekesh, and Shroff, Gautam
- Subjects
Computer Science - Multiagent Systems ,Computer Science - Artificial Intelligence ,Computer Science - Computation and Language ,Computer Science - Machine Learning ,68T42 ,I.2.1 ,I.2.2 ,I.2.5 ,I.2.7 ,I.2.8 - Abstract
Large Language Models (LLMs) excel in diverse applications including generation of code snippets, but often struggle with generating code for complex Machine Learning (ML) tasks. Although existing LLM single-agent based systems give varying performance depending on the task complexity, they purely rely on larger and expensive models such as GPT-4. Our investigation reveals that no-cost and low-cost models such as Gemini-Pro, Mixtral and CodeLlama perform far worse than GPT-4 in a single-agent setting. With the motivation of developing a cost-efficient LLM based solution for solving ML tasks, we propose an LLM Multi-Agent based system which leverages combination of experts using profiling, efficient retrieval of past observations, LLM cascades, and ask-the-expert calls. Through empirical analysis on ML engineering tasks in the MLAgentBench benchmark, we demonstrate the effectiveness of our system, using no-cost models, namely Gemini as the base LLM, paired with GPT-4 in cascade and expert to serve occasional ask-the-expert calls for planning. With 94.2\% reduction in the cost (from \$0.931 per run cost averaged over all tasks for GPT-4 single agent system to \$0.054), our system is able to yield better average success rate of 32.95\% as compared to GPT-4 single-agent system yielding 22.72\% success rate averaged over all the tasks of MLAgentBench., Comment: Presented at AIMLSystems '24
- Published
- 2024
12. Evaluating tDCS Intervention Effectiveness via Functional Connectivity Network on Resting-State EEG Data in Major Depressive Disorder
- Author
-
Singh, Vishwani, Verma, Rohit, Shriyam, Shaurya, and Gandhi, Tapan K.
- Subjects
Quantitative Biology - Quantitative Methods ,Quantitative Biology - Neurons and Cognition - Abstract
Transcranial direct current stimulation (tDCS) has emerged as a promising non-invasive therapeutic intervention for major depressive disorder (MDD), yet its effects on neural mechanisms remain incompletely understood. This study investigates the impact of tDCS in individuals with MDD using resting-state EEG data and network neuroscience to analyze functional connectivity. We examined power spectral density (PSD) changes and functional connectivity (FC) patterns across theta, alpha, and beta bands before and after tDCS intervention. A notable aspect of this research involves the modification of the binarizing threshold algorithm to assess functional connectivity networks, facilitating a meaningful comparison at the group level. Our analysis using optimal threshold binarization techniques revealed significant modifications in network topology, particularly evident in the beta band, indicative of reduced randomization or enhanced small-worldness after tDCS. Furthermore, the hubness analysis identified specific brain regions, notably the dorsolateral prefrontal cortex (DLPFC) regions across all frequency bands, exhibiting increased functional connectivity, suggesting their involvement in the antidepressant effects of tDCS. Notably, tDCS intervention transformed the dispersed high connectivity into localized connectivity and increased left-sided asymmetry across all frequency bands. Overall, this study provides valuable insights into the effects of tDCS on neural mechanisms in MDD, offering a potential direction for further research and therapeutic development in the field of neuromodulation for mental health disorders., Comment: 10 pages
- Published
- 2024
13. WavShadow: Wavelet Based Shadow Segmentation and Removal
- Author
-
Jain, Shreyans, Vekaria, Viraj, Gandhi, Karan, and Arora, Aadya
- Subjects
Computer Science - Computer Vision and Pattern Recognition - Abstract
Shadow removal and segmentation remain challenging tasks in computer vision, particularly in complex real world scenarios. This study presents a novel approach that enhances the ShadowFormer model by incorporating Masked Autoencoder (MAE) priors and Fast Fourier Convolution (FFC) blocks, leading to significantly faster convergence and improved performance. We introduce key innovations: (1) integration of MAE priors trained on Places2 dataset for better context understanding, (2) adoption of Haar wavelet features for enhanced edge detection and multiscale analysis, and (3) implementation of a modified SAM Adapter for robust shadow segmentation. Extensive experiments on the challenging DESOBA dataset demonstrate that our approach achieves state of the art results, with notable improvements in both convergence speed and shadow removal quality.
- Published
- 2024
14. Calibrating the clock of JWST
- Author
-
Shaw, A. W., Kaplan, D. L., Gandhi, P., Maccarone, T. J., Borowski, E. S., Britt, C. T., Buckley, D. A. H., Burdge, K. B., Charles, P. A., Dhillon, V. S., French, R. G., Heinke, C. O., Hynes, R. I., Knigge, C., Littlefair, S. P., Pawar, Devraj, Plotkin, R. M., Ressler, M. E., Santos-Sanz, P., Shahbaz, T., Sivakoff, G. R., and Stevens, A. L.
- Subjects
Astrophysics - Instrumentation and Methods for Astrophysics - Abstract
JWST, despite not being designed to observe astrophysical phenomena that vary on rapid time scales, can be an unparalleled tool for such studies. If timing systematics can be controlled, JWST will be able to open up the sub-second infrared timescale regime. Rapid time-domain studies, such as lag measurements in accreting compact objects and Solar System stellar occultations, require both precise inter-frame timing and knowing when a time series begins to an absolute accuracy significantly below 1s. In this work we present two long-duration observations of the deeply eclipsing double white dwarf system ZTF J153932.16+502738.8, which we use as a natural timing calibrator to measure the absolute timing accuracy of JWST's clock. From our two epochs, we measure an average clock accuracy of $0.12\pm0.06$s, implying that JWST can be used for sub-second time-resolution studies down to the $\sim100$ms level, a factor $\sim5$ improvement upon the pre-launch clock accuracy requirement. We also find an asymmetric eclipse profile in the F322W2 band, which we suggest has a physical origin., Comment: 16 pages, 13 figures, accepted for publication in AJ
- Published
- 2024
15. Kernel Looping: Eliminating Synchronization Boundaries for Peak Inference Performance
- Author
-
Koeplinger, David, Gandhi, Darshan, Nandkar, Pushkar, Sheeley, Nathan, Musaddiq, Matheen, Zhang, Leon, Goodbar, Reid, Shaffer, Matthew, Wang, Han, Wang, Angela, Wang, Mingran, and Prabhakar, Raghu
- Subjects
Computer Science - Computation and Language ,Computer Science - Artificial Intelligence ,Computer Science - Hardware Architecture ,D.3.4 ,C.1.3 - Abstract
Token generation speed is critical to power the next wave of AI inference applications. GPUs significantly underperform during token generation due to synchronization overheads at kernel boundaries, utilizing only 21% of their peak memory bandwidth. While recent dataflow architectures mitigate these overheads by enabling aggressive fusion of decoder layers into a single kernel, they too leave performance on the table due to synchronization penalties at layer boundaries. This paper presents kernel looping, a specialized global optimization technique which exploits an optimization opportunity brought by combining the unique layer-level fusion possible in modern dataflow architectures with the repeated layer structure found in language models. Kernel looping eliminates synchronization costs between consecutive calls to the same kernel by transforming these calls into a single call to a modified kernel containing a pipelined outer loop. We evaluate kernel looping on the SambaNova SN40L Reconfigurable Dataflow Unit (RDU), a commercial dataflow accelerator for AI. Experiments demonstrate that kernel looping speeds up the decode phase of a wide array of powerful open-source models by up to 2.2$\times$ on SN40L. Kernel looping allows scaling of decode performance over multiple SN40L sockets, achieving speedups of up to 2.5$\times$. Finally, kernel looping enables SN40L to achieve over 90% of peak performance on 8 and 16 sockets and achieve a speedup of up to 3.7$\times$ over DGX H100. Kernel looping, as well as the models evaluated in this paper, are deployed in production in a commercial AI inference cloud.
- Published
- 2024
16. KALAM: toolKit for Automating high-Level synthesis of Analog computing systeMs
- Author
-
Nandi, Ankita, Gandhi, Krishil, Singh, Mahendra Pratap, Chakrabartty, Shantanu, and Thakur, Chetan Singh
- Subjects
Electrical Engineering and Systems Science - Systems and Control ,Computer Science - Hardware Architecture ,Computer Science - Emerging Technologies ,Computer Science - Machine Learning ,Electrical Engineering and Systems Science - Signal Processing - Abstract
Diverse computing paradigms have emerged to meet the growing needs for intelligent energy-efficient systems. The Margin Propagation (MP) framework, being one such initiative in the analog computing domain, stands out due to its scalability across biasing conditions, temperatures, and diminishing process technology nodes. However, the lack of digital-like automation tools for designing analog systems (including that of MP analog) hinders their adoption for designing large systems. The inherent scalability and modularity of MP systems present a unique opportunity in this regard. This paper introduces KALAM (toolKit for Automating high-Level synthesis of Analog computing systeMs), which leverages factor graphs as the foundational paradigm for synthesizing MP-based analog computing systems. Factor graphs are the basis of various signal processing tasks and, when coupled with MP, can be used to design scalable and energy-efficient analog signal processors. Using Python scripting language, the KALAM automation flow translates an input factor graph to its equivalent SPICE-compatible circuit netlist that can be used to validate the intended functionality. KALAM also allows the integration of design optimization strategies such as precision tuning, variable elimination, and mathematical simplification. We demonstrate KALAM's versatility for tasks such as Bayesian inference, Low-Density Parity Check (LDPC) decoding, and Artificial Neural Networks (ANN). Simulation results of the netlists align closely with software implementations, affirming the efficacy of our proposed automation tool., Comment: 5 Pages, 4 figures
- Published
- 2024
17. Cyberbullying or just Sarcasm? Unmasking Coordinated Networks on Reddit
- Author
-
Pamecha, Pinky, Shah, Chaitya, Jain, Divyam, Gandhi, Kashish, Bhowmick, Kiran, and Narvekar, Meera
- Subjects
Computer Science - Social and Information Networks ,Computer Science - Machine Learning - Abstract
With the rapid growth of social media usage, a common trend has emerged where users often make sarcastic comments on posts. While sarcasm can sometimes be harmless, it can blur the line with cyberbullying, especially when used in negative or harmful contexts. This growing issue has been exacerbated by the anonymity and vast reach of the internet, making cyberbullying a significant concern on platforms like Reddit. Our research focuses on distinguishing cyberbullying from sarcasm, particularly where online language nuances make it difficult to discern harmful intent. This study proposes a framework using natural language processing (NLP) and machine learning to differentiate between the two, addressing the limitations of traditional sentiment analysis in detecting nuanced behaviors. By analyzing a custom dataset scraped from Reddit, we achieved a 95.15% accuracy in distinguishing harmful content from sarcasm. Our findings also reveal that teenagers and minority groups are particularly vulnerable to cyberbullying. Additionally, our research uncovers coordinated graphs of groups involved in cyberbullying, identifying common patterns in their behavior. This research contributes to improving detection capabilities for safer online communities., Comment: 7 pages, 4 figures
- Published
- 2024
18. Infectious Disease Forecasting in India using LLM's and Deep Learning
- Author
-
Shah, Chaitya, Gandhi, Kashish, Shah, Javal, Shah, Kreena, Patil, Nilesh, and Bhowmick, Kiran
- Subjects
Computer Science - Machine Learning ,Computer Science - Logic in Computer Science - Abstract
Many uncontrollable disease outbreaks of the past exposed several vulnerabilities in the healthcare systems worldwide. While advancements in technology assisted in the rapid creation of the vaccinations, there needs to be a pressing focus on the prevention and prediction of such massive outbreaks. Early detection and intervention of an outbreak can drastically reduce its impact on public health while also making the healthcare system more resilient. The complexity of disease transmission dynamics, influence of various directly and indirectly related factors and limitations of traditional approaches are the main bottlenecks in taking preventive actions. Specifically, this paper implements deep learning algorithms and LLM's to predict the severity of infectious disease outbreaks. Utilizing the historic data of several diseases that have spread in India and the climatic data spanning the past decade, the insights from our research aim to assist in creating a robust predictive system for any outbreaks in the future., Comment: 16 pages, 4 figures
- Published
- 2024
19. An Internal Digital Image Correlation Technique for High-Strain Rate Dynamic Experiments
- Author
-
Lawlor, Barry P, Gandhi, Vatsa, and Ravichandran, Guruswami
- Subjects
Physics - Applied Physics - Abstract
Background: Full-field, quantitative visualization techniques, such as digital image correlation (DIC), have unlocked vast opportunities for experimental mechanics. However, DIC has traditionally been a surface measurement technique, and has not been extended to perform measurements on the interior of specimens for dynamic, full-scale laboratory experiments. This restricts the use of DIC measurements, especially in the context of heterogeneous materials. Objective: The focus of this study is to develop a method for performing internal DIC measurements in dynamic experiments. The aim is to demonstrate its feasibility and accuracy across a range of stresses (up to 650MPa), strain rates ($10^3$-$10^6$ s$^{-1}$), and high-strain rate loading conditions (e.g., ramped and shock wave loading). Methods: Internal DIC is developed based on the concept of applying a speckle pattern at an inner-plane of a transparent specimen. The high-speed imaging configuration is then focused on the internal speckle pattern. During the dynamic experiment, in-plane, two-dimensional deformations are measured via correlation of the internal speckle pattern. Results: The internal DIC experimental technique is successfully demonstrated in both the SHPB and plate impact experiments. In the SHPB setting, the accuracy of the technique is excellent throughout the deformation regime, with measurement noise of approximately 0.2% strain. For plate impact experiments, the technique performs well, with error and measurement noise of 1% strain. Conclusion: The internal DIC technique has been developed and demonstrated to work well for full-scale dynamic high-strain rate and shock laboratory experiments, and the accuracy is quantified. The technique can aid in investigating the physics and mechanics of the dynamic behavior of materials, including local deformation fields around dynamically loaded material heterogeneities.
- Published
- 2024
20. Representation Similarity: A Better Guidance of DNN Layer Sharing for Edge Computing without Training
- Author
-
Cao, Bryan Bo, Sharma, Abhinav, Singh, Manavjeet, Gandhi, Anshul, Das, Samir, and Jain, Shubham
- Subjects
Computer Science - Computer Vision and Pattern Recognition ,Computer Science - Distributed, Parallel, and Cluster Computing ,68M14 ,C.2.4 ,I.4.0 ,I.4.9 - Abstract
Edge computing has emerged as an alternative to reduce transmission and processing delay and preserve privacy of the video streams. However, the ever-increasing complexity of Deep Neural Networks (DNNs) used in video-based applications (e.g. object detection) exerts pressure on memory-constrained edge devices. Model merging is proposed to reduce the DNNs' memory footprint by keeping only one copy of merged layers' weights in memory. In existing model merging techniques, (i) only architecturally identical layers can be shared; (ii) requires computationally expensive retraining in the cloud; (iii) assumes the availability of ground truth for retraining. The re-evaluation of a merged model's performance, however, requires a validation dataset with ground truth, typically runs at the cloud. Common metrics to guide the selection of shared layers include the size or computational cost of shared layers or representation size. We propose a new model merging scheme by sharing representations (i.e., outputs of layers) at the edge, guided by representation similarity S. We show that S is extremely highly correlated with merged model's accuracy with Pearson Correlation Coefficient |r| > 0.94 than other metrics, demonstrating that representation similarity can serve as a strong validation accuracy indicator without ground truth. We present our preliminary results of the newly proposed model merging scheme with identified challenges, demonstrating a promising research future direction., Comment: 3 pages, 4 figures, ACM MobiCom '24, November 18-22, 2024, Washington D.C., DC, USA
- Published
- 2024
- Full Text
- View/download PDF
21. Evaluating Differentially Private Synthetic Data Generation in High-Stakes Domains
- Author
-
Ramesh, Krithika, Gandhi, Nupoor, Madaan, Pulkit, Bauer, Lisa, Peris, Charith, and Field, Anjalie
- Subjects
Computer Science - Computation and Language - Abstract
The difficulty of anonymizing text data hinders the development and deployment of NLP in high-stakes domains that involve private data, such as healthcare and social services. Poorly anonymized sensitive data cannot be easily shared with annotators or external researchers, nor can it be used to train public models. In this work, we explore the feasibility of using synthetic data generated from differentially private language models in place of real data to facilitate the development of NLP in these domains without compromising privacy. In contrast to prior work, we generate synthetic data for real high-stakes domains, and we propose and conduct use-inspired evaluations to assess data quality. Our results show that prior simplistic evaluations have failed to highlight utility, privacy, and fairness issues in the synthetic data. Overall, our work underscores the need for further improvements to synthetic data generation for it to be a viable way to enable privacy-preserving data sharing., Comment: Accepted to EMNLP 2024 (Findings)
- Published
- 2024
22. The mystery of water in the atmosphere of $\tau$ Bo\'otis b continues: insights from revisiting archival CRIRES observations
- Author
-
Panwar, Vatsal, Brogi, Matteo, Gandhi, Siddharth, Cegla, Heather, and Lafarga, Marina
- Subjects
Astrophysics - Earth and Planetary Astrophysics - Abstract
The chemical abundances of gas-giant exoplanet atmospheres hold clues to the formation and evolution pathways that sculpt the exoplanet population. Recent ground-based high-resolution spectroscopic observations of the non-transiting hot Jupiter $\tau$ Bo\"otis b from different instruments have resulted in a tension on the presence of water vapour in the planet's atmosphere, which impact the planet's inferred C/O and metallicity. To investigate this, we revisit the archival CRIRES observations of the planet's dayside in the wavelength range 2.28 to 2.33 $\mu$m. We reanalyse them using the latest methods for correcting stellar and telluric systematics, and free-chemistry Bayesian atmospheric retrieval. We find that a spurious detection of CH$_{4}$ can arise from inadequate telluric correction. We confirm the detection of CO and constrain its abundance to be near solar $\log_{10}(\mathrm{CO})$ = -3.44$^{+1.63}_{-0.85}$ VMR. We find a marginal evidence for H$_{2}$O with $\log_{10}(\mathrm{H_{2}O})$ = -5.13$^{+1.22}_{-6.37}$ VMR. This translates to super solar C/O (0.95$^{+0.06}_{-0.31}$), marginally sub-solar metallicity (-0.21 $^{+1.66}_{-0.87}$). Due to the relatively large uncertainty on H$_{2}$O abundance, we cannot confidently resolve the tension on the presence of H$_{2}$O and the super-solar atmospheric metallicity of $\tau$ Bo\"otis b. We recommend further observations of $\tau$ Bo\"otis b in the wavelength ranges simultaneously covering CO and $\mathrm{H_{2}O}$ to confirm the peculiar case of the planet's super-solar C/O and metallicity., Comment: 16 pages, 13 figures; Accepted for publication in MNRAS
- Published
- 2024
23. The NuSTAR Local AGN $N_{\rm H}$ Distribution Survey (NuLANDS) I: Towards a Truly Representative Column Density Distribution in the Local Universe
- Author
-
Boorman, Peter G., Gandhi, Poshak, Buchner, Johannes, Stern, Daniel, Ricci, Claudio, Baloković, Mislav, Asmus, Daniel, Harrison, Fiona A., Svoboda, Jiří, Greenwell, Claire, Koss, Michael, Alexander, David M., Annuar, Adlyka, Bauer, Franz, Brandt, William N., Brightman, Murray, Panessa, Francesca, Chen, Chien-Ting J., Farrah, Duncan, Forster, Karl, Grefenstette, Brian, Hönig, Sebastian F., Hill, Adam B., Kammoun, Elias, Lansbury, George, Lanz, Lauranne, LaMassa, Stephanie, Madsen, Kristin, Marchesi, Stefano, Middleton, Matthew, Mingo, Beatriz, Parker, Michael L., Treister, Ezequiel, Ueda, Yoshihiro, Urry, C. Megan, and Zappacosta, Luca
- Subjects
Astrophysics - Astrophysics of Galaxies ,Astrophysics - High Energy Astrophysical Phenomena - Abstract
Hard X-ray-selected samples of Active Galactic Nuclei (AGN) provide one of the cleanest views of supermassive black hole accretion, but are biased against objects obscured by Compton-thick gas column densities of $N_{\rm H}$ $>$ 10$^{24}$ cm$^{-2}$. To tackle this issue, we present the NuSTAR Local AGN $N_{\rm H}$ Distribution Survey (NuLANDS)$-$a legacy sample of 122 nearby ($z$ $<$ 0.044) AGN primarily selected to have warm infrared colors from IRAS between 25$-$60 $\mu$m. We show that optically classified type 1 and 2 AGN in NuLANDS are indistinguishable in terms of optical [OIII] line flux and mid-to-far infrared AGN continuum bolometric indicators, as expected from an isotropically selected AGN sample, while type 2 AGN are deficient in terms of their observed hard X-ray flux. By testing many X-ray spectroscopic models, we show the measured line-of-sight column density varies on average by $\sim$ 1.4 orders of magnitude depending on the obscurer geometry. To circumvent such issues we propagate the uncertainties per source into the parent column density distribution, finding a directly measured Compton-thick fraction of 35 $\pm$ 9%. By construction, our sample will miss sources affected by severe narrow-line reddening, and thus segregates sources dominated by small-scale nuclear obscuration from large-scale host-galaxy obscuration. This bias implies an even higher intrinsic obscured AGN fraction may be possible, although tests for additional biases arising from our infrared selection find no strong effects on the measured column-density distribution. NuLANDS thus holds potential as an optimized sample for future follow-up with current and next-generation instruments aiming to study the local AGN population in an isotropic manner., Comment: Accepted for publication in ApJ. 50 pages (78 including appendix and bibliography), 21 figures
- Published
- 2024
24. A Multimodal Framework for Deepfake Detection
- Author
-
Gandhi, Kashish, Kulkarni, Prutha, Shah, Taran, Chaudhari, Piyush, Narvekar, Meera, and Ghag, Kranti
- Subjects
Computer Science - Computer Vision and Pattern Recognition ,Computer Science - Artificial Intelligence ,Computer Science - Machine Learning ,Computer Science - Logic in Computer Science - Abstract
The rapid advancement of deepfake technology poses a significant threat to digital media integrity. Deepfakes, synthetic media created using AI, can convincingly alter videos and audio to misrepresent reality. This creates risks of misinformation, fraud, and severe implications for personal privacy and security. Our research addresses the critical issue of deepfakes through an innovative multimodal approach, targeting both visual and auditory elements. This comprehensive strategy recognizes that human perception integrates multiple sensory inputs, particularly visual and auditory information, to form a complete understanding of media content. For visual analysis, a model that employs advanced feature extraction techniques was developed, extracting nine distinct facial characteristics and then applying various machine learning and deep learning models. For auditory analysis, our model leverages mel-spectrogram analysis for feature extraction and then applies various machine learning and deep learningmodels. To achieve a combined analysis, real and deepfake audio in the original dataset were swapped for testing purposes and ensured balanced samples. Using our proposed models for video and audio classification i.e. Artificial Neural Network and VGG19, the overall sample is classified as deepfake if either component is identified as such. Our multimodal framework combines visual and auditory analyses, yielding an accuracy of 94%., Comment: 22 pages, 14 figures, Accepted in Journal of Electrical Systems
- Published
- 2024
- Full Text
- View/download PDF
25. O God!
- Author
-
Gandhi, Malli
- Published
- 2024
26. The Robin Hood of Telugu Land
- Author
-
Gandhi, Malli
- Published
- 2024
27. Profile of a Notorious Social Samaritan
- Author
-
Gandhi, Malli
- Published
- 2024
28. The Denotified
- Author
-
Gandhi, Malli
- Published
- 2024
29. Rapid biphasic decay of intact and defective HIV DNA reservoir during acute treated HIV disease.
- Author
-
Barbehenn, Alton, Shi, Lei, Shao, Junzhe, Hoh, Rebecca, Hartig, Heather, Pae, Vivian, Sarvadhavabhatla, Sannidhi, Donaire, Sophia, Sheikhzadeh, Caroline, Milush, Jeffrey, Laird, Gregory, Mathias, Mignot, Ritter, Kristen, Peluso, Michael, Martin, Jeffrey, Hecht, Frederick, Pilcher, Christopher, Cohen, Stephanie, Buchbinder, Susan, Havlir, Diane, Gandhi, Monica, Henrich, Timothy, Hatano, Hiroyu, Wang, Jingshen, Deeks, Steven, and Lee, Sulggi
- Subjects
Humans ,HIV Infections ,DNA ,Viral ,Viral Load ,CD4-Positive T-Lymphocytes ,HIV-1 ,Male ,Female ,Virus Latency ,Adult ,CD4 Lymphocyte Count ,Middle Aged ,Anti-HIV Agents ,Longitudinal Studies ,Acute Disease ,Models ,Theoretical - Abstract
Despite antiretroviral therapy (ART), HIV persists in latently-infected cells (the HIV reservoir) which decay slowly over time. Here, leveraging >500 longitudinal samples from 67 people living with HIV (PLWH) treated during acute infection, we developed a mathematical model to predict reservoir decay from peripheral CD4 + T cells. Nonlinear generalized additive models demonstrated rapid biphasic decay of intact DNA (week 0-5: t1/2 ~ 2.83 weeks; week 5-24: t1/2 ~ 15.4 weeks) that extended out to 1 year. These estimates were ~5-fold faster than prior decay estimates among chronic treated PLWH. Defective DNA had a similar biphasic pattern, but data were more variable. Predicted intact and defective decay rates were faster for PLWH with earlier timing of ART initiation, higher initial CD4 + T cell count, and lower pre-ART viral load. In this study, we advanced our limited understanding of HIV reservoir decay at the time of ART initiation, informing future curative strategies targeting this critical time.
- Published
- 2024
30. Factors Associated with Usage of Oral-PrEP among Female Sex Workers in Nairobi, Kenya, Assessed by Self-Report and a Point-of-Care Urine Tenofovir Immunoassay.
- Author
-
Shah, Pooja, Spinelli, Matthew, Irungu, Erastus, Kabuti, Rhoda, Ngurukiri, Pauline, Babu, Hellen, Kungu, Mary, Champions, The, Nyabuto, Chrispo, Mahero, Anne, Devries, Karen, Kyegombe, Nambusi, Medley, Graham, Gafos, Mitzy, Seeley, Janet, Weiss, Helen, Kaul, Rupert, Gandhi, Monica, Beattie, Tara, and Kimani, Joshua
- Subjects
Adolescent girls and young women ,Female sex workers ,HIV prevention ,Hierarchical modelling ,Kenya ,PrEP ,Humans ,Female ,Sex Workers ,Kenya ,Pre-Exposure Prophylaxis ,Adult ,HIV Infections ,Tenofovir ,Self Report ,Anti-HIV Agents ,Medication Adherence ,Young Adult ,Adolescent ,Point-of-Care Systems ,Administration ,Oral ,Point-of-Care Testing ,Cross-Sectional Studies ,Social Stigma - Abstract
Pre-exposure prophylaxis (PrEP) is highly effective at reducing HIV acquisition. We aimed to estimate usage of oral-PrEP, and factors associated with adherence among female sex workers (FSWs) in Nairobi, Kenya, using a novel point-of-care urine tenofovir lateral flow assay (LFA). The Maisha Fiti study randomly selected FSWs from Sex Worker Outreach Program clinics in Nairobi. Data were collected from 1003 FSWs from June-October 2019, including surveys on self-reported oral-PrEP adherence. Adherence was also measured using the LFA for HIV-negative FSWs currently taking oral-PrEP. Informed by a social-ecological theoretical framework, we used hierarchical multivariable logistic regression models to estimate associations between individual, interpersonal/community, and structural/institutional-level factors and either self-reported or LFA-assessed adherence. Overall, 746 HIV-negative FSWs aged 18-40 participated in the study, of whom 180 (24.1%) self-reported currently taking oral-PrEP. Of these, 56 (31.1%) were adherent to oral-PrEP as measured by LFA. In the multivariable analyses, associations with currently taking oral-PrEP included having completed secondary education, high alcohol/substance use, feeling empowered to use PrEP, current intimate partner, no recent intimate partner violence, having support from sex worker organisations, experiencing sex work-related stigma, and seeking healthcare services despite stigma. Associations with oral-PrEP LFA-measured adherence measured included having only primary education, experience of childhood emotional violence, belonging to a higher wealth tertile, and being nulliparous. Oral-PrEP adherence, measured by self-report or objectively, is low among FSWs in Nairobi. Programs to improve oral-PrEP usage among FSWs should work to mitigate social and structural barriers and involve collaboration between FSWs, healthcare providers and policymakers.
- Published
- 2024
31. Towards a complete census of luminous Compton-thick Active Galactic Nuclei in the local Universe
- Author
-
Akylas, A., Georgantopoulos, I., Gandhi, P., Boorman, P., and Greenwell, C. L.
- Subjects
Astrophysics - Astrophysics of Galaxies ,Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
X-ray surveys provide the most efficient means for the detection of Active Galactic Nuclei (AGN). However, they face difficulties in detecting the most heavily obscured Compton-thick AGN. The BAT detector on board the Gehrels/Swift mission, operating in the very hard 14-195 keV band, has provided the largest samples of Compton-thick AGN in the local Universe. However, even these flux limited samples can miss the most obscured sources among the Compton-thick AGN population. A robust way to find these local sources is to systematically study volume-limited AGN samples detected in the IR or the optical part of the spectrum. Here, we utilize a local sample (<100 Mpc) of mid-IR selected AGN, unbiased against obscuration, to determine the fraction of Compton-thick sources in the local universe. When available we acquire X-ray spectral information for the sources in our sample from previously published studies. Additionally, to maximize the X-ray spectral information for the sources in our sample, we analyse, for the first time, eleven unexplored XMM-Newton and NuSTAR observations, identifying four new Compton-thick sources. Our results reveal an increased fraction of Compton-thick AGN among the sources that have not been detected by BAT of 44 %. Overall we estimate a fraction of Compton thick sources in the local universe of 25-30% among mid-IR selected AGN. We find no evidence for evolution of the AGN Compton-thick fraction with luminosity., Comment: 16 pages, 9 Figures
- Published
- 2024
32. The hypothetical track-length fitting algorithm for energy measurement in liquid argon TPCs
- Author
-
DUNE Collaboration, Abud, A. Abed, Abi, B., Acciarri, R., Acero, M. A., Adames, M. R., Adamov, G., Adamowski, M., Adams, D., Adinolfi, M., Adriano, C., Aduszkiewicz, A., Aguilar, J., Akbar, F., Alex, N. S., Allison, K., Monsalve, S. Alonso, Alrashed, M., Alton, A., Alvarez, R., Alves, T., Amar, H., Amedo, P., Anderson, J., Andreopoulos, C., Andreotti, M., Andrews, M. P., Andrianala, F., Andringa, S., Anfimov, N., Ankowski, A., Antic, D., Antoniassi, M., Antonova, M., Antoshkin, A., Aranda-Fernandez, A., Arellano, L., Diaz, E. Arrieta, Arroyave, M. A., Asaadi, J., Ashkenazi, A., Asner, D., Asquith, L., Atkin, E., Auguste, D., Aurisano, A., Aushev, V., Autiero, D., Azam, M. B., Azfar, F., Back, A., Back, H., Back, J. J., Bagaturia, I., Bagby, L., Balashov, N., Balasubramanian, S., Baldi, P., Baldini, W., Baldonedo, J., Baller, B., Bambah, B., Banerjee, R., Barao, F., Barbu, D., Barenboim, G., Alzás, P. Barham, Barker, G. J., Barkhouse, W., Barr, G., Monarca, J. Barranco, Barros, A., Barros, N., Barrow, D., Barrow, J. L., Basharina-Freshville, A., Bashyal, A., Basque, V., Batchelor, C., Bathe-Peters, L., Battat, J. B. R., Battisti, F., Bay, F., Bazetto, M. C. Q., Alba, J. L. L. Bazo, Beacom, J. F., Bechetoille, E., Behera, B., Belchior, E., Bell, G., Bellantoni, L., Bellettini, G., Bellini, V., Beltramello, O., Benekos, N., Montiel, C. Benitez, Benjamin, D., Neves, F. Bento, Berger, J., Berkman, S., Bernal, J., Bernardini, P., Bersani, A., Bertolucci, S., Betancourt, M., Rodríguez, A. Betancur, Bevan, A., Bezawada, Y., Bezerra, A. T., Bezerra, T. J., Bhat, A., Bhatnagar, V., Bhatt, J., Bhattacharjee, M., Bhattacharya, M., Bhuller, S., Bhuyan, B., Biagi, S., Bian, J., Biery, K., Bilki, B., Bishai, M., Bitadze, A., Blake, A., Blaszczyk, F. D., Blazey, G. C., Blucher, E., Bodek, A., Bogenschuetz, J., Boissevain, J., Bolognesi, S., Bolton, T., Bomben, L., Bonesini, M., Bonilla-Diaz, C., Bonini, F., Booth, A., Boran, F., Bordoni, S., Merlo, R. Borges, Borkum, A., Bostan, N., Bouet, R., Boza, J., Bracinik, J., Brahma, B., Brailsford, D., Bramati, F., Branca, A., Brandt, A., Bremer, J., Brew, C., Brice, S. J., Brio, V., Brizzolari, C., Bromberg, C., Brooke, J., Bross, A., Brunetti, G., Brunetti, M., Buchanan, N., Budd, H., Buergi, J., Bundock, A., Burgardt, D., Butchart, S., V., G. Caceres, Cagnoli, I., Cai, T., Calabrese, R., Calcutt, J., Calivers, L., Calvo, E., Caminata, A., Camino, A. F., Campanelli, W., Campani, A., Benitez, A. Campos, Canci, N., Capó, J., Caracas, I., Caratelli, D., Carber, D., Carceller, J. M., Carini, G., Carlus, B., Carneiro, M. F., Carniti, P., Terrazas, I. Caro, Carranza, H., Carrara, N., Carroll, L., Carroll, T., Carter, A., Casarejos, E., Casazza, D., Forero, J. F. Castaño, Castaño, F. A., Castillo, A., Castromonte, C., Catano-Mur, E., Cattadori, C., Cavalier, F., Cavanna, F., Centro, S., Cerati, G., Cerna, C., Cervelli, A., Villanueva, A. Cervera, Chakraborty, K., Chalifour, M., Chappell, A., Charitonidis, N., Chatterjee, A., Chen, H., Chen, M., Chen, W. C., Chen, Y., Chen-Wishart, Z., Cherdack, D., Chi, C., Chiapponi, F., Chirco, R., Chitirasreemadam, N., Cho, K., Choate, S., Choi, G., Chokheli, D., Chong, P. S., Chowdhury, B., Christian, D., Chukanov, A., Chung, M., Church, E., Cicala, M. F., Cicerchia, M., Cicero, V., Ciolini, R., Clarke, P., Cline, G., Coan, T. E., Cocco, A. G., Coelho, J. A. B., Cohen, A., Collazo, J., Collot, J., Conley, E., Conrad, J. M., Convery, M., Copello, S., Cova, P., Cox, C., Cremaldi, L., Cremonesi, L., Crespo-Anadón, J. I., Crisler, M., Cristaldo, E., Crnkovic, J., Crone, G., Cross, R., Cudd, A., Cuesta, C., Cui, Y., Curciarello, F., Cussans, D., Dai, J., Dalager, O., Dallavalle, R., Dallaway, W., D'Amico, R., da Motta, H., Dar, Z. A., Darby, R., Peres, L. Da Silva, David, Q., Davies, G. S., Davini, S., Dawson, J., De Aguiar, R., De Almeida, P., Debbins, P., De Bonis, I., Decowski, M. P., de Gouvêa, A., De Holanda, P. C., Astiz, I. L. De Icaza, De Jong, P., Sanchez, P. Del Amo, De la Torre, A., De Lauretis, G., Delbart, A., Delepine, D., Delgado, M., Dell'Acqua, A., Monache, G. Delle, Delmonte, N., De Lurgio, P., Demario, R., De Matteis, G., Neto, J. R. T. de Mello, DeMuth, D. M., Dennis, S., Densham, C., Denton, P., Deptuch, G. W., De Roeck, A., De Romeri, V., Detje, J. P., Devine, J., Dharmapalan, R., Dias, M., Diaz, A., Díaz, J. S., Díaz, F., Di Capua, F., Di Domenico, A., Di Domizio, S., Di Falco, S., Di Giulio, L., Ding, P., Di Noto, L., Diociaiuti, E., Distefano, C., Diurba, R., Diwan, M., Djurcic, Z., Doering, D., Dolan, S., Dolek, F., Dolinski, M. J., Domenici, D., Domine, L., Donati, S., Donon, Y., Doran, S., Douglas, D., Doyle, T. A., Dragone, A., Drielsma, F., Duarte, L., Duchesneau, D., Duffy, K., Dugas, K., Dunne, P., Dutta, B., Duyang, H., Dwyer, D. A., Dyshkant, A. S., Dytman, S., Eads, M., Earle, A., Edayath, S., Edmunds, D., Eisch, J., Englezos, P., Ereditato, A., Erjavec, T., Escobar, C. O., Evans, J. J., Ewart, E., Ezeribe, A. C., Fahey, K., Fajt, L., Falcone, A., Fani', M., Farnese, C., Farrell, S., Farzan, Y., Fedoseev, D., Felix, J., Feng, Y., Fernandez-Martinez, E., Ferry, G., Fialova, E., Fields, L., Filip, P., Filkins, A., Filthaut, F., Fine, R., Fiorillo, G., Fiorini, M., Fogarty, S., Foreman, W., Fowler, J., Franc, J., Francis, K., Franco, D., Franklin, J., Freeman, J., Fried, J., Friedland, A., Fuess, S., Furic, I. K., Furman, K., Furmanski, A. P., Gaba, R., Gabrielli, A., Gago, A. M., Galizzi, F., Gallagher, H., Gallice, N., Galymov, V., Gamberini, E., Gamble, T., Ganacim, F., Gandhi, R., Ganguly, S., Gao, F., Gao, S., Garcia-Gamez, D., García-Peris, M. Á., Gardim, F., Gardiner, S., Gastler, D., Gauch, A., Gauvreau, J., Gauzzi, P., Gazzana, S., Ge, G., Geffroy, N., Gelli, B., Gent, S., Gerlach, L., Ghorbani-Moghaddam, Z., Giammaria, T., Gibin, D., Gil-Botella, I., Gilligan, S., Gioiosa, A., Giovannella, S., Girerd, C., Giri, A. K., Giugliano, C., Giusti, V., Gnani, D., Gogota, O., Gollapinni, S., Gollwitzer, K., Gomes, R. A., Bermeo, L. V. Gomez, Fajardo, L. S. Gomez, Gonnella, F., Gonzalez-Diaz, D., Gonzalez-Lopez, M., Goodman, M. C., Goswami, S., Gotti, C., Goudeau, J., Goudzovski, E., Grace, C., Gramellini, E., Gran, R., Granados, E., Granger, P., Grant, C., Gratieri, D. R., Grauso, G., Green, P., Greenberg, S., Greer, J., Griffith, W. C., Groetschla, F. T., Grzelak, K., Gu, L., Gu, W., Guarino, V., Guarise, M., Guenette, R., Guerzoni, M., Guffanti, D., Guglielmi, A., Guo, B., Guo, F. Y., Gupta, A., Gupta, V., Gurung, G., Gutierrez, D., Guzowski, P., Guzzo, M. M., Gwon, S., Habig, A., Hadavand, H., Haegel, L., Haenni, R., Hagaman, L., Hahn, A., Haiston, J., Hakenmüller, J., Hamernik, T., Hamilton, P., Hancock, J., Happacher, F., Harris, D. A., Hart, A. L., Hartnell, J., Hartnett, T., Harton, J., Hasegawa, T., Hasnip, C. M., Hatcher, R., Hayrapetyan, K., Hays, J., Hazen, E., He, M., Heavey, A., Heeger, K. M., Heise, J., Hellmuth, P., Henry, S., Herner, K., Hewes, V., Higuera, A., Hilgenberg, C., Hillier, S. J., Himmel, A., Hinkle, E., Hirsch, L. R., Ho, J., Hoff, J., Holin, A., Holvey, T., Hoppe, E., Horiuchi, S., Horton-Smith, G. A., Houdy, T., Howard, B., Howell, R., Hristova, I., Hronek, M. S., Huang, J., Huang, R. G., Hulcher, Z., Ibrahim, M., Iles, G., Ilic, N., Iliescu, A. M., Illingworth, R., Ingratta, G., Ioannisian, A., Irwin, B., Isenhower, L., Oliveira, M. Ismerio, Itay, R., Jackson, C. M., Jain, V., James, E., Jang, W., Jargowsky, B., Jena, D., Jentz, I., Ji, X., Jiang, C., Jiang, J., Jiang, L., Jipa, A., Jo, J. H., Joaquim, F. R., Johnson, W., Jollet, C., Jones, B., Jones, R., Jovancevic, N., Judah, M., Jung, C. K., Jung, K. Y., Junk, T., Jwa, Y., Kabirnezhad, M., Kaboth, A. C., Kadenko, I., Kakorin, I., Kalitkina, A., Kalra, D., Kandemir, M., Kaplan, D. M., Karagiorgi, G., Karaman, G., Karcher, A., Karyotakis, Y., Kasai, S., Kasetti, S. P., Kashur, L., Katsioulas, I., Kauther, A., Kazaryan, N., Ke, L., Kearns, E., Keener, P. T., Kelly, K. J., Kemp, E., Kemularia, O., Kermaidic, Y., Ketchum, W., Kettell, S. H., Khabibullin, M., Khan, N., Khvedelidze, A., Kim, D., Kim, J., Kim, M. J., King, B., Kirby, B., Kirby, M., Kish, A., Klein, J., Kleykamp, J., Klustova, A., Kobilarcik, T., Koch, L., Koehler, K., Koerner, L. W., Koh, D. H., Kolupaeva, L., Korablev, D., Kordosky, M., Kosc, T., Kose, U., Kostelecký, V. A., Kothekar, K., Kotler, I., Kovalcuk, M., Kozhukalov, V., Krah, W., Kralik, R., Kramer, M., Kreczko, L., Krennrich, F., Kreslo, I., Kroupova, T., Kubota, S., Kubu, M., Kudenko, Y., Kudryavtsev, V. A., Kufatty, G., Kuhlmann, S., Kulagin, S., Kumar, J., Kumar, P., Kumaran, S., Kunzmann, J., Kuravi, R., Kurita, N., Kuruppu, C., Kus, V., Kutter, T., Kvasnicka, J., Labree, T., Lackey, T., Lalău, I., Lambert, A., Land, B. J., Lane, C. E., Lane, N., Lang, K., Langford, T., Langstaff, M., Lanni, F., Lantwin, O., Larkin, J., Lasorak, P., Last, D., Laudrain, A., Laundrie, A., Laurenti, G., Lavaut, E., Laycock, P., Lazanu, I., LaZur, R., Lazzaroni, M., Le, T., Leardini, S., Learned, J., LeCompte, T., Legin, V., Miotto, G. Lehmann, Lehnert, R., de Oliveira, M. A. Leigui, Leitner, M., Silverio, D. Leon, Lepin, L. M., Li, J. -Y, Li, S. W., Li, Y., Liao, H., Lin, C. S., Lindebaum, D., Linden, S., Lineros, R. A., Lister, A., Littlejohn, B. R., Liu, H., Liu, J., Liu, Y., Lockwitz, S., Lokajicek, M., Lomidze, I., Long, K., Lopes, T. V., Lopez, J., de Rego, I. López, López-March, N., Lord, T., LoSecco, J. M., Louis, W. C., Sanchez, A. Lozano, Lu, X. -G., Luk, K. B., Lunday, B., Luo, X., Luppi, E., MacFarlane, D., Machado, A. A., Machado, P., Macias, C. T., Macier, J. R., MacMahon, M., Maddalena, A., Madera, A., Madigan, P., Magill, S., Magueur, C., Mahn, K., Maio, A., Major, A., Majumdar, K., Mameli, S., Man, M., Mandujano, R. C., Maneira, J., Manly, S., Mann, A., Manolopoulos, K., Plata, M. Manrique, Corchado, S. Manthey, Manyam, V. N., Marchan, M., Marchionni, A., Marciano, W., Marfatia, D., Mariani, C., Maricic, J., Marinho, F., Marino, A. D., Markiewicz, T., Marques, F. Das Chagas, Marquet, C., Marshak, M., Marshall, C. M., Marshall, J., Martina, L., Martín-Albo, J., Martinez, N., Caicedo, D. A. Martinez, López, F. Martínez, Miravé, P. Martínez, Martynenko, S., Mascagna, V., Massari, C., Mastbaum, A., Matichard, F., Matsuno, S., Matteucci, G., Matthews, J., Mauger, C., Mauri, N., Mavrokoridis, K., Mawby, I., Mazza, R., McAskill, T., McConkey, N., McFarland, K. S., McGrew, C., McNab, A., Meazza, L., Meddage, V. C. N., Mefodiev, A., Mehta, B., Mehta, P., Melas, P., Mena, O., Mendez, H., Mendez, P., Méndez, D. P., Menegolli, A., Meng, G., Mercuri, A. C. E. A., Meregaglia, A., Messier, M. D., Metallo, S., Metcalf, W., Mewes, M., Meyer, H., Miao, T., Micallef, J., Miccoli, A., Michna, G., Milincic, R., Miller, F., Miller, G., Miller, W., Mineev, O., Minotti, A., Miralles, L., Mironov, C., Miryala, S., Miscetti, S., Mishra, C. S., Mishra, P., Mishra, S. R., Mislivec, A., Mitchell, M., Mladenov, D., Mocioiu, I., Mogan, A., Moggi, N., Mohanta, R., Mohayai, T. A., Mokhov, N., Molina, J., Bueno, L. Molina, Montagna, E., Montanari, A., Montanari, C., Montanari, D., Montanino, D., Zetina, L. M. Montaño, Mooney, M., Moor, A. F., Moore, Z., Moreno, D., Moreno-Palacios, O., Morescalchi, L., Moretti, D., Moretti, R., Morris, C., Mossey, C., Moura, C. A., Mouster, G., Mu, W., Mualem, L., Mueller, J., Muether, M., Muheim, F., Muir, A., Mukhamejanov, Y., Mulhearn, M., Munford, D., Munteanu, L. J., Muramatsu, H., Muraz, J., Murphy, M., Murphy, T., Muse, J., Mytilinaki, A., Nachtman, J., Nagai, Y., Nagu, S., Nandakumar, R., Naples, D., Narita, S., Navrer-Agasson, A., Nayak, N., Nebot-Guinot, M., Nehm, A., Nelson, J. K., Neogi, O., Nesbit, J., Nessi, M., Newbold, D., Newcomer, M., Nichol, R., Nicolas-Arnaldos, F., Nikolica, A., Nikolov, J., Niner, E., Nishimura, K., Norman, A., Norrick, A., Novella, P., Nowak, A., Nowak, J. A., Oberling, M., Ochoa-Ricoux, J. P., Oh, S., Oh, S. B., Olivier, A., Olshevskiy, A., Olson, T., Onel, Y., Onishchuk, Y., Oranday, A., Osbiston, M., Vélez, J. A. Osorio, O'Sullivan, L., Ormachea, L. Otiniano, Ott, J., Pagani, L., Palacio, G., Palamara, O., Palestini, S., Paley, J. M., Pallavicini, M., Palomares, C., Pan, S., Panda, P., Vazquez, W. Panduro, Pantic, E., Paolone, V., Papaleo, R., Papanestis, A., Papoulias, D., Paramesvaran, S., Paris, A., Parke, S., Parozzi, E., Parsa, S., Parsa, Z., Parveen, S., Parvu, M., Pasciuto, D., Pascoli, S., Pasqualini, L., Pasternak, J., Patrick, C., Patrizii, L., Patterson, R. B., Patzak, T., Paudel, A., Paulucci, L., Pavlovic, Z., Pawloski, G., Payne, D., Pec, V., Pedreschi, E., Peeters, S. J. M., Pellico, W., Perez, A. Pena, Pennacchio, E., Penzo, A., Peres, O. L. G., Gonzalez, Y. F. Perez, Pérez-Molina, L., Pernas, C., Perry, J., Pershey, D., Pessina, G., Petrillo, G., Petta, C., Petti, R., Pfaff, M., Pia, V., Pickering, L., Pietropaolo, F., Pimentel, V. L., Pinaroli, G., Pincha, S., Pinchault, J., Pitts, K., Plows, K., Pollack, C., Pollman, T., Pompa, F., Pons, X., Poonthottathil, N., Popov, V., Poppi, F., Porter, J., Paixão, L. G. Porto, Potekhin, M., Potenza, R., Pozzato, M., Prakash, T., Pratt, C., Prest, M., Psihas, F., Pugnere, D., Qian, X., Queen, J., Raaf, J. L., Radeka, V., Rademacker, J., Radics, B., Raffaelli, F., Rafique, A., Raguzin, E., Rahaman, U., Rai, M., Rajagopalan, S., Rajaoalisoa, M., Rakhno, I., Rakotondravohitra, L., Ralte, L., Delgado, M. A. Ramirez, Ramson, B., Rappoldi, A., Raselli, G., Ratoff, P., Ray, R., Razafinime, H., Razakamiandra, R. F., Rea, E. M., Real, J. S., Rebel, B., Rechenmacher, R., Reichenbacher, J., Reitzner, S. D., Sfar, H. Rejeb, Renner, E., Renshaw, A., Rescia, S., Resnati, F., Restrepo, Diego, Reynolds, C., Ribas, M., Riboldi, S., Riccio, C., Riccobene, G., Ricol, J. S., Rigan, M., Rincón, E. V., Ritchie-Yates, A., Ritter, S., Rivera, D., Rivera, R., Robert, A., Rocha, J. L. Rocabado, Rochester, L., Roda, M., Rodrigues, P., Alonso, M. J. Rodriguez, Rondon, J. Rodriguez, Rosauro-Alcaraz, S., Rosier, P., Ross, D., Rossella, M., Rossi, M., Ross-Lonergan, M., Roy, N., Roy, P., Rubbia, C., Ruggeri, A., Ferreira, G. Ruiz, Russell, B., Ruterbories, D., Rybnikov, A., Sacerdoti, S., Saha, S., Sahoo, S. K., Sahu, N., Sala, P., Samios, N., Samoylov, O., Sanchez, M. C., Bravo, A. Sánchez, Sánchez-Castillo, A., Sanchez-Lucas, P., Sandberg, V., Sanders, D. A., Sanfilippo, S., Sankey, D., Santoro, D., Saoulidou, N., Sapienza, P., Sarasty, C., Sarcevic, I., Sarra, I., Savage, G., Savinov, V., Scanavini, G., Scaramelli, A., Scarff, A., Schefke, T., Schellman, H., Schifano, S., Schlabach, P., Schmitz, D., Schneider, A. W., Scholberg, K., Schukraft, A., Schuld, B., Segade, A., Segreto, E., Selyunin, A., Senadheera, D., Senise, C. R., Sensenig, J., Shaevitz, M. H., Shanahan, P., Sharma, P., Kumar, R., Poudel, S. Sharma, Shaw, K., Shaw, T., Shchablo, K., Shen, J., Shepherd-Themistocleous, C., Sheshukov, A., Shi, J., Shi, W., Shin, S., Shivakoti, S., Shoemaker, I., Shooltz, D., Shrock, R., Siddi, B., Siden, M., Silber, J., Simard, L., Sinclair, J., Sinev, G., Singh, Jaydip, Singh, J., Singh, L., Singh, P., Singh, V., Chauhan, S. Singh, Sipos, R., Sironneau, C., Sirri, G., Siyeon, K., Skarpaas, K., Smedley, J., Smith, E., Smith, J., Smith, P., Smolik, J., Smy, M., Snape, M., Snider, E. L., Snopok, P., Snowden-Ifft, D., Nunes, M. Soares, Sobel, H., Soderberg, M., Sokolov, S., Salinas, C. J. Solano, Söldner-Rembold, S., Solomey, N., Solovov, V., Sondheim, W. E., Sorel, M., Sotnikov, A., Soto-Oton, J., Sousa, A., Soustruznik, K., Spinella, F., Spitz, J., Spooner, N. J. C., Spurgeon, K., Stalder, D., Stancari, M., Stanco, L., Steenis, J., Stein, R., Steiner, H. M., Lisbôa, A. F. Steklain, Stepanova, A., Stewart, J., Stillwell, B., Stock, J., Stocker, F., Stokes, T., Strait, M., Strauss, T., Strigari, L., Stuart, A., Suarez, J. G., Subash, J., Surdo, A., Suter, L., Sutera, C. M., Sutton, K., Suvorov, Y., Svoboda, R., Swain, S. K., Szczerbinska, B., Szelc, A. M., Sztuc, A., Taffara, A., Talukdar, N., Tamara, J., Tanaka, H. A., Tang, S., Taniuchi, N., Casanova, A. M. Tapia, Oregui, B. Tapia, Tapper, A., Tariq, S., Tarpara, E., Tatar, E., Tayloe, R., Tedeschi, D., Teklu, A. M., Vidal, J. Tena, Tennessen, P., Tenti, M., Terao, K., Terranova, F., Testera, G., Thakore, T., Thea, A., Thomas, S., Thompson, A., Thorn, C., Timm, S. C., Tiras, E., Tishchenko, V., Tiwari, S., Todorović, N., Tomassetti, L., Tonazzo, A., Torbunov, D., Torti, M., Tortola, M., Tortorici, F., Tosi, N., Totani, D., Toups, M., Touramanis, C., Tran, D., Travaglini, R., Trevor, J., Triller, E., Trilov, S., Truchon, J., Truncali, D., Trzaska, W. H., Tsai, Y., Tsai, Y. -T., Tsamalaidze, Z., Tsang, K. V., Tsverava, N., Tu, S. Z., Tufanli, S., Tunnell, C., Turnberg, S., Turner, J., Tuzi, M., Tyler, J., Tyley, E., Tzanov, M., Uchida, M. A., González, J. Ureña, Urheim, J., Usher, T., Utaegbulam, H., Uzunyan, S., Vagins, M. R., Vahle, P., Valder, S., Valdiviesso, G. A., Valencia, E., Valentim, R., Vallari, Z., Vallazza, E., Valle, J. W. F., Van Berg, R., Van de Water, R. G., Forero, D. V., Vannozzi, A., Van Nuland-Troost, M., Varanini, F., Oliva, D. Vargas, Vasina, S., Vaughan, N., Vaziri, K., Vázquez-Ramos, A., Vega, J., Ventura, S., Verdugo, A., Vergani, S., Verzocchi, M., Vetter, K., Vicenzi, M., de Souza, H. Vieira, Vignoli, C., Vilela, C., Villa, E., Viola, S., Viren, B., Vizarreta, R., Hernandez, A. P. Vizcaya, Vuong, Q., Waldron, A. V., Wallbank, M., Walsh, J., Walton, T., Wang, H., Wang, J., Wang, L., Wang, M. H. L. S., Wang, X., Wang, Y., Warburton, K., Warner, D., Warsame, L., Wascko, M. O., Waters, D., Watson, A., Wawrowska, K., Weber, A., Weber, C. M., Weber, M., Wei, H., Weinstein, A., Westerdale, S., Wetstein, M., Whalen, K., White, A., Whitehead, L. H., Whittington, D., Wilhlemi, J., Wilking, M. J., Wilkinson, A., Wilkinson, C., Wilson, F., Wilson, R. J., Winter, P., Wisniewski, W., Wolcott, J., Wolfs, J., Wongjirad, T., Wood, A., Wood, K., Worcester, E., Worcester, M., Wospakrik, M., Wresilo, K., Wret, C., Wu, S., Wu, W., Wurm, M., Wyenberg, J., Xiao, Y., Xiotidis, I., Yaeggy, B., Yahlali, N., Yandel, E., Yang, J., Yang, K., Yang, T., Yankelevich, A., Yershov, N., Yonehara, K., Young, T., Yu, B., Yu, H., Yu, J., Yu, Y., Yuan, W., Zaki, R., Zalesak, J., Zambelli, L., Zamorano, B., Zani, A., Zapata, O., Zazueta, L., Zeller, G. P., Zennamo, J., Zeug, K., Zhang, C., Zhang, S., Zhao, M., Zhivun, E., Zimmerman, E. D., Zucchelli, S., Zuklin, J., Zutshi, V., and Zwaska, R.
- Subjects
Physics - Instrumentation and Detectors ,High Energy Physics - Experiment - Abstract
This paper introduces the hypothetical track-length fitting algorithm, a novel method for measuring the kinetic energies of ionizing particles in liquid argon time projection chambers (LArTPCs). The algorithm finds the most probable offset in track length for a track-like object by comparing the measured ionization density as a function of position with a theoretical prediction of the energy loss as a function of the energy, including models of electron recombination and detector response. The algorithm can be used to measure the energies of particles that interact before they stop, such as charged pions that are absorbed by argon nuclei. The algorithm's energy measurement resolutions and fractional biases are presented as functions of particle kinetic energy and number of track hits using samples of stopping secondary charged pions in data collected by the ProtoDUNE-SP detector, and also in a detailed simulation. Additional studies describe impact of the dE/dx model on energy measurement performance. The method described in this paper to characterize the energy measurement performance can be repeated in any LArTPC experiment using stopping secondary charged pions.
- Published
- 2024
33. TOI-5005 b: A super-Neptune in the savanna near the ridge
- Author
-
Castro-González, A., Lillo-Box, J., Armstrong, D. J., Acuña, L., Aguichine, A., Bourrier, V., Gandhi, S., Sousa, S. G., Delgado-Mena, E., Moya, A., Adibekyan, V., Correia, A. C. M., Barrado, D., Damasso, M., Winn, J. N., Santos, N. C., Barkaoui, K., Barros, S. C. C., Benkhaldoun, Z., Bouchy, F., Briceño, C., Caldwell, D. A., Collins, K. A., Essack, Z., Ghachoui, M., Gillon, M., Hounsell, R., Jehin, E., Jenkins, J. M., Keniger, M. A. F., Law, N., Mann, A. W., Nielsen, L. D., Pozuelos, F. J., Schanche, N., Seager, S., Tan, T. -G., Timmermans, M., Villaseñor, J., Watkins, C. N., and Ziegler, C.
- Subjects
Astrophysics - Earth and Planetary Astrophysics - Abstract
The Neptunian desert and savanna have been recently found to be separated by a ridge, an overdensity of planets in the $\simeq$3-5 days period range. These features are thought to be shaped by dynamical and atmospheric processes. However, their relative roles are not yet well understood. We intend to confirm and characterise the super-Neptune TESS candidate TOI-5005.01, which orbits a moderately bright (V = 11.8) solar-type star (G2 V) with an orbital period of 6.3 days. We confirm TOI-5005 b to be a transiting super-Neptune with a radius of $R_{\rm p}$ = $6.25\pm 0.24$ $\rm R_{\rm \oplus}$ ($R_{\rm p}$ = $0.558\pm 0.021$ $\rm R_{\rm J}$) and a mass of $M_{\rm p}$ = $32.7\pm 5.9$ $\rm M_{\oplus}$ ($M_{\rm p}$ = $0.103\pm 0.018$ $\rm M_{\rm J}$), which corresponds to a mean density of $\rho_{\rm p}$ = $0.74 \pm 0.16$ $\rm g \, cm^{-3}$. Our internal structure modelling indicates that the overall metal mass fraction is well constrained to a value slightly lower than that of Neptune and Uranus ($Z_{\rm planet}$ = $0.76^{+0.04}_{-0.11}$). We also estimated the present-day atmospheric mass-loss rate of TOI-5005 b but found contrasting predictions depending on the choice of photoevaporation model. At a population level, we find statistical evidence ($p$-value = $0.0092^{+0.0184}_{-0.0066}$) that planets in the savanna such as TOI-5005 b tend to show lower densities than planets in the ridge, with a dividing line around 1 $\rm g \, cm^{-3}$, which supports the hypothesis of different evolutionary pathways populating both regimes. TOI-5005 b is located in a key region of the period-radius space to study the transition between the Neptunian ridge and the savanna. It orbits the brightest star of all such planets, which makes it a target of interest for atmospheric and orbital architecture observations that will bring a clearer picture of its overall evolution., Comment: Accepted for publication in A&A. Abstract shortened. 35 pages, 26 figures
- Published
- 2024
- Full Text
- View/download PDF
34. Manufacturing, processing, applications, and advancements of Fe-based shape memory alloys
- Author
-
Algamal, Anwar, Abedi, Hossein, Gandhi, Umesh, Benafan, Othmane, Elahinia, Mohammad, and Qattawi, Ala
- Subjects
Physics - Applied Physics ,Condensed Matter - Materials Science - Abstract
Fe-based shape memory alloys (Fe-SMAs) belong to smart metallic materials that can memorize or restore their preset shape after experiencing a substantial amount of deformation under heat, stress, or magnetic stimuli. Fe-SMAs have remarkable thermomechanical properties and have attracted significant interest because of their potential merits, such as cost-effective alloying elements, superior workability, weldability, a stable superelastic response, and low-temperature dependence of critical stress required for stress-induced martensitic transformation. Therefore, Fe-SMAs can be an intriguing and economical alternative to other SMAs. The recent advancements in fabrication methods of conventional metals and SMAs are helping the production of customized powder composition and then customized geometries by additive manufacturing (AM). The technology in these areas, i.e., fabrication techniques, experimental characterization, and theoretical formulations of Fe-SMAs for conventional and AM has been rapidly advancing and is lacking a comprehensive review. This paper provides a critical review of the recent developments in Fe-SMAs-related research. The conventional and AM-based methods of producing Fe-SMAs are discussed, and a detailed review of the current research trends on Fe-SMAs including 4-D printing of Fe-SMAs are comprehensively documented. The presented review provides a comprehensive review of experimental methods and processes used to determine the material characteristics and features of Fe-SMAs. In addition, the work provides a review of the reported computational modeling of Fe-SMAs to help design new Fe-SMA composition and geometry. Finally, different Fe-SMAs-based applications such as sensing and damping systems, tube coupling, and reinforced concrete are also discussed., Comment: Comprehensive review on the status of art on producing iron-based shape memory alloy. 42 pages of manuscript excluding references list
- Published
- 2024
35. Transport properties in a two-dimensional Su-Schrieffer-Heeger model in Quantum Hall Regime
- Author
-
Gupta, Aruna, Gandhi, Shaina, Sarkar, Niladri, and Bandyopadhyay, Jayendra N.
- Subjects
Condensed Matter - Mesoscale and Nanoscale Physics ,Quantum Physics - Abstract
We investigate the transport properties of a two-dimensional Su-Schrieffer-Heeger (2D SSH) model in the quantum Hall regime using non-equilibrium Green's function formalism (NEGF). The device Hamiltonian, where the 2D SSH model serves as the channel, is constructed using a nearest-neighbor tight-binding model. The effect of an external perpendicular magnetic field is incorporated into the contacts via Peierls substitution. We observe a transition from a gapped phase to a flat band regime at zero energy by varying the magnetic field. This transition is characterized by the emergence of highly localized states in the bulk or edges, which we observe by calculating local density-of-states (LDOS). We analyze transport in the system along two directions ($x$ and $y$) via transmission measurements, indicating a magnetic field-induced transition from insulating to metallic phase. The study of the energy spectrum of the system shows the formation of Landau levels. Moreover, the quantum number of the non-degenerate and degenerate Landau levels (transmission modes) can be any integer or only an odd integer, depending on diagonal, inter-cell, and intra-cell hopping strengths. From the analysis of the transport properties along $y$-direction, we find that edge modes play a crucial role in facilitating ballistic transport., Comment: 8 pages, 9 figures
- Published
- 2024
36. The ESO SupJup Survey III: Confirmation of 13CO in YSES 1 b and Atmospheric Detection of YSES 1 c with CRIRES+
- Author
-
Zhang, Yapeng, Picos, Darío González, de Regt, Sam, Snellen, Ignas A. G., Gandhi, Siddharth, Ginski, Christian, Kesseli, Aurora Y., Landman, Rico, Mollière, Paul, Nasedkin, Evert, Sánchez-López, Alejandro, Stolker, Tomas, Inglis, Julie, Knutson, Heather A., Mawet, Dimitri, Wallack, Nicole, and Xuan, Jerry W.
- Subjects
Astrophysics - Earth and Planetary Astrophysics ,Astrophysics - Solar and Stellar Astrophysics - Abstract
High-resolution spectroscopic characterization of young super-Jovian planets enables precise constraints on elemental and isotopic abundances of their atmospheres. As part of the ESO SupJup Survey, we present high-resolution spectral observations of two wide-orbit super-Jupiters in YSES 1 (or TYC 8998-760-1) using the upgraded VLT/CRIRES+ (R~100,000) in K-band. We carry out free atmospheric retrieval analyses to constrain chemical and isotopic abundances, temperature structures, rotation velocities, and radial velocities. We confirm the previous detection of 13CO in YSES 1 b at a higher significance of 12.6{\sigma}, but point to a higher 12CO/13CO ratio of 88+/-13 (1{\sigma} confidence interval), consistent with the primary's isotope ratio 66+/-5. We retrieve a solar-like composition in YSES 1 b with a C/O=0.57+/-0.01, indicating a formation via gravitational instability or core accretion beyond the CO iceline. Additionally, the observations lead to detections of H2O and CO in the outer planet YSES 1 c at 7.3{\sigma} and 5.7{\sigma}, respectively. We constrain the atmospheric C/O ratio of YSES 1 c to be either solar or subsolar (C/O=0.36+/-0.15), indicating the accretion of oxygen-rich solids. The two companions have distinct vsini, 5.34+/-0.14 km/s for YSES 1 b and 11.3+/-2.1 km/s for YSES 1 c, despite their similar natal environments. This may indicate different spin axis inclinations or effective magnetic braking by the long-lived circumplanetary disk around YSES 1 b. YSES 1 represents an intriguing system for comparative studies of super-Jovian companions and linking present atmospheres to formation histories., Comment: 25 pages, 11 figure, accepted for publication in AJ. The extracted CRIRES+ spectra of the YSES-1 system can be found at https://doi.org/10.5281/zenodo.13664032
- Published
- 2024
- Full Text
- View/download PDF
37. Generative AI-driven forecasting of oil production
- Author
-
Gandhi, Yash, Zheng, Kexin, Jha, Birendra, Nomura, Ken-ichi, Nakano, Aiichiro, Vashishta, Priya, and Kalia, Rajiv K.
- Subjects
Computer Science - Machine Learning - Abstract
Forecasting oil production from oilfields with multiple wells is an important problem in petroleum and geothermal energy extraction, as well as energy storage technologies. The accuracy of oil forecasts is a critical determinant of economic projections, hydrocarbon reserves estimation, construction of fluid processing facilities, and energy price fluctuations. Leveraging generative AI techniques, we model time series forecasting of oil and water productions across four multi-well sites spanning four decades. Our goal is to effectively model uncertainties and make precise forecasts to inform decision-making processes at the field scale. We utilize an autoregressive model known as TimeGrad and a variant of a transformer architecture named Informer, tailored specifically for forecasting long sequence time series data. Predictions from both TimeGrad and Informer closely align with the ground truth data. The overall performance of the Informer stands out, demonstrating greater efficiency compared to TimeGrad in forecasting oil production rates across all sites.
- Published
- 2024
38. Human-like Affective Cognition in Foundation Models
- Author
-
Gandhi, Kanishk, Lynch, Zoe, Fränken, Jan-Philipp, Patterson, Kayla, Wambu, Sharon, Gerstenberg, Tobias, Ong, Desmond C., and Goodman, Noah D.
- Subjects
Computer Science - Computation and Language - Abstract
Understanding emotions is fundamental to human interaction and experience. Humans easily infer emotions from situations or facial expressions, situations from emotions, and do a variety of other affective cognition. How adept is modern AI at these inferences? We introduce an evaluation framework for testing affective cognition in foundation models. Starting from psychological theory, we generate 1,280 diverse scenarios exploring relationships between appraisals, emotions, expressions, and outcomes. We evaluate the abilities of foundation models (GPT-4, Claude-3, Gemini-1.5-Pro) and humans (N = 567) across carefully selected conditions. Our results show foundation models tend to agree with human intuitions, matching or exceeding interparticipant agreement. In some conditions, models are ``superhuman'' -- they better predict modal human judgements than the average human. All models benefit from chain-of-thought reasoning. This suggests foundation models have acquired a human-like understanding of emotions and their influence on beliefs and behavior.
- Published
- 2024
39. The Galaxy Activity, Torus, and Outflow Survey (GATOS). (IV): Exploring Ionized Gas Outflows in Central Kiloparsec Regions of GATOS Seyferts
- Author
-
Zhang, Lulu, Packham, Chris, Hicks, Erin K. S., Davies, Ric I., Shimizu, Taro T., Alonso-Herrero, Almudena, Muñoz, Laura Hermosa, García-Bernete, Ismael, Pereira-Santaella, Miguel, Audibert, Anelise, López-Rodríguez, Enrique, Bellocch, Enrica, Bunker, Andrew J., Combes, Francoise, Díaz-Santos, Tanio, Gandhi, Poshak, García-Burillo, Santiago, García-Lorenzo, Begoña, González-Martín, Omaira, Imanishi, Masatoshi, Labiano, Alvaro, Leist, Mason T., Levenson, Nancy A., Almeida, Cristina Ramos, Ricci, Claudio, Rigopoulou, Dimitra, Rosario, David J., Stalevski, Marko, Ward, Martin J., Esparza-Arredondo, Donaji, Delaney, Dan, Fuller, Lindsay, Haidar, Houda, Hönig, Sebastian, Izumi, Takuma, and Rouan, Daniel
- Subjects
Astrophysics - Astrophysics of Galaxies - Abstract
Utilizing JWST MIRI/MRS IFU observations of the kiloparsec scale central regions, we showcase the diversity of ionized gas distributions and kinematics in six nearby Seyfert galaxies included in the GATOS survey. Specifically, we present spatially resolved flux distribution and velocity field maps of six ionized emission lines covering a large range of ionization potentials ($15.8-97.1$ eV). Based on these maps, we showcase the evidence of ionized gas outflows in the six targets, and find some highly disturbed regions in NGC\,5728, NGC\,5506, and ESO137-G034. We propose AGN-driven radio jets plausibly play an important role in triggering these highly disturbed regions. With the outflow rates estimated based on [Ne~{\footnotesize V}] emission, we find the six targets tend to have ionized outflow rates converged to a narrower range than previous finding. These results have important implication for the outflow properties in AGN of comparable luminosity., Comment: 34 pages (11 pages in the appendix), 18 figures in the main text, ApJ in press (accepted on July 26th)
- Published
- 2024
- Full Text
- View/download PDF
40. Farmer.Chat: Scaling AI-Powered Agricultural Services for Smallholder Farmers
- Author
-
Singh, Namita, Wang'ombe, Jacqueline, Okanga, Nereah, Zelenska, Tetyana, Repishti, Jona, K, Jayasankar G, Mishra, Sanjeev, Manokaran, Rajsekar, Singh, Vineet, Rafiq, Mohammed Irfan, Gandhi, Rikin, and Nambi, Akshay
- Subjects
Computer Science - Emerging Technologies ,Computer Science - Artificial Intelligence ,Computer Science - Human-Computer Interaction - Abstract
Small and medium-sized agricultural holders face challenges like limited access to localized, timely information, impacting productivity and sustainability. Traditional extension services, which rely on in-person agents, struggle with scalability and timely delivery, especially in remote areas. We introduce FarmerChat, a generative AI-powered chatbot designed to address these issues. Leveraging Generative AI, FarmerChat offers personalized, reliable, and contextually relevant advice, overcoming limitations of previous chatbots in deterministic dialogue flows, language support, and unstructured data processing. Deployed in four countries, FarmerChat has engaged over 15,000 farmers and answered over 300,000 queries. This paper highlights how FarmerChat's innovative use of GenAI enhances agricultural service scalability and effectiveness. Our evaluation, combining quantitative analysis and qualitative insights, highlights FarmerChat's effectiveness in improving farming practices, enhancing trust, response quality, and user engagement., Comment: 35 pages
- Published
- 2024
41. MPPI-Generic: A CUDA Library for Stochastic Optimization
- Author
-
Vlahov, Bogdan, Gibson, Jason, Gandhi, Manan, and Theodorou, Evangelos A.
- Subjects
Computer Science - Mathematical Software ,Computer Science - Distributed, Parallel, and Cluster Computing ,Computer Science - Robotics ,Electrical Engineering and Systems Science - Systems and Control - Abstract
This paper introduces a new C++/CUDA library for GPU-accelerated stochastic optimization called MPPI-Generic. It provides implementations of Model Predictive Path Integral control, Tube-Model Predictive Path Integral Control, and Robust Model Predictive Path Integral Control, and allows for these algorithms to be used across many pre-existing dynamics models and cost functions. Furthermore, researchers can create their own dynamics models or cost functions following our API definitions without needing to change the actual Model Predictive Path Integral Control code. Finally, we compare computational performance to other popular implementations of Model Predictive Path Integral Control over a variety of GPUs to show the real-time capabilities our library can allow for. Library code can be found at: https://acdslab.github.io/mppi-generic-website/ .
- Published
- 2024
42. The Galaxy Activity, Torus, and Outflow Survey (GATOS). V: Unveiling PAH survival and resilience in the circumnuclear regions of AGN with JWST
- Author
-
García-Bernete, I., Rigopoulou, D., Donnan, F. R., Alonso-Herrero, A., Pereira-Santella, M., Shimizu, T., Davies, R., Roche, P. F., García-Burillo, S., Labiano, A., Muñoz, L. Hermosa, Zhang, L., Audibert, A., Bellocchi, E., Bunker, A., Combes, F., Delaney, D., Esparza-Arredondo, D., Gandhi, P., González-Martín, O., Hönig, S. F., Imanishi, M., Hicks, E. K. S., Fuller, L., Leist, M., Levenson, N. A., Lopez-Rodriguez, E., Packham, C., Almeida, C. Ramos, Ricci, C., Stalevski, M., Martín, M. Villar, and Ward, M. J.
- Subjects
Astrophysics - Astrophysics of Galaxies ,Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
We analyze JWST MIRI/MRS observations of the infrared PAH bands in the nuclear and circumnuclear regions of local AGN from the GATOS Survey. In this work, we examine the PAH properties in the circumnuclear regions of AGN and AGN-outflows, and compare them to those in star-forming regions and the innermost regions of AGN. This study employs 4.9-28.1 micron sub-arcsecond angular resolution data to investigate the properties of PAH in three nearby sources (DL~30-40 Mpc). Our findings align with previous JWST studies, showing that the central regions of AGN show a larger fraction of neutral PAH molecules (i.e. elevated 11.3/6.2 and 11.3/7.7 PAH ratios) compared to star-forming galaxies. We find that the AGN might affect not only the PAH population in the innermost region but also in the extended regions up to ~kpc scales. By comparing our observations to PAH diagnostic diagrams, we find that, in general, regions located in the projected direction of the AGN-outflow occupy similar positions on the PAH diagnostic diagrams as those of the innermost regions of AGN. Star-forming regions that are not affected by the AGN in these galaxies share the same part of the diagram as Star-forming galaxies. We examine the potential of the PAH-H2 diagram to disentangle AGN versus star-forming activity. Our results suggest that in Sy-like AGN, illumination and feedback from the AGN might affect the PAH population at nuclear and kpc scales, in particular, the ionization state of the PAH grains. However, PAH sizes are rather similar. The carriers of the ionized PAH bands (6.2 and 7.7 micron) are less resilience than those of neutral PAH bands (11.3 micron), which might be particularly important for strongly AGN-host coupled systems. Therefore, caution must be applied when using PAH bands as star-formation rate indicators in these systems even at kpc scales, with the ionized ones being more affected by the AGN., Comment: Accepted for publication in A&A. 21 pages, 13 Figures
- Published
- 2024
- Full Text
- View/download PDF
43. Multi-epoch UV $-$ X-ray spectral study of NGC 4151 with AstroSat
- Author
-
Kumar, Shrabani, Dewangan, G. C., Gandhi, P., Papadakis, I. E., Mithun, N. P. S., Singh, K. P., Bhattacharya, D., Zdziarski, A. A., Stewart, G. C., Bhattacharyya, S., and Chandra, S.
- Subjects
Astrophysics - High Energy Astrophysical Phenomena ,Astrophysics - Astrophysics of Galaxies - Abstract
We present a multi-wavelength spectral study of NGC 4151 based on five epochs of simultaneous AstroSat observations in the near ultra-violet (NUV) to hard X-ray band ($\sim 0.005-80$ keV) during $2017 - 2018$. We derived the intrinsic accretion disk continuum after correcting for internal and Galactic extinction, contributions from broad and narrow line regions, and emission from the host galaxy. We found a bluer continuum at brighter UV flux possibly due to variations in the accretion disk continuum or the UV reddening. We estimated the intrinsic reddening, $E(B-V) \sim 0.4$, using high-resolution HST/STIS spectrum acquired in March 2000. We used thermal Comptonization, neutral and ionized absorption, and X-ray reflection to model the X-ray spectra. We obtained the X-ray absorbing neutral column varying between $N_H \sim 1.2-3.4 \times 10^{23} cm^{-2}$, which are $\sim 100$ times larger than that estimated from UV extinction, assuming the Galactic dust-to-gas ratio. To reconcile this discrepancy, we propose two plausible configurations of the obscurer: (a) a two-zone obscurer consisting of dust-free and dusty regions, divided by the sublimation radius, or (b) a two-phase obscurer consisting of clumpy, dense clouds embedded in a low-density medium, resulting in a scenario where a few dense clouds obscure the compact X-ray source substantially, while the bulk of UV emission arising from the extended accretion disk passes through the low-density medium. Furthermore, we find a positive correlation between X-ray absorption column and $NUV-FUV$ color and UV flux, indicative of enhanced winds possibly driven by the 'bluer-when-brighter' UV continuum., Comment: 21 pages, 22 figures, 6 tables, accepted for publication in ApJ
- Published
- 2024
44. Stellar Mass Calibrations for Local Low-Mass Galaxies
- Author
-
Reyes, Mithi A. C. de los, Asali, Yasmeen, Wechsler, Risa, Geha, Marla, Mao, Yao-Yuan, Kado-Fong, Erin, Pucha, Ragadeepika, Grant, William, Gandhi, Pratik J., Manwadkar, Viraj, Engelhardt, Anna, Munshi, Ferah, and Wang, Yunchong
- Subjects
Astrophysics - Astrophysics of Galaxies - Abstract
The stellar masses of galaxies are measured using integrated light via several methods -- however, few of these methods were designed for low-mass ($M_{\star}\lesssim10^{8}\rm{M_{\odot}}$) "dwarf" galaxies, whose properties (e.g., stochastic star formation, low metallicity) pose unique challenges for estimating stellar masses. In this work, we quantify the precision and accuracy at which stellar masses of low-mass galaxies can be recovered using UV/optical/IR photometry. We use mock observations of 469 low-mass galaxies from a variety of models, including both semi-empirical models (GRUMPY, UniverseMachine-SAGA) and cosmological baryonic zoom-in simulations (MARVELous Dwarfs and FIRE-2), to test literature color-$M_\star/L$ relations and multi-wavelength spectral energy distribution (SED) mass estimators. We identify a list of "best practices" for measuring stellar masses of low-mass galaxies from integrated photometry. These include updated prescriptions for stellar mass based on $g-r$ color and WISE 3.4 $\mu$m luminosity, which are less systematically biased than literature calibrations and can recover true stellar masses of low-mass galaxies with $\sim0.1$ dex precision. When using SED fitting to estimate stellar mass, we find that the form of the assumed star formation history can induce significant biases: parametric SFHs can underestimate stellar mass by as much as $\sim0.4$ dex, while non-parametric SFHs recover true stellar masses with insignificant offset ($-0.03\pm0.11$ dex). However, we also caution that non-informative dust attenuation priors may introduce $M_\star$ uncertainties of up to $\sim0.6$ dex., Comment: 28 pages including references, 9 figures; submitted to ApJ
- Published
- 2024
45. Full-Field Quantitative Visualization of Shock-Driven Pore Collapse and Failure Modes in PMMA
- Author
-
Lawlor, Barry P, Gandhi, Vatsa, and Ravichandran, Guruswami
- Subjects
Physics - Applied Physics ,Condensed Matter - Materials Science - Abstract
The dynamic collapse of pores under shock loading is thought to be directly related to hot spot generation and material failure, which is critical to the performance of porous energetic and structural materials. However, the shock compression response of porous materials at the local, individual pore scale is not well understood. This study examines, quantitatively, the collapse phenomenon of a single spherical void in PMMA at shock stresses ranging from 0.4-1.0 GPa. Using a newly developed internal digital image correlation technique in conjunction with plate impact experiments, full-field quantitative deformation measurements are conducted in the material surrounding the collapsing pore for the first time. The experimental results reveal two failure mode transitions as shock stress is increased: (i) the first in-situ evidence of shear localization via adiabatic shear banding and (ii) dynamic fracture initiation at the pore surface. Numerical simulations using thermo-viscoplastic dynamic finite element analysis provide insights into the formation of adiabatic shear bands (ASBs) and stresses at which failure mode transitions occur. Further numerical and theoretical modeling indicates the dynamic fracture to occur along the weakened material inside an adiabatic shear band. Finally, analysis of the evolution of pore asymmetry and models for ASB spacing elucidate the mechanisms for the shear band initiation sites, and elastostatic theory explains the experimentally observed ASB and fracture paths based on the directions of maximum shear.
- Published
- 2024
46. Predicting Solar Energy Generation with Machine Learning based on AQI and Weather Features
- Author
-
Shah, Arjun, Viswanath, Varun, Gandhi, Kashish, and Patil, Nilesh Madhukar
- Subjects
Computer Science - Machine Learning ,Computer Science - Artificial Intelligence - Abstract
This paper addresses the pressing need for an accurate solar energy prediction model, which is crucial for efficient grid integration. We explore the influence of the Air Quality Index and weather features on solar energy generation, employing advanced Machine Learning and Deep Learning techniques. Our methodology uses time series modeling and makes novel use of power transform normalization and zero-inflated modeling. Various Machine Learning algorithms and Conv2D Long Short-Term Memory model based Deep Learning models are applied to these transformations for precise predictions. Results underscore the effectiveness of our approach, demonstrating enhanced prediction accuracy with Air Quality Index and weather features. We achieved a 0.9691 $R^2$ Score, 0.18 MAE, 0.10 RMSE with Conv2D Long Short-Term Memory model, showcasing the power transform technique's innovation in enhancing time series forecasting for solar energy generation. Such results help our research contribute valuable insights to the synergy between Air Quality Index, weather features, and Deep Learning techniques for solar energy prediction., Comment: Accepted at AISD2024 : Second International Workshop on Artificial Intelligence: Empowering Sustainable Development
- Published
- 2024
- Full Text
- View/download PDF
47. DUNE Phase II: Scientific Opportunities, Detector Concepts, Technological Solutions
- Author
-
DUNE Collaboration, Abud, A. Abed, Abi, B., Acciarri, R., Acero, M. A., Adames, M. R., Adamov, G., Adamowski, M., Adams, D., Adinolfi, M., Adriano, C., Aduszkiewicz, A., Aguilar, J., Akbar, F., Allison, K., Monsalve, S. Alonso, Alrashed, M., Alton, A., Alvarez, R., Alves, T., Amar, H., Amedo, P., Anderson, J., Andreopoulos, C., Andreotti, M., Andrews, M. P., Andrianala, F., Andringa, S., Anfimov, N., Ankowski, A., Antic, D., Antoniassi, M., Antonova, M., Antoshkin, A., Aranda-Fernandez, A., Arellano, L., Diaz, E. Arrieta, Arroyave, M. A., Asaadi, J., Ashkenazi, A., Asner, D. M., Asquith, L., Atkin, E., Auguste, D., Aurisano, A., Aushev, V., Autiero, D., Azam, M. B., Azfar, F., Back, A., Back, H., Back, J. J., Bagaturia, I., Bagby, L., Balashov, N., Balasubramanian, S., Baldi, P., Baldini, W., Baldonedo, J., Baller, B., Bambah, B., Banerjee, R., Barao, F., Barbu, D., Barenboim, G., Barham~Alzás, P., Barker, G. J., Barkhouse, W., Barr, G., Monarca, J. Barranco, Barros, A., Barros, N., Barrow, D., Barrow, J. L., Basharina-Freshville, A., Bashyal, A., Basque, V., Batchelor, C., Bathe-Peters, L., Battat, J. B. R., Battisti, F., Bay, F., Bazetto, M. C. Q., Alba, J. L. L. Bazo, Beacom, J. F., Bechetoille, E., Behera, B., Belchior, E., Bell, G., Bellantoni, L., Bellettini, G., Bellini, V., Beltramello, O., Benekos, N., Montiel, C. Benitez, Benjamin, D., Neves, F. Bento, Berger, J., Berkman, S., Bernal, J., Bernardini, P., Bersani, A., Bertolucci, S., Betancourt, M., Rodríguez, A. Betancur, Bevan, A., Bezawada, Y., Bezerra, A. T., Bezerra, T. J., Bhat, A., Bhatnagar, V., Bhatt, J., Bhattacharjee, M., Bhattacharya, M., Bhuller, S., Bhuyan, B., Biagi, S., Bian, J., Biery, K., Bilki, B., Bishai, M., Bitadze, A., Blake, A., Blaszczyk, F. D., Blazey, G. C., Blucher, E., Bodek, A., Bogenschuetz, J., Boissevain, J., Bolognesi, S., Bolton, T., Bomben, L., Bonesini, M., Bonilla-Diaz, C., Bonini, F., Booth, A., Boran, F., Bordoni, S., Merlo, R. Borges, Borkum, A., Bostan, N., Bouet, R., Boza, J., Bracinik, J., Brahma, B., Brailsford, D., Bramati, F., Branca, A., Brandt, A., Bremer, J., Brew, C., Brice, S. J., Brio, V., Brizzolari, C., Bromberg, C., Brooke, J., Bross, A., Brunetti, G., Brunetti, M., Buchanan, N., Budd, H., Buergi, J., Bundock, A., Burgardt, D., Butchart, S., V., G. Caceres, Cagnoli, I., Cai, T., Calabrese, R., Calcutt, J., Calivers, L., Calvo, E., Caminata, A., Camino, A. F., Campanelli, W., Campani, A., Benitez, A. Campos, Canci, N., Capó, J., Caracas, I., Caratelli, D., Carber, D., Carceller, J. M., Carini, G., Carlus, B., Carneiro, M. F., Carniti, P., Terrazas, I. Caro, Carranza, H., Carrara, N., Carroll, L., Carroll, T., Carter, A., Casarejos, E., Casazza, D., Forero, J. F. Castaño, Castaño, F. A., Castillo, A., Castromonte, C., Catano-Mur, E., Cattadori, C., Cavalier, F., Cavanna, F., Centro, S., Cerati, G., Cerna, C., Cervelli, A., Villanueva, A. Cervera, Chakraborty, K., Chakraborty, S., Chalifour, M., Chappell, A., Charitonidis, N., Chatterjee, A., Chen, H., Chen, M., Chen, W. C., Chen, Y., Chen-Wishart, Z., Cherdack, D., Chi, C., Chiapponi, F., Chirco, R., Chitirasreemadam, N., Cho, K., Choate, S., Chokheli, D., Chong, P. S., Chowdhury, B., Christian, D., Chukanov, A., Chung, M., Church, E., Cicala, M. F., Cicerchia, M., Cicero, V., Ciolini, R., Clarke, P., Cline, G., Coan, T. E., Cocco, A. G., Coelho, J. A. B., Cohen, A., Collazo, J., Collot, J., Conley, E., Conrad, J. M., Convery, M., Copello, S., Cortez, A. F. V., Cova, P., Cox, C., Cremaldi, L., Cremonesi, L., Crespo-Anadón, J. I., Crisler, M., Cristaldo, E., Crnkovic, J., Crone, G., Cross, R., Cudd, A., Cuesta, C., Cui, Y., Curciarello, F., Cussans, D., Dai, J., Dalager, O., Dallavalle, R., Dallaway, W., D'Amico, R., da Motta, H., Dar, Z. A., Darby, R., Peres, L. Da Silva, David, Q., Davies, G. S., Davini, S., Dawson, J., De Aguiar, R., De Almeida, P., Debbins, P., De Bonis, I., Decowski, M. P., de Gouvêa, A., De Holanda, P. C., Astiz, I. L. De Icaza, De Jong, P., Sanchez, P. Del Amo, De la Torre, A., De Lauretis, G., Delbart, A., Delepine, D., Delgado, M., Dell'Acqua, A., Monache, G. Delle, Delmonte, N., De Lurgio, P., Demario, R., De Matteis, G., Neto, J. R. T. de Mello, DeMuth, D. M., Dennis, S., Densham, C., Denton, P., Deptuch, G. W., De Roeck, A., De Romeri, V., Detje, J. P., Devine, J., Dharmapalan, R., Dias, M., Diaz, A., Díaz, J. S., Díaz, F., Di Capua, F., Di Domenico, A., Di Domizio, S., Di Falco, S., Di Giulio, L., Ding, P., Di Noto, L., Diociaiuti, E., Distefano, C., Diurba, R., Diwan, M., Djurcic, Z., Doering, D., Dolan, S., Dolek, F., Dolinski, M. J., Domenici, D., Domine, L., Donati, S., Donon, Y., Doran, S., Douglas, D., Doyle, T. A., Dragone, A., Drielsma, F., Duarte, L., Duchesneau, D., Duffy, K., Dugas, K., Dunne, P., Dutta, B., Duyang, H., Dwyer, D. A., Dyshkant, A. S., Dytman, S., Eads, M., Earle, A., Edayath, S., Edmunds, D., Eisch, J., Englezos, P., Ereditato, A., Erjavec, T., Escobar, C. O., Evans, J. J., Ewart, E., Ezeribe, A. C., Fahey, K., Fajt, L., Falcone, A., Fani', M., Farnese, C., Farrell, S., Farzan, Y., Fedoseev, D., Felix, J., Feng, Y., Fernandez-Martinez, E., Fernández-Posada, D., Ferry, G., Fialova, E., Fields, L., Filip, P., Filkins, A., Filthaut, F., Fine, R., Fiorillo, G., Fiorini, M., Fogarty, S., Foreman, W., Fowler, J., Franc, J., Francis, K., Franco, D., Franklin, J., Freeman, J., Fried, J., Friedland, A., Fuess, S., Furic, I. K., Furman, K., Furmanski, A. P., Gaba, R., Gabrielli, A., M~Gago, A., Galizzi, F., Gallagher, H., Gallice, N., Galymov, V., Gamberini, E., Gamble, T., Ganacim, F., Gandhi, R., Ganguly, S., Gao, F., Gao, S., Garcia-Gamez, D., García-Peris, M. Á., Gardim, F., Gardiner, S., Gastler, D., Gauch, A., Gauvreau, J., Gauzzi, P., Gazzana, S., Ge, G., Geffroy, N., Gelli, B., Gent, S., Gerlach, L., Ghorbani-Moghaddam, Z., Giammaria, T., Gibin, D., Gil-Botella, I., Gilligan, S., Gioiosa, A., Giovannella, S., Girerd, C., Giri, A. K., Giugliano, C., Giusti, V., Gnani, D., Gogota, O., Gollapinni, S., Gollwitzer, K., Gomes, R. A., Bermeo, L. V. Gomez, Fajardo, L. S. Gomez, Gonnella, F., Gonzalez-Diaz, D., Gonzalez-Lopez, M., Goodman, M. C., Goswami, S., Gotti, C., Goudeau, J., Goudzovski, E., Grace, C., Gramellini, E., Gran, R., Granados, E., Granger, P., Grant, C., Gratieri, D. R., Grauso, G., Green, P., Greenberg, S., Greer, J., Griffith, W. C., Groetschla, F. T., Grzelak, K., Gu, L., Gu, W., Guarino, V., Guarise, M., Guenette, R., Guerzoni, M., Guffanti, D., Guglielmi, A., Guo, B., Guo, F. Y., Gupta, A., Gupta, V., Gurung, G., Gutierrez, D., Guzowski, P., Guzzo, M. M., Gwon, S., Habig, A., Hadavand, H., Haegel, L., Haenni, R., Hagaman, L., Hahn, A., Haiston, J., Hakenmüller, J., Hamernik, T., Hamilton, P., Hancock, J., Happacher, F., Harris, D. A., Hart, A., Hartnell, J., Hartnett, T., Harton, J., Hasegawa, T., Hasnip, C. M., Hatcher, R., Hayrapetyan, K., Hays, J., Hazen, E., He, M., Heavey, A., Heeger, K. M., Heise, J., Hellmuth, P., Henry, S., Hernández-García, J., Herner, K., Hewes, V., Higuera, A., Hilgenberg, C., Hillier, S. J., Himmel, A., Hinkle, E., Hirsch, L. R., Ho, J., Hoff, J., Holin, A., Holvey, T., Hoppe, E., Horiuchi, S., Horton-Smith, G. A., Houdy, T., Howard, B., Howell, R., Hristova, I., Hronek, M. S., Huang, J., Huang, R. G., Hulcher, Z., Ibrahim, M., Iles, G., Ilic, N., Iliescu, A. M., Illingworth, R., Ingratta, G., Ioannisian, A., Irwin, B., Isenhower, L., Oliveira, M. Ismerio, Itay, R., Jackson, C. M., Jain, V., James, E., Jang, W., Jargowsky, B., Jena, D., Jentz, I., Ji, X., Jiang, C., Jiang, J., Jiang, L., Jipa, A., Jo, J. H., Joaquim, F. R., Johnson, W., Jollet, C., Jones, B., Jones, R., Jovancevic, N., Judah, M., Jung, C. K., Junk, T., Jwa, Y., Kabirnezhad, M., Kaboth, A. C., Kadenko, I., Kakorin, I., Kalitkina, A., Kalra, D., Kandemir, M., Kaplan, D. M., Karagiorgi, G., Karaman, G., Karcher, A., Karyotakis, Y., Kasai, S., Kasetti, S. P., Kashur, L., Katsioulas, I., Kauther, A., Kazaryan, N., Ke, L., Kearns, E., Keener, P. T., Kelly, K. J., Kemp, E., Kemularia, O., Kermaidic, Y., Ketchum, W., Kettell, S. H., Khabibullin, M., Khan, N., Khvedelidze, A., Kim, D., Kim, J., Kim, M. J., King, B., Kirby, B., Kirby, M., Kish, A., Klein, J., Kleykamp, J., Klustova, A., Kobilarcik, T., Koch, L., Koehler, K., Koerner, L. W., Koh, D. H., Kolupaeva, L., Korablev, D., Kordosky, M., Kosc, T., Kose, U., Kostelecký, V. A., Kothekar, K., Kotler, I., Kovalcuk, M., Kozhukalov, V., Krah, W., Kralik, R., Kramer, M., Kreczko, L., Krennrich, F., Kreslo, I., Kroupova, T., Kubota, S., Kubu, M., Kudenko, Y., Kudryavtsev, V. A., Kufatty, G., Kuhlmann, S., Kulagin, S., Kumar, J., Kumar, P., Kumaran, S., Kunzmann, J., Kuravi, R., Kurita, N., Kuruppu, C., Kus, V., Kutter, T., Kuźniak, M., Kvasnicka, J., Labree, T., Lackey, T., Lalău, I., Lambert, A., Land, B. J., Lane, C. E., Lane, N., Lang, K., Langford, T., Langstaff, M., Lanni, F., Lantwin, O., Larkin, J., Lasorak, P., Last, D., Laudrain, A., Laundrie, A., Laurenti, G., Lavaut, E., Laycock, P., Lazanu, I., LaZur, R., Lazzaroni, M., Le, T., Leardini, S., Learned, J., LeCompte, T., Legin, V., Miotto, G. Lehmann, Lehnert, R., de Oliveira, M. A. Leigui, Leitner, M., Silverio, D. Leon, Lepin, L. M., -Y~Li, J., Li, S. W., Li, Y., Liao, H., Lin, C. S., Lindebaum, D., Linden, S., Lineros, R. A., Lister, A., Littlejohn, B. R., Liu, H., Liu, J., Liu, Y., Lockwitz, S., Lokajicek, M., Lomidze, I., Long, K., Lopes, T. V., Lopez, J., de Rego, I. López, López-March, N., Lord, T., LoSecco, J. M., Louis, W. C., Sanchez, A. Lozano, Lu, X. -G., Luk, K. B., Lunday, B., Luo, X., Luppi, E., MacFarlane, D., Machado, A. A., Machado, P., Macias, C. T., Macier, J. R., MacMahon, M., Maddalena, A., Madera, A., Madigan, P., Magill, S., Magueur, C., Mahn, K., Maio, A., Major, A., Majumdar, K., Mameli, S., Man, M., Mandujano, R. C., Maneira, J., Manly, S., Mann, A., Manolopoulos, K., Plata, M. Manrique, Corchado, S. Manthey, Manyam, V. N., Marchan, M., Marchionni, A., Marciano, W., Marfatia, D., Mariani, C., Maricic, J., Marinho, F., Marino, A. D., Markiewicz, T., Marques, F. Das Chagas, Marquet, C., Marshak, M., Marshall, C. M., Marshall, J., Martina, L., Martín-Albo, J., Martinez, N., Caicedo, D. A. Martinez, López, F. Martínez, Miravé, P. Martínez, Martynenko, S., Mascagna, V., Massari, C., Mastbaum, A., Matichard, F., Matsuno, S., Matteucci, G., Matthews, J., Mauger, C., Mauri, N., Mavrokoridis, K., Mawby, I., Mazza, R., McAskill, T., McConkey, N., McFarland, K. S., McGrew, C., McNab, A., Meazza, L., Meddage, V. C. N., Mefodiev, A., Mehta, B., Mehta, P., Melas, P., Mena, O., Mendez, H., Mendez, P., Méndez, D. P., Menegolli, A., Meng, G., Mercuri, A. C. E. A., Meregaglia, A., Messier, M. D., Metallo, S., Metcalf, W., Mewes, M., Meyer, H., Miao, T., Micallef, J., Miccoli, A., Michna, G., Milincic, R., Miller, F., Miller, G., Miller, W., Mineev, O., Minotti, A., Miralles, L., Miranda, O. G., Mironov, C., Miryala, S., Miscetti, S., Mishra, C. S., Mishra, P., Mishra, S. R., Mislivec, A., Mitchell, M., Mladenov, D., Mocioiu, I., Mogan, A., Moggi, N., Mohanta, R., Mohayai, T. A., Mokhov, N., Molina, J., Bueno, L. Molina, Montagna, E., Montanari, A., Montanari, C., Montanari, D., Montanino, D., Zetina, L. M. Montaño, Mooney, M., Moor, A. F., Moore, Z., Moreno, D., Moreno-Palacios, O., Morescalchi, L., Moretti, D., Moretti, R., Morris, C., Mossey, C., Moura, C. A., Mouster, G., Mu, W., Mualem, L., Mueller, J., Muether, M., Muheim, F., Muir, A., Mulhearn, M., Munford, D., Munteanu, L. J., Muramatsu, H., Muraz, J., Murphy, M., Murphy, T., Muse, J., Mytilinaki, A., Nachtman, J., Nagai, Y., Nagu, S., Nandakumar, R., Naples, D., Narita, S., Navrer-Agasson, A., Nayak, N., Nebot-Guinot, M., Nehm, A., Nelson, J. K., Neogi, O., Nesbit, J., Nessi, M., Newbold, D., Newcomer, M., Nichol, R., Nicolas-Arnaldos, F., Nikolica, A., Nikolov, J., Niner, E., Nishimura, K., Norman, A., Norrick, A., Novella, P., Nowak, A., Nowak, J. A., Oberling, M., Ochoa-Ricoux, J. P., Oh, S., Oh, S. B., Olivier, A., Olshevskiy, A., Olson, T., Onel, Y., Onishchuk, Y., Oranday, A., Gann, G. D. Orebi, Osbiston, M., Vélez, J. A. Osorio, O'Sullivan, L., Ormachea, L. Otiniano, Ott, J., Pagani, L., Palacio, G., Palamara, O., Palestini, S., Paley, J. M., Pallavicini, M., Palomares, C., Pan, S., Panda, P., Vazquez, W. Panduro, Pantic, E., Paolone, V., Papaleo, R., Papanestis, A., Papoulias, D., Paramesvaran, S., Paris, A., Parke, S., Parozzi, E., Parsa, S., Parsa, Z., Parveen, S., Parvu, M., Pasciuto, D., Pascoli, S., Pasqualini, L., Pasternak, J., Patrick, C., Patrizii, L., Patterson, R. B., Patzak, T., Paudel, A., Paulucci, L., Pavlovic, Z., Pawloski, G., Payne, D., Pec, V., Pedreschi, E., Peeters, S. J. M., Pellico, W., Perez, A. Pena, Pennacchio, E., Penzo, A., Peres, O. L. G., Gonzalez, Y. F. Perez, Pérez-Molina, L., Pernas, C., Perry, J., Pershey, D., Pessina, G., Petrillo, G., Petta, C., Petti, R., Pfaff, M., Pia, V., Pickering, L., Pietropaolo, F., Pimentel, V. L., Pinaroli, G., Pincha, S., Pinchault, J., Pitts, K., Plows, K., Pollack, C., Pollman, T., Pompa, F., Pons, X., Poonthottathil, N., Popov, V., Poppi, F., Porter, J., Paix{ã}o, L. G. Porto, Potekhin, M., Potenza, R., Pozimski, J., Pozzato, M., Prakash, T., Pratt, C., Prest, M., Psihas, F., Pugnere, D., Qian, X., Queen, J., Raaf, J. L., Radeka, V., Rademacker, J., Radics, B., Raffaelli, F., Rafique, A., Raguzin, E., Rai, M., Rajagopalan, S., Rajaoalisoa, M., Rakhno, I., Rakotondravohitra, L., Ralte, L., Delgado, M. A. Ramirez, Ramson, B., Rappoldi, A., Raselli, G., Ratoff, P., Ray, R., Razafinime, H., Rea, E. M., Real, J. S., Rebel, B., Rechenmacher, R., Reichenbacher, J., Reitzner, S. D., Sfar, H. Rejeb, Renner, E., Renshaw, A., Rescia, S., Resnati, F., Diego~Restrepo, Reynolds, C., Ribas, M., Riboldi, S., Riccio, C., Riccobene, G., Ricol, J. S., Rigan, M., Rincón, E. V., Ritchie-Yates, A., Ritter, S., Rivera, D., Rivera, R., Robert, A., Rocha, J. L. Rocabado, Rochester, L., Roda, M., Rodrigues, P., Alonso, M. J. Rodriguez, Rondon, J. Rodriguez, Rosauro-Alcaraz, S., Rosier, P., Ross, D., Rossella, M., Rossi, M., Ross-Lonergan, M., Roy, N., Roy, P., Rubbia, C., Ruggeri, A., Ruiz, G., Russell, B., Ruterbories, D., Rybnikov, A., Sacerdoti, S., Saha, S., Sahoo, S. K., Sahu, N., Sala, P., Samios, N., Samoylov, O., Sanchez, M. C., Bravo, A. Sánchez, Sánchez-Castillo, A., Sanchez-Lucas, P., Sandberg, V., Sanders, D. A., Sanfilippo, S., Sankey, D., Santoro, D., Saoulidou, N., Sapienza, P., Sarasty, C., Sarcevic, I., Sarra, I., Savage, G., Savinov, V., Scanavini, G., Scaramelli, A., Scarff, A., Schefke, T., Schellman, H., Schifano, S., Schlabach, P., Schmitz, D., Schneider, A. W., Scholberg, K., Schukraft, A., Schuld, B., Segade, A., Segreto, E., Selyunin, A., Senadheera, D., Senise, C. R., Sensenig, J., Seo, S. H., Shaevitz, M. H., Shanahan, P., Sharma, P., Kumar, R., Poudel, S. Sharma, Shaw, K., Shaw, T., Shchablo, K., Shen, J., Shepherd-Themistocleous, C., Sheshukov, A., Shi, J., Shi, W., Shin, S., Shivakoti, S., Shoemaker, I., Shooltz, D., Shrock, R., Siddi, B., Siden, M., Silber, J., Simard, L., Sinclair, J., Sinev, G., Singh, J., Singh, L., Singh, P., Singh, V., Chauhan, S. Singh, Sipos, R., Sironneau, C., Sirri, G., Siyeon, K., Skarpaas, K., Smedley, J., Smith, E., Smith, J., Smith, P., Smolik, J., Smy, M., Snape, M., Snider, E. L., Snopok, P., Snowden-Ifft, D., Nunes, M. Soares, Sobel, H., Soderberg, M., Sokolov, S., Salinas, C. J. Solano, Söldner-Rembold, S., Solomey, N., Solovov, V., Sondheim, W. E., Sorel, M., Sotnikov, A., Soto-Oton, J., Sousa, A., Soustruznik, K., Spinella, F., Spitz, J., Spooner, N. J. C., Spurgeon, K., Stalder, D., Stancari, M., Stanco, L., Steenis, J., Stein, R., Steiner, H. M., Lisbôa, A. F. Steklain, Stepanova, A., Stewart, J., Stillwell, B., Stock, J., Stocker, F., Stokes, T., Strait, M., Strauss, T., Strigari, L., Stuart, A., Suarez, J. G., Subash, J., Surdo, A., Suter, L., Sutera, C. M., Sutton, K., Suvorov, Y., Svoboda, R., Swain, S. K., Szczerbinska, B., Szelc, A. M., Sztuc, A., Taffara, A., Talukdar, N., Tamara, J., Tanaka, H. A., Tang, S., Taniuchi, N., Casanova, A. M. Tapia, Oregui, B. Tapia, Tapper, A., Tariq, S., Tarpara, E., Tatar, E., Tayloe, R., Tedeschi, D., Teklu, A. M., Vidal, J. Tena, Tennessen, P., Tenti, M., Terao, K., Terranova, F., Testera, G., Thakore, T., Thea, A., Thomas, S., Thompson, A., Thorn, C., Timm, S. C., Tiras, E., Tishchenko, V., Todorović, N., Tomassetti, L., Tonazzo, A., Torbunov, D., Torti, M., Tortola, M., Tortorici, F., Tosi, N., Totani, D., Toups, M., Touramanis, C., Tran, D., Travaglini, R., Trevor, J., Triller, E., Trilov, S., Truchon, J., Truncali, D., Trzaska, W. H., Tsai, Y., Tsai, Y. -T., Tsamalaidze, Z., Tsang, K. V., Tsverava, N., Tu, S. Z., Tufanli, S., Tunnell, C., Turnberg, S., Turner, J., Tuzi, M., Tyler, J., Tyley, E., Tzanov, M., Uchida, M. A., González, J. Ureña, Urheim, J., Usher, T., Utaegbulam, H., Uzunyan, S., Vagins, M. R., Vahle, P., Valder, S., Valdiviesso, G. A., Valencia, E., Valentim, R., Vallari, Z., Vallazza, E., Valle, J. W. F., Van Berg, R., Van de Water, R. G., Forero, D. V., Vannozzi, A., Van Nuland-Troost, M., Varanini, F., Oliva, D. Vargas, Vasina, S., Vaughan, N., Vaziri, K., Vázquez-Ramos, A., Vega, J., Ventura, S., Verdugo, A., Vergani, S., Verzocchi, M., Vetter, K., Vicenzi, M., de Souza, H. Vieira, Vignoli, C., Vilela, C., Villa, E., Viola, S., Viren, B., Hernandez, A. P. Vizcaya, Vuong, Q., Waldron, A. V., Wallbank, M., Walsh, J., Walton, T., Wang, H., Wang, J., Wang, L., Wang, M. H. L. S., Wang, X., Wang, Y., Warburton, K., Warner, D., Warsame, L., Wascko, M. O., Waters, D., Watson, A., Wawrowska, K., Weber, A., Weber, C. M., Weber, M., Wei, H., Weinstein, A., Westerdale, S., Wetstein, M., Whalen, K., White, A., Whitehead, L. H., Whittington, D., Wilhlemi, J., Wilking, M. J., Wilkinson, A., Wilkinson, C., Wilson, F., Wilson, R. J., Winter, P., Wisniewski, W., Wolcott, J., Wolfs, J., Wongjirad, T., Wood, A., Wood, K., Worcester, E., Worcester, M., Wospakrik, M., Wresilo, K., Wret, C., Wu, S., Wu, W., Wurm, M., Wyenberg, J., Xiao, Y., Xiotidis, I., Yaeggy, B., Yahlali, N., Yandel, E., Yang, J., Yang, K., Yang, T., Yankelevich, A., Yershov, N., Yonehara, K., Young, T., Yu, B., Yu, H., Yu, J., Yu, Y., Yuan, W., Zaki, R., Zalesak, J., Zambelli, L., Zamorano, B., Zani, A., Zapata, O., Zazueta, L., Zeller, G. P., Zennamo, J., Zeug, K., Zhang, C., Zhang, S., Zhao, M., Zhivun, E., Zimmerman, E. D., Zucchelli, S., Zuklin, J., Zutshi, V., and Zwaska, R.
- Subjects
Physics - Instrumentation and Detectors ,High Energy Physics - Experiment - Abstract
The international collaboration designing and constructing the Deep Underground Neutrino Experiment (DUNE) at the Long-Baseline Neutrino Facility (LBNF) has developed a two-phase strategy toward the implementation of this leading-edge, large-scale science project. The 2023 report of the US Particle Physics Project Prioritization Panel (P5) reaffirmed this vision and strongly endorsed DUNE Phase I and Phase II, as did the European Strategy for Particle Physics. While the construction of the DUNE Phase I is well underway, this White Paper focuses on DUNE Phase II planning. DUNE Phase-II consists of a third and fourth far detector (FD) module, an upgraded near detector complex, and an enhanced 2.1 MW beam. The fourth FD module is conceived as a "Module of Opportunity", aimed at expanding the physics opportunities, in addition to supporting the core DUNE science program, with more advanced technologies. This document highlights the increased science opportunities offered by the DUNE Phase II near and far detectors, including long-baseline neutrino oscillation physics, neutrino astrophysics, and physics beyond the standard model. It describes the DUNE Phase II near and far detector technologies and detector design concepts that are currently under consideration. A summary of key R&D goals and prototyping phases needed to realize the Phase II detector technical designs is also provided. DUNE's Phase II detectors, along with the increased beam power, will complete the full scope of DUNE, enabling a multi-decadal program of groundbreaking science with neutrinos.
- Published
- 2024
48. First Measurement of the Total Inelastic Cross-Section of Positively-Charged Kaons on Argon at Energies Between 5.0 and 7.5 GeV
- Author
-
DUNE Collaboration, Abud, A. Abed, Abi, B., Acciarri, R., Acero, M. A., Adames, M. R., Adamov, G., Adamowski, M., Adams, D., Adinolfi, M., Adriano, C., Aduszkiewicz, A., Aguilar, J., Akbar, F., Allison, K., Monsalve, S. Alonso, Alrashed, M., Alton, A., Alvarez, R., Alves, T., Amar, H., Amedo, P., Anderson, J., Andreopoulos, C., Andreotti, M., Andrews, M. P., Andrianala, F., Andringa, S., Anfimov, N., Ankowski, A., Antic, D., Antoniassi, M., Antonova, M., Antoshkin, A., Aranda-Fernandez, A., Arellano, L., Diaz, E. Arrieta, Arroyave, M. A., Asaadi, J., Ashkenazi, A., Asner, D., Asquith, L., Atkin, E., Auguste, D., Aurisano, A., Aushev, V., Autiero, D., Azam, M. B., Azfar, F., Back, A., Back, H., Back, J. J., Bagaturia, I., Bagby, L., Balashov, N., Balasubramanian, S., Baldi, P., Baldini, W., Baldonedo, J., Baller, B., Bambah, B., Banerjee, R., Barao, F., Barbu, D., Barenboim, G., Barham~Alzás, P., Barker, G. J., Barkhouse, W., Barr, G., Monarca, J. Barranco, Barros, A., Barros, N., Barrow, D., Barrow, J. L., Basharina-Freshville, A., Bashyal, A., Basque, V., Batchelor, C., Bathe-Peters, L., Battat, J. B. R., Battisti, F., Bay, F., Bazetto, M. C. Q., Alba, J. L. L. Bazo, Beacom, J. F., Bechetoille, E., Behera, B., Belchior, E., Bell, G., Bellantoni, L., Bellettini, G., Bellini, V., Beltramello, O., Benekos, N., Montiel, C. Benitez, Benjamin, D., Neves, F. Bento, Berger, J., Berkman, S., Bernal, J., Bernardini, P., Bersani, A., Bertolucci, S., Betancourt, M., Rodríguez, A. Betancur, Bevan, A., Bezawada, Y., Bezerra, A. T., Bezerra, T. J., Bhat, A., Bhatnagar, V., Bhatt, J., Bhattacharjee, M., Bhattacharya, M., Bhuller, S., Bhuyan, B., Biagi, S., Bian, J., Biery, K., Bilki, B., Bishai, M., Bitadze, A., Blake, A., Blaszczyk, F. D., Blazey, G. C., Blucher, E., Bodek, A., Bogenschuetz, J., Boissevain, J., Bolognesi, S., Bolton, T., Bomben, L., Bonesini, M., Bonilla-Diaz, C., Bonini, F., Booth, A., Boran, F., Bordoni, S., Merlo, R. Borges, Borkum, A., Bostan, N., Bouet, R., Boza, J., Bracinik, J., Brahma, B., Brailsford, D., Bramati, F., Branca, A., Brandt, A., Bremer, J., Brew, C., Brice, S. J., Brio, V., Brizzolari, C., Bromberg, C., Brooke, J., Bross, A., Brunetti, G., Brunetti, M., Buchanan, N., Budd, H., Buergi, J., Bundock, A., Burgardt, D., Butchart, S., V., G. Caceres, Cagnoli, I., Cai, T., Calabrese, R., Calcutt, J., Calivers, L., Calvo, E., Caminata, A., Camino, A. F., Campanelli, W., Campani, A., Benitez, A. Campos, Canci, N., Capó, J., Caracas, I., Caratelli, D., Carber, D., Carceller, J. M., Carini, G., Carlus, B., Carneiro, M. F., Carniti, P., Terrazas, I. Caro, Carranza, H., Carrara, N., Carroll, L., Carroll, T., Carter, A., Casarejos, E., Casazza, D., Forero, J. F. Castaño, Castaño, F. A., Castillo, A., Castromonte, C., Catano-Mur, E., Cattadori, C., Cavalier, F., Cavanna, F., Centro, S., Cerati, G., Cerna, C., Cervelli, A., Villanueva, A. Cervera, Chakraborty, K., Chakraborty, S., Chalifour, M., Chappell, A., Charitonidis, N., Chatterjee, A., Chen, H., Chen, M., Chen, W. C., Chen, Y., Chen-Wishart, Z., Cherdack, D., Chi, C., Chiapponi, F., Chirco, R., Chitirasreemadam, N., Cho, K., Choate, S., Chokheli, D., Chong, P. S., Chowdhury, B., Christian, D., Chukanov, A., Chung, M., Church, E., Cicala, M. F., Cicerchia, M., Cicero, V., Ciolini, R., Clarke, P., Cline, G., Coan, T. E., Cocco, A. G., Coelho, J. A. B., Cohen, A., Collazo, J., Collot, J., Conley, E., Conrad, J. M., Convery, M., Copello, S., Cova, P., Cox, C., Cremaldi, L., Cremonesi, L., Crespo-Anadón, J. I., Crisler, M., Cristaldo, E., Crnkovic, J., Crone, G., Cross, R., Cudd, A., Cuesta, C., Cui, Y., Curciarello, F., Cussans, D., Dai, J., Dalager, O., Dallavalle, R., Dallaway, W., D'Amico, R., da Motta, H., Dar, Z. A., Darby, R., Peres, L. Da Silva, David, Q., Davies, G. S., Davini, S., Dawson, J., De Aguiar, R., De Almeida, P., Debbins, P., De Bonis, I., Decowski, M. P., de Gouvêa, A., De Holanda, P. C., Astiz, I. L. De Icaza, De Jong, P., Sanchez, P. Del Amo, De la Torre, A., De Lauretis, G., Delbart, A., Delepine, D., Delgado, M., Dell'Acqua, A., Monache, G. Delle, Delmonte, N., De Lurgio, P., Demario, R., De Matteis, G., Neto, J. R. T. de Mello, DeMuth, D. M., Dennis, S., Densham, C., Denton, P., Deptuch, G. W., De Roeck, A., De Romeri, V., Detje, J. P., Devine, J., Dharmapalan, R., Dias, M., Diaz, A., Díaz, J. S., Díaz, F., Di Capua, F., Di Domenico, A., Di Domizio, S., Di Falco, S., Di Giulio, L., Ding, P., Di Noto, L., Diociaiuti, E., Distefano, C., Diurba, R., Diwan, M., Djurcic, Z., Doering, D., Dolan, S., Dolek, F., Dolinski, M. J., Domenici, D., Domine, L., Donati, S., Donon, Y., Doran, S., Douglas, D., Doyle, T. A., Dragone, A., Drielsma, F., Duarte, L., Duchesneau, D., Duffy, K., Dugas, K., Dunne, P., Dutta, B., Duyang, H., Dwyer, D. A., Dyshkant, A. S., Dytman, S., Eads, M., Earle, A., Edayath, S., Edmunds, D., Eisch, J., Englezos, P., Ereditato, A., Erjavec, T., Escobar, C. O., Evans, J. J., Ewart, E., Ezeribe, A. C., Fahey, K., Fajt, L., Falcone, A., Fani', M., Farnese, C., Farrell, S., Farzan, Y., Fedoseev, D., Felix, J., Feng, Y., Fernandez-Martinez, E., Ferry, G., Fialova, E., Fields, L., Filip, P., Filkins, A., Filthaut, F., Fine, R., Fiorillo, G., Fiorini, M., Fogarty, S., Foreman, W., Fowler, J., Franc, J., Francis, K., Franco, D., Franklin, J., Freeman, J., Fried, J., Friedland, A., Fuess, S., Furic, I. K., Furman, K., Furmanski, A. P., Gaba, R., Gabrielli, A., M~Gago, A., Galizzi, F., Gallagher, H., Gallice, N., Galymov, V., Gamberini, E., Gamble, T., Ganacim, F., Gandhi, R., Ganguly, S., Gao, F., Gao, S., Garcia-Gamez, D., García-Peris, M. Á., Gardim, F., Gardiner, S., Gastler, D., Gauch, A., Gauvreau, J., Gauzzi, P., Gazzana, S., Ge, G., Geffroy, N., Gelli, B., Gent, S., Gerlach, L., Ghorbani-Moghaddam, Z., Giammaria, T., Gibin, D., Gil-Botella, I., Gilligan, S., Gioiosa, A., Giovannella, S., Girerd, C., Giri, A. K., Giugliano, C., Giusti, V., Gnani, D., Gogota, O., Gollapinni, S., Gollwitzer, K., Gomes, R. A., Bermeo, L. V. Gomez, Fajardo, L. S. Gomez, Gonnella, F., Gonzalez-Diaz, D., Gonzalez-Lopez, M., Goodman, M. C., Goswami, S., Gotti, C., Goudeau, J., Goudzovski, E., Grace, C., Gramellini, E., Gran, R., Granados, E., Granger, P., Grant, C., Gratieri, D. R., Grauso, G., Green, P., Greenberg, S., Greer, J., Griffith, W. C., Groetschla, F. T., Grzelak, K., Gu, L., Gu, W., Guarino, V., Guarise, M., Guenette, R., Guerzoni, M., Guffanti, D., Guglielmi, A., Guo, B., Guo, F. Y., Gupta, A., Gupta, V., Gurung, G., Gutierrez, D., Guzowski, P., Guzzo, M. M., Gwon, S., Habig, A., Hadavand, H., Haegel, L., Haenni, R., Hagaman, L., Hahn, A., Haiston, J., Hakenmüller, J., Hamernik, T., Hamilton, P., Hancock, J., Happacher, F., Harris, D. A., Hartnell, J., Hartnett, T., Harton, J., Hasegawa, T., Hasnip, C. M., Hatcher, R., Hayrapetyan, K., Hays, J., Hazen, E., He, M., Heavey, A., Heeger, K. M., Heise, J., Hellmuth, P., Henry, S., Herner, K., Hewes, V., Higuera, A., Hilgenberg, C., Hillier, S. J., Himmel, A., Hinkle, E., Hirsch, L. R., Ho, J., Hoff, J., Holin, A., Holvey, T., Hoppe, E., Horiuchi, S., Horton-Smith, G. A., Houdy, T., Howard, B., Howell, R., Hristova, I., Hronek, M. S., Huang, J., Huang, R. G., Hulcher, Z., Ibrahim, M., Iles, G., Ilic, N., Iliescu, A. M., Illingworth, R., Ingratta, G., Ioannisian, A., Irwin, B., Isenhower, L., Oliveira, M. Ismerio, Itay, R., Jackson, C. M., Jain, V., James, E., Jang, W., Jargowsky, B., Jena, D., Jentz, I., Ji, X., Jiang, C., Jiang, J., Jiang, L., Jipa, A., Jo, J. H., Joaquim, F. R., Johnson, W., Jollet, C., Jones, B., Jones, R., Jovancevic, N., Judah, M., Jung, C. K., Junk, T., Jwa, Y., Kabirnezhad, M., Kaboth, A. C., Kadenko, I., Kakorin, I., Kalitkina, A., Kalra, D., Kandemir, M., Kaplan, D. M., Karagiorgi, G., Karaman, G., Karcher, A., Karyotakis, Y., Kasai, S., Kasetti, S. P., Kashur, L., Katsioulas, I., Kauther, A., Kazaryan, N., Ke, L., Kearns, E., Keener, P. T., Kelly, K. J., Kemp, E., Kemularia, O., Kermaidic, Y., Ketchum, W., Kettell, S. H., Khabibullin, M., Khan, N., Khvedelidze, A., Kim, D., Kim, J., Kim, M. J., King, B., Kirby, B., Kirby, M., Kish, A., Klein, J., Kleykamp, J., Klustova, A., Kobilarcik, T., Koch, L., Koehler, K., Koerner, L. W., Koh, D. H., Kolupaeva, L., Korablev, D., Kordosky, M., Kosc, T., Kose, U., Kostelecký, V. A., Kothekar, K., Kotler, I., Kovalcuk, M., Kozhukalov, V., Krah, W., Kralik, R., Kramer, M., Kreczko, L., Krennrich, F., Kreslo, I., Kroupova, T., Kubota, S., Kubu, M., Kudenko, Y., Kudryavtsev, V. A., Kufatty, G., Kuhlmann, S., Kulagin, S., Kumar, J., Kumar, P., Kumaran, S., Kunzmann, J., Kuravi, R., Kurita, N., Kuruppu, C., Kus, V., Kutter, T., Kvasnicka, J., Labree, T., Lackey, T., Lal{ă}u, I., Lambert, A., Land, B. J., Lane, C. E., Lane, N., Lang, K., Langford, T., Langstaff, M., Lanni, F., Lantwin, O., Larkin, J., Lasorak, P., Last, D., Laudrain, A., Laundrie, A., Laurenti, G., Lavaut, E., Laycock, P., Lazanu, I., LaZur, R., Lazzaroni, M., Le, T., Leardini, S., Learned, J., LeCompte, T., Legin, V., Miotto, G. Lehmann, Lehnert, R., de Oliveira, M. A. Leigui, Leitner, M., Silverio, D. Leon, Lepin, L. M., -Y~Li, J., Li, S. W., Li, Y., Liao, H., Lin, C. S., Lindebaum, D., Linden, S., Lineros, R. A., Lister, A., Littlejohn, B. R., Liu, H., Liu, J., Liu, Y., Lockwitz, S., Lokajicek, M., Lomidze, I., Long, K., Lopes, T. V., Lopez, J., de Rego, I. López, López-March, N., Lord, T., LoSecco, J. M., Louis, W. C., Sanchez, A. Lozano, Lu, X. -G., Luk, K. B., Lunday, B., Luo, X., Luppi, E., MacFarlane, D., Machado, A. A., Machado, P., Macias, C. T., Macier, J. R., MacMahon, M., Maddalena, A., Madera, A., Madigan, P., Magill, S., Magueur, C., Mahn, K., Maio, A., Major, A., Majumdar, K., Mameli, S., Man, M., Mandujano, R. C., Maneira, J., Manly, S., Mann, A., Manolopoulos, K., Plata, M. Manrique, Corchado, S. Manthey, Manyam, V. N., Marchan, M., Marchionni, A., Marciano, W., Marfatia, D., Mariani, C., Maricic, J., Marinho, F., Marino, A. D., Markiewicz, T., Marques, F. Das Chagas, Marquet, C., Marshak, M., Marshall, C. M., Marshall, J., Martina, L., Martín-Albo, J., Martinez, N., Caicedo, D. A. Martinez, López, F. Martínez, Miravé, P. Martínez, Martynenko, S., Mascagna, V., Massari, C., Mastbaum, A., Matichard, F., Matsuno, S., Matteucci, G., Matthews, J., Mauger, C., Mauri, N., Mavrokoridis, K., Mawby, I., Mazza, R., McAskill, T., McConkey, N., McFarland, K. S., McGrew, C., McNab, A., Meazza, L., Meddage, V. C. N., Mefodiev, A., Mehta, B., Mehta, P., Melas, P., Mena, O., Mendez, H., Mendez, P., Méndez, D. P., Menegolli, A., Meng, G., Mercuri, A. C. E. A., Meregaglia, A., Messier, M. D., Metallo, S., Metcalf, W., Mewes, M., Meyer, H., Miao, T., Micallef, J., Miccoli, A., Michna, G., Milincic, R., Miller, F., Miller, G., Miller, W., Mineev, O., Minotti, A., Miralles, L., Miranda, O. G., Mironov, C., Miryala, S., Miscetti, S., Mishra, C. S., Mishra, P., Mishra, S. R., Mislivec, A., Mitchell, M., Mladenov, D., Mocioiu, I., Mogan, A., Moggi, N., Mohanta, R., Mohayai, T. A., Mokhov, N., Molina, J., Bueno, L. Molina, Montagna, E., Montanari, A., Montanari, C., Montanari, D., Montanino, D., Zetina, L. M. Montaño, Mooney, M., Moor, A. F., Moore, Z., Moreno, D., Moreno-Palacios, O., Morescalchi, L., Moretti, D., Moretti, R., Morris, C., Mossey, C., Moura, C. A., Mouster, G., Mu, W., Mualem, L., Mueller, J., Muether, M., Muheim, F., Muir, A., Mulhearn, M., Munford, D., Munteanu, L. J., Muramatsu, H., Muraz, J., Murphy, M., Murphy, T., Muse, J., Mytilinaki, A., Nachtman, J., Nagai, Y., Nagu, S., Nandakumar, R., Naples, D., Narita, S., Navrer-Agasson, A., Nayak, N., Nebot-Guinot, M., Nehm, A., Nelson, J. K., Neogi, O., Nesbit, J., Nessi, M., Newbold, D., Newcomer, M., Nichol, R., Nicolas-Arnaldos, F., Nikolica, A., Nikolov, J., Niner, E., Nishimura, K., Norman, A., Norrick, A., Novella, P., Nowak, A., Nowak, J. A., Oberling, M., Ochoa-Ricoux, J. P., Oh, S., Oh, S. B., Olivier, A., Olshevskiy, A., Olson, T., Onel, Y., Onishchuk, Y., Oranday, A., Osbiston, M., Vélez, J. A. Osorio, O'Sullivan, L., Ormachea, L. Otiniano, Ott, J., Pagani, L., Palacio, G., Palamara, O., Palestini, S., Paley, J. M., Pallavicini, M., Palomares, C., Pan, S., Panda, P., Vazquez, W. Panduro, Pantic, E., Paolone, V., Papaleo, R., Papanestis, A., Papoulias, D., Paramesvaran, S., Paris, A., Parke, S., Parozzi, E., Parsa, S., Parsa, Z., Parveen, S., Parvu, M., Pasciuto, D., Pascoli, S., Pasqualini, L., Pasternak, J., Patrick, C., Patrizii, L., Patterson, R. B., Patzak, T., Paudel, A., Paulucci, L., Pavlovic, Z., Pawloski, G., Payne, D., Pec, V., Pedreschi, E., Peeters, S. J. M., Pellico, W., Perez, A. Pena, Pennacchio, E., Penzo, A., Peres, O. L. G., Gonzalez, Y. F. Perez, Pérez-Molina, L., Pernas, C., Perry, J., Pershey, D., Pessina, G., Petrillo, G., Petta, C., Petti, R., Pfaff, M., Pia, V., Pickering, L., Pietropaolo, F., Pimentel, V. L., Pinaroli, G., Pincha, S., Pinchault, J., Pitts, K., Plows, K., Pollack, C., Pollman, T., Pompa, F., Pons, X., Poonthottathil, N., Popov, V., Poppi, F., Porter, J., Paix{ã}o, L. G. Porto, Potekhin, M., Potenza, R., Pozimski, J., Pozzato, M., Prakash, T., Pratt, C., Prest, M., Psihas, F., Pugnere, D., Qian, X., Queen, J., Raaf, J. L., Radeka, V., Rademacker, J., Radics, B., Raffaelli, F., Rafique, A., Raguzin, E., Rai, M., Rajagopalan, S., Rajaoalisoa, M., Rakhno, I., Rakotondravohitra, L., Ralte, L., Delgado, M. A. Ramirez, Ramson, B., Rappoldi, A., Raselli, G., Ratoff, P., Ray, R., Razafinime, H., Rea, E. M., Real, J. S., Rebel, B., Rechenmacher, R., Reichenbacher, J., Reitzner, S. D., Sfar, H. Rejeb, Renner, E., Renshaw, A., Rescia, S., Resnati, F., Diego~Restrepo, Reynolds, C., Ribas, M., Riboldi, S., Riccio, C., Riccobene, G., Ricol, J. S., Rigan, M., Rincón, E. V., Ritchie-Yates, A., Ritter, S., Rivera, D., Rivera, R., Robert, A., Rocha, J. L. Rocabado, Rochester, L., Roda, M., Rodrigues, P., Alonso, M. J. Rodriguez, Rondon, J. Rodriguez, Rosauro-Alcaraz, S., Rosier, P., Ross, D., Rossella, M., Rossi, M., Ross-Lonergan, M., Roy, N., Roy, P., Rubbia, C., Ruggeri, A., Ferreira, G. Ruiz, Russell, B., Ruterbories, D., Rybnikov, A., Sacerdoti, S., Saha, S., Sahoo, S. K., Sahu, N., Sala, P., Samios, N., Samoylov, O., Sanchez, M. C., Bravo, A. Sánchez, Sánchez-Castillo, A., Sanchez-Lucas, P., Sandberg, V., Sanders, D. A., Sanfilippo, S., Sankey, D., Santoro, D., Saoulidou, N., Sapienza, P., Sarasty, C., Sarcevic, I., Sarra, I., Savage, G., Savinov, V., Scanavini, G., Scaramelli, A., Scarff, A., Schefke, T., Schellman, H., Schifano, S., Schlabach, P., Schmitz, D., Schneider, A. W., Scholberg, K., Schukraft, A., Schuld, B., Segade, A., Segreto, E., Selyunin, A., Senadheera, D., Senise, C. R., Sensenig, J., Shaevitz, M. H., Shanahan, P., Sharma, P., Kumar, R., Poudel, S. Sharma, Shaw, K., Shaw, T., Shchablo, K., Shen, J., Shepherd-Themistocleous, C., Sheshukov, A., Shi, J., Shi, W., Shin, S., Shivakoti, S., Shoemaker, I., Shooltz, D., Shrock, R., Siddi, B., Siden, M., Silber, J., Simard, L., Sinclair, J., Sinev, G., Singh, Jaydip, Singh, J., Singh, L., Singh, P., Singh, V., Chauhan, S. Singh, Sipos, R., Sironneau, C., Sirri, G., Siyeon, K., Skarpaas, K., Smedley, J., Smith, E., Smith, J., Smith, P., Smolik, J., Smy, M., Snape, M., Snider, E. L., Snopok, P., Snowden-Ifft, D., Nunes, M. Soares, Sobel, H., Soderberg, M., Sokolov, S., Salinas, C. J. Solano, Söldner-Rembold, S., Solomey, N., Solovov, V., Sondheim, W. E., Sorel, M., Sotnikov, A., Soto-Oton, J., Sousa, A., Soustruznik, K., Spinella, F., Spitz, J., Spooner, N. J. C., Spurgeon, K., Stalder, D., Stancari, M., Stanco, L., Steenis, J., Stein, R., Steiner, H. M., Lisbôa, A. F. Steklain, Stepanova, A., Stewart, J., Stillwell, B., Stock, J., Stocker, F., Stokes, T., Strait, M., Strauss, T., Strigari, L., Stuart, A., Suarez, J. G., Subash, J., Surdo, A., Suter, L., Sutera, C. M., Sutton, K., Suvorov, Y., Svoboda, R., Swain, S. K., Szczerbinska, B., Szelc, A. M., Sztuc, A., Taffara, A., Talukdar, N., Tamara, J., Tanaka, H. A., Tang, S., Taniuchi, N., Casanova, A. M. Tapia, Oregui, B. Tapia, Tapper, A., Tariq, S., Tarpara, E., Tatar, E., Tayloe, R., Tedeschi, D., Teklu, A. M., Vidal, J. Tena, Tennessen, P., Tenti, M., Terao, K., Terranova, F., Testera, G., Thakore, T., Thea, A., Thomas, S., Thompson, A., Thorn, C., Timm, S. C., Tiras, E., Tishchenko, V., Todorović, N., Tomassetti, L., Tonazzo, A., Torbunov, D., Torti, M., Tortola, M., Tortorici, F., Tosi, N., Totani, D., Toups, M., Touramanis, C., Tran, D., Travaglini, R., Trevor, J., Triller, E., Trilov, S., Truchon, J., Truncali, D., Trzaska, W. H., Tsai, Y., Tsai, Y. -T., Tsamalaidze, Z., Tsang, K. V., Tsverava, N., Tu, S. Z., Tufanli, S., Tunnell, C., Turnberg, S., Turner, J., Tuzi, M., Tyler, J., Tyley, E., Tzanov, M., Uchida, M. A., González, J. Ureña, Urheim, J., Usher, T., Utaegbulam, H., Uzunyan, S., Vagins, M. R., Vahle, P., Valder, S., Valdiviesso, G. A., Valencia, E., Valentim, R., Vallari, Z., Vallazza, E., Valle, J. W. F., Van Berg, R., Van de Water, R. G., Forero, D. V., Vannozzi, A., Van Nuland-Troost, M., Varanini, F., Oliva, D. Vargas, Vasina, S., Vaughan, N., Vaziri, K., Vázquez-Ramos, A., Vega, J., Ventura, S., Verdugo, A., Vergani, S., Verzocchi, M., Vetter, K., Vicenzi, M., de Souza, H. Vieira, Vignoli, C., Vilela, C., Villa, E., Viola, S., Viren, B., Hernandez, A. P. Vizcaya, Vuong, Q., Waldron, A. V., Wallbank, M., Walsh, J., Walton, T., Wang, H., Wang, J., Wang, L., Wang, M. H. L. S., Wang, X., Wang, Y., Warburton, K., Warner, D., Warsame, L., Wascko, M. O., Waters, D., Watson, A., Wawrowska, K., Weber, A., Weber, C. M., Weber, M., Wei, H., Weinstein, A., Westerdale, S., Wetstein, M., Whalen, K., White, A., Whitehead, L. H., Whittington, D., Wilhlemi, J., Wilking, M. J., Wilkinson, A., Wilkinson, C., Wilson, F., Wilson, R. J., Winter, P., Wisniewski, W., Wolcott, J., Wolfs, J., Wongjirad, T., Wood, A., Wood, K., Worcester, E., Worcester, M., Wospakrik, M., Wresilo, K., Wret, C., Wu, S., Wu, W., Wurm, M., Wyenberg, J., Xiao, Y., Xiotidis, I., Yaeggy, B., Yahlali, N., Yandel, E., Yang, J., Yang, K., Yang, T., Yankelevich, A., Yershov, N., Yonehara, K., Young, T., Yu, B., Yu, H., Yu, J., Yu, Y., Yuan, W., Zaki, R., Zalesak, J., Zambelli, L., Zamorano, B., Zani, A., Zapata, O., Zazueta, L., Zeller, G. P., Zennamo, J., Zeug, K., Zhang, C., Zhang, S., Zhao, M., Zhivun, E., Zimmerman, E. D., Zucchelli, S., Zuklin, J., Zutshi, V., and Zwaska, R.
- Subjects
High Energy Physics - Experiment ,Physics - Instrumentation and Detectors - Abstract
ProtoDUNE Single-Phase (ProtoDUNE-SP) is a 770-ton liquid argon time projection chamber that operated in a hadron test beam at the CERN Neutrino Platform in 2018. We present a measurement of the total inelastic cross section of charged kaons on argon as a function of kaon energy using 6 and 7 GeV/$c$ beam momentum settings. The flux-weighted average of the extracted inelastic cross section at each beam momentum setting was measured to be 380$\pm$26 mbarns for the 6 GeV/$c$ setting and 379$\pm$35 mbarns for the 7 GeV/$c$ setting.
- Published
- 2024
- Full Text
- View/download PDF
49. Public vs Private Bodies: Who Should Run Advanced AI Evaluations and Audits? A Three-Step Logic Based on Case Studies of High-Risk Industries
- Author
-
Stein, Merlin, Gandhi, Milan, Kriecherbauer, Theresa, Oueslati, Amin, and Trager, Robert
- Subjects
Computer Science - Computers and Society - Abstract
Artificial Intelligence (AI) Safety Institutes and governments worldwide are deciding whether they evaluate and audit advanced AI themselves, support a private auditor ecosystem or do both. Auditing regimes have been established in a wide range of industry contexts to monitor and evaluate firms' compliance with regulation. Auditing is a necessary governance tool to understand and manage the risks of a technology. This paper draws from nine such regimes to inform (i) who should audit which parts of advanced AI; and (ii) how much capacity public bodies may need to audit advanced AI effectively. First, the effective responsibility distribution between public and private auditors depends heavily on specific industry and audit conditions. On the basis of advanced AI's risk profile, the sensitivity of information involved in the auditing process, and the high costs of verifying safety and benefit claims of AI Labs, we recommend that public bodies become directly involved in safety critical, especially gray- and white-box, AI model evaluations. Governance and security audits, which are well-established in other industry contexts, as well as black-box model evaluations, may be more efficiently provided by a private market of evaluators and auditors under public oversight. Secondly, to effectively fulfill their role in advanced AI audits, public bodies need extensive access to models and facilities. Public bodies' capacity should scale with the industry's risk level, size and market concentration, potentially requiring 100s of employees for auditing in large jurisdictions like the EU or US, like in nuclear safety and life sciences., Comment: Accepted to AIES 2024 proceedings
- Published
- 2024
50. Towards Improving NAM-to-Speech Synthesis Intelligibility using Self-Supervised Speech Models
- Author
-
Shah, Neil, Karande, Shirish, and Gandhi, Vineet
- Subjects
Computer Science - Sound ,Computer Science - Artificial Intelligence ,Electrical Engineering and Systems Science - Audio and Speech Processing - Abstract
We propose a novel approach to significantly improve the intelligibility in the Non-Audible Murmur (NAM)-to-speech conversion task, leveraging self-supervision and sequence-to-sequence (Seq2Seq) learning techniques. Unlike conventional methods that explicitly record ground-truth speech, our methodology relies on self-supervision and speech-to-speech synthesis to simulate ground-truth speech. Despite utilizing simulated speech, our method surpasses the current state-of-the-art (SOTA) by 29.08% improvement in the Mel-Cepstral Distortion (MCD) metric. Additionally, we present error rates and demonstrate our model's proficiency to synthesize speech in novel voices of interest. Moreover, we present a methodology for augmenting the existing CSTR NAM TIMIT Plus corpus, setting a benchmark with a Word Error Rate (WER) of 42.57% to gauge the intelligibility of the synthesized speech. Speech samples can be found at https://nam2speech.github.io/NAM2Speech/, Comment: Accepted at Interspeech 2024
- Published
- 2024
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.