98 results on '"Gandhi SG"'
Search Results
2. Luteibacter sahnii sp. nov., A Novel Yellow-Colored Xanthomonadin Pigment Producing Probiotic Bacterium from Healthy Rice Seed Microbiome.
- Author
-
Jaiswal G, Rana R, Nayak PK, Chouhan R, Gandhi SG, Patel HK, and Patil PB
- Subjects
- Probiotics, DNA, Bacterial genetics, Indoleacetic Acids metabolism, RNA, Ribosomal, 16S genetics, Microbiota, Xanthomonadaceae genetics, Xanthomonadaceae classification, Xanthomonadaceae isolation & purification, Xanthomonadaceae metabolism, Pigments, Biological metabolism, Genome, Bacterial, Sequence Analysis, DNA, Oryza microbiology, Seeds microbiology, Phylogeny, Fatty Acids metabolism
- Abstract
To explore the rice seed microbiome, our objective was to isolate novel strains of Xanthomonas, a plant-associated bacterium with diverse lifestyles. Four isolates, anticipated to be Xanthomonas based on morphological features of yellow colonies, were obtained from healthy rice seeds. Phylo-taxono-genomic analysis revealed that these isolates formed monophyletic lineages belonging to a novel species within the genus Luteibacter. Pairwise ortho Average Nucleotide Identity and digital DNA-DNA hybridization confirmed their distinct species status. We propose Luteibacter sahnii sp. nov. as a novel species, with PPL193
T = MTCC 13290T = ICMP 24807T = CFBP 9144T as the type strain and PPL201, PPL552, and PPL554 as other constituent members. The fatty acid profile of the type strain is dominated by branched fatty acids like Iso-C15:0 , consistent with other members of the genus. The novel species displays non-pathogenic attributes and exhibits plant probiotic properties, protecting rice plants from the leaf blight pathogen X. oryzae pv. oryzae. Production of Indole-3-Acetic Acid (IAA) and genomic regions encoding anti-microbial peptides emphasize its potential contributions to plant hosts. This study underscores the importance of employing a combination of phenotypic and genotypic methods in culturomics to enhance our understanding of rice seed microbiome diversity., (© 2024. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.)- Published
- 2024
- Full Text
- View/download PDF
3. Integrated transcriptomic and physio-molecular studies unveil the melatonin and PGPR induced protection to photosynthetic attributes in Brassica juncea L. under cadmium toxicity.
- Author
-
Bhardwaj T, Kour J, Chouhan R, Devi K, Singh H, Gandhi SG, Ohri P, Bhardwaj R, Alsahli AA, and Ahmad P
- Subjects
- Gene Expression Regulation, Plant drug effects, Soil Pollutants toxicity, Seedlings drug effects, Pseudomonas putida drug effects, Pseudomonas putida genetics, Pseudomonas putida metabolism, Melatonin pharmacology, Mustard Plant drug effects, Mustard Plant genetics, Mustard Plant microbiology, Mustard Plant metabolism, Mustard Plant growth & development, Photosynthesis drug effects, Cadmium toxicity, Transcriptome drug effects
- Abstract
Cd is highly mobile, non-essential trace element, that has become serious environmental issue due to its elevated concentration in soil. The present study was taken up to work out salutary effect of melatonin (Mlt) and PGPR ((Pseudomonas putida (Pp), Pseudomonas fluorescens (Pf) in 10 days old Cd stressed (0.3 mM) Brassica juncea L. seedlings. The present work investigated growth characteristics, photosynthetic pigments, secondary metabolites in melatonin-PGPR inoculated B. juncea seedlings. It was backed by molecular studies entailing RT-PCR and transcriptomic analyses. Our results revealed, substantial increase in photosynthetic pigments and secondary metabolites, after treatment with melatonin, P.putida, P. fluorescens in Cd stressed B. juncea seedlings, further validated with transcriptome analysis. Comparative transcriptome analyses identified 455, 5953, 3368, 2238 upregulated and 4921, 430, 137, 27 down regulated DEGs, Cn-vs-Cd, Cd-vs-Mlt, Cd-vs-Mlt-Pp-Pf, Cd-vs-Mlt-Pp-Pf-Cd comparative groups respectively. In depth exploration of genome analyses (Gene ontology, Kyoto encyclopaedia of genes), revealed that Cd modifies the expression patterns of most DEGs mainly associated to photosystem and chlorophyll synthesis. Also, gene expression studies for key photosynthetic genes (psb A, psb B, CHS, PAL, and PSY) suggested enhanced expression in melatonin-rhizobacteria treated Cd stressed B. juncea seedlings. Overall, results provide new insights into probable mechanism of Mlt-PGPR induced protection to photosynthesis in Cd stressed B. juncea plants., Competing Interests: Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2024 Elsevier B.V. All rights reserved.)
- Published
- 2024
- Full Text
- View/download PDF
4. Phytomelatonin maintained chromium toxicity induced oxidative burst in Brassica juncea L. through improving antioxidant system and gene expression.
- Author
-
Kour J, Bhardwaj T, Chouhan R, Singh AD, Gandhi SG, Bhardwaj R, Alsahli AA, and Ahmad P
- Subjects
- Seedlings drug effects, Seedlings genetics, Reactive Oxygen Species metabolism, Catalase metabolism, Malondialdehyde metabolism, Hydrogen Peroxide, Gene Expression Regulation, Plant drug effects, Mustard Plant drug effects, Mustard Plant genetics, Chromium toxicity, Melatonin pharmacology, Antioxidants metabolism, Oxidative Stress drug effects, Soil Pollutants toxicity
- Abstract
Chromium (Cr) contamination in soils reduces crop yields and poses a remarkable risk to human and plant system. The main objective of this study was to observe the protective mechanisms of exogenously applied melatonin (Mel- 0.05, 0.1, and 0.15 μM) in seedlings of Brassica juncea L. under Cr (0.2 mM) stress. This was accomplished by analysing the plant's morpho-physiological, biochemical, nuclear, membrane, and cellular characteristics, as well as electrolyte leakage. Superoxide, malondialdehyde, and hydrogen peroxide increased with Cr toxicity. Cr also increased electrolyte leakage. Seedlings under Cr stress had 86.4% more superoxide anion and 27.4% more hydrogen peroxide. Electrolyte leakage increased 35.7% owing to Cr toxicity. B. juncea L. cells with high radical levels had membrane and nuclear damage and decreased viability. Besides this, the activities of the antioxidative enzymes, as POD, APOX, SOD, GST, DHAR, GPOX and GR also elevated in the samples subjected to Cr toxicity. Conversely, the activity of catalase was downregulated due to Cr toxicity. In contrast, Mel reduced oxidative damage and conserved membrane integrity in B. juncea seedlings under Cr stress by suppressing ROS generation. Moreover, the activity of antioxidative enzymes that scavenge reactive oxygen species was substantially upregulated by the exogenous application of Mel. The highest concentration of Mel (Mel c- 0.15 μM) applied showed maximum ameliorative effect on the toxicity caused by Cr. It causes alleviation in the activity of SOD, CAT, POD, GPOX, APOX, DHAR, GST and GR by 51.32%, 114%, 26.44%, 48.91%, 87.51%, 149%, 42.30% and 40.24% respectively. Histochemical investigations showed that Mel increased cell survival and reduced ROS-induced membrane and nuclear damage. The findings showed that Mel treatment upregulated several genes, promoting plant development. Its supplementation decreased RBOH1 gene expression in seedling sunder stress. The results supported the hypothesis that Mel concentrations reduce Cr-induced oxidative burst in B. juncea., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2024 Elsevier Ltd. All rights reserved.)
- Published
- 2024
- Full Text
- View/download PDF
5. Metabolomic insights and bioactive efficacies of Tragopogon dubius root fractions: Antioxidant and antiproliferative assessments.
- Author
-
Ahmad SS, Garg C, Kour R, Bhat AH, Raja V, Gandhi SG, Ataya FS, Fouad D, Radhakrishnan A, and Kaur S
- Abstract
Tragopogon dubius is commonly consumed as a vegetable and used in traditional medicine for treating inflammatory skin conditions and cutaneous swelling. Despite known pharmacological properties of its leaves and roots, many of its biological characteristics and active phytochemicals remain unexplored. The present study investigates the phytochemical composition, antioxidant, and anticancer properties of methanolic root extracts and isolated fractions (TdRM-1 and TdRM-2) of T. dubius . Utilizing preparative thin-layer chromatography, the crude extract was successfully separated into TdRM-1 and TdRM-2, characterized by GC-MS and FTIR analysis, revealing a diverse range of bioactive compounds including terpenes, flavonoids, and phenolic acids. Qualitative phytochemical screening indicated the presence of carbohydrates, tannins, alkaloids, and other phytoconstituents. Advanced UPLC-ESI-QTOF-MS analysis identified 54 metabolites, significantly contributing to the chemical profiling of the extract. The antioxidant activities of the fractions were quantitatively assessed using ABTS, DPPH, and superoxide radical scavenging assays, where TdRM-2 exhibited superior activity with IC
50 values ranging from 51.29 to 60.03 μg/mL. Anticancer potential was evaluated against A549, LN-18, and MCF-7 cancer cell lines, demonstrating that TdRM-2 significantly inhibited cell proliferation with GI50 values as low as 31.62 μg/mL for A549 cells. Additionally, fluorescence microscopy revealed that TdRM-2 induces apoptosis, indicated by changes in nuclear morphology and loss of mitochondrial membrane potential. Annexin V-FITC/PI double staining indicate that the TdRM-2 fractions from T. dubius can significantly inhibit the growth of A-549, LN-18, and MCF-7 cancer cell lines by inducing apoptosis These findings suggest that T. dubius root extracts, particularly the TdRM-2 fraction, hold promising therapeutic potential due to their significant antioxidant and anticancer activities, underpinned by their rich phytochemical composition. This study underscores the importance of T. dubius as a source of natural bioactive compounds with potential health benefits., Competing Interests: The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (© 2024 Published by Elsevier Ltd.)- Published
- 2024
- Full Text
- View/download PDF
6. From waste management to circular economy: Leveraging thermophiles for sustainable growth and global resource optimization.
- Author
-
Najar IN, Sharma P, Das R, Tamang S, Mondal K, Thakur N, Gandhi SG, and Kumar V
- Subjects
- Wastewater, Waste Management methods, Recycling, Biodegradation, Environmental, Sustainable Growth
- Abstract
Waste of any origin is one of the most serious global and man-made concerns of our day. It causes climate change, environmental degradation, and human health problems. Proper waste management practices, including waste reduction, safe handling, and appropriate treatment, are essential to mitigate these consequences. It is thus essential to implement effective waste management strategies that reduce waste at the source, promote recycling and reuse, and safely dispose of waste. Transitioning to a circular economy with policies involving governments, industries, and individuals is essential for sustainable growth and waste management. The review focuses on diverse kinds of environmental waste sources around the world, such as residential, industrial, commercial, municipal services, electronic wastes, wastewater sewerage, and agricultural wastes, and their challenges in efficiently valorizing them into useful products. It highlights the need for rational waste management, circularity, and sustainable growth, and the potential of a circular economy to address these challenges. The article has explored the role of thermophilic microbes in the bioremediation of waste. Thermophiles known for their thermostability and thermostable enzymes, have emerged to have diverse applications in biotechnology and various industrial processes. Several approaches have been explored to unlock the potential of thermophiles in achieving the objective of establishing a zero-carbon sustainable bio-economy and minimizing waste generation. Various thermophiles have demonstrated substantial potential in addressing different waste challenges. The review findings affirm that thermophilic microbes have emerged as pivotal and indispensable candidates for harnessing and valorizing a range of environmental wastes into valuable products, thereby fostering the bio-circular economy., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2024 Elsevier Ltd. All rights reserved.)
- Published
- 2024
- Full Text
- View/download PDF
7. Current status of diagnostic assays for emerging zoonotic viruses: Nipah and Hendra.
- Author
-
Sharma N, Jamwal VL, Nagial S, Ranjan M, Rath D, and Gandhi SG
- Subjects
- Humans, Animals, Molecular Diagnostic Techniques methods, Communicable Diseases, Emerging diagnosis, Communicable Diseases, Emerging epidemiology, Communicable Diseases, Emerging virology, Zoonoses diagnosis, Nucleic Acid Amplification Techniques methods, Disease Outbreaks, Nipah Virus genetics, Henipavirus Infections diagnosis, Henipavirus Infections epidemiology, Henipavirus Infections virology, Hendra Virus
- Abstract
Introduction: Nipah and Hendra viruses belong to the Paramyxoviridae family, which pose a significant threat to human health, with sporadic outbreaks causing severe morbidity and mortality. Early symptoms include fever, cough, sore throat, and headache, which offer little in terms of differential diagnosis. There are no specific therapeutics and vaccines for these viruses., Areas Covered: This review comprehensively covers a spectrum of diagnostic techniques for Nipah and Hendra virus infections, discussed in conjunction with appropriate type of samples during the progression of infection. Serological assays, reverse transcriptase Real-Time PCR assays, and isothermal amplification assays are discussed in detail, along with a listing of few commercially available detection kits. Patents protecting inventions in Nipah and Hendra virus detection are also covered., Expert Opinion: Despite several outbreaks of Nipah and Hendra infections in the past decade, in-depth research into their pathogenesis, Point-of-Care diagnostics, specific therapies, and human vaccines is lacking. A prompt and accurate diagnosis is pivotal for efficient outbreak management, patient treatment, and the adoption of preventative measures. The emergence of rapid point-of-care tests holds promise in enhancing diagnostic capabilities in real-world settings. The patent landscape emphasizes the importance of innovation and collaboration within the legal and business realms.
- Published
- 2024
- Full Text
- View/download PDF
8. Uncovering the potentiality of quinazoline derivatives against Pseudomonas aeruginosa with antimicrobial synergy and SAR analysis.
- Author
-
Manhas R, Rathore A, Havelikar U, Mahajan S, Gandhi SG, and Mahapa A
- Subjects
- Humans, Biofilms drug effects, Microbial Sensitivity Tests, Structure-Activity Relationship, Anti-Bacterial Agents pharmacology, Anti-Bacterial Agents chemistry, Drug Synergism, Pseudomonas aeruginosa drug effects, Quinazolines pharmacology, Quinazolines chemistry
- Abstract
Antimicrobial resistance has emerged as a covert global health crisis, posing a significant threat to humanity. If left unaddressed, it is poised to become the foremost cause of mortality worldwide. Among the multitude of resistant bacterial pathogens, Pseudomonas aeruginosa, a Gram-negative, facultative bacterium, has been responsible for mild to deadly infections. It is now enlisted as a global critical priority pathogen by WHO. Urgent measures are required to combat this formidable pathogen, necessitating the development of novel anti-pseudomonal drugs. To confront this pressing issue, we conducted an extensive screening of 3561 compounds from the ChemDiv library, resulting in the discovery of potent anti-pseudomonal quinazoline derivatives. Among the identified compounds, IDD-8E has emerged as a lead molecule, exhibiting exceptional efficacy against P. aeruginosa while displaying no cytotoxicity. Moreover, IDD-8E demonstrated significant pseudomonal killing, disruption of pseudomonal biofilm and other anti-bacterial properties comparable to a well-known antibiotic rifampicin. Additionally, IDD-8E's synergy with different antibiotics further strengthens its potential as a powerful anti-pseudomonal agent. IDD-8E also exhibited significant antimicrobial efficacy against other ESKAPE pathogens. Moreover, we elucidated the Structure-Activity-Relationship (SAR) of IDD-8E targeting the essential WaaP protein in P. aeruginosa. Altogether, our findings emphasize the promise of IDD-8E as a clinical candidate for novel anti-pseudomonal drugs, offering hope in the battle against antibiotic resistance and its devastating impact on global health., (© 2024. The Author(s), under exclusive licence to the Japan Antibiotics Research Association.)
- Published
- 2024
- Full Text
- View/download PDF
9. A Review of Connecting Bioinformatic Techniques to Rheumatoid Arthritis and its Associated Comorbidities.
- Author
-
R Y, R A P, P S SG, and K RS
- Abstract
Rheumatoid Arthritis (RA) is a progressive autoimmune condition inflicting serious threats to people's life and health by causing severe pain and joint destruction. It affects not only bones and joints but also causes comorbid conditions and shortens the lifetime. The interactions and synergistic effects of comorbid disease with RA are not yet well studied. Hence, understanding how these conditions will collectively affect the progression and outcome of RA is the current area of research. Identification of RA and comorbidities associated with target genes may uncover diagnosis and treatment methodologies. This review is to provide an overview of the interlinking approach of Rheumatoid Arthritis with its comorbid conditions and its systemic complications using bioinformatic techniques which would be useful to identify the genes and pathways that are in common for both RA and comorbid diseases. It would also emphasize the significance of bioinformatics in comparing the pathological features of RA and comorbid diseases. With the help of bioinformatics, valuable insights into the mechanism underlying Rheumatoid arthritis and comorbid diseases would be better understood., (Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.net.)
- Published
- 2024
- Full Text
- View/download PDF
10. Correlation Between Radiological and Functional Outcomes Following Operative and Nonoperative Management of Acetabular Fractures: A Prospective Observational Study.
- Author
-
Buddhist H, Sinha S, Maurya R, Ansari MW, Kumar K, Panda A, Nayak SR, Rai R, Rao V, and Poddar SG
- Abstract
Introduction: The management of acetabular fractures is a complicated orthopedic procedure that has been advancing with time. Newer radiological tools like CT scans help surgeons to identify and manage these fractures more attentively. The study was conducted to evaluate the clinical and radiographic outcomes in patients with acetabular fractures managed either conservatively or by open reduction and internal fixation., Materials and Method: The study was done on 35 patients aged 18-60 years, with acetabular fractures treated either surgically or conservatively. Clinical scorings and radiological scoring were only taken and noted at three- and six-month intervals using Matta's radiographic scoring and modified Merle d'Aubigne and Postel clinical hip scoring. Clinico-radiological variables and complications were compared between the two groups. The data obtained was subjected to statistical analyses using IBM Statistical Package of Social Sciences (SPSS) 2.0 version software (Chicago, IL, USA) at a level of significance being p<0.05., Results: Out of a total of 35 patients, 19 were treated surgically and 16 conservatively. In patients belonging to the surgical treatment group, a maximum of 57.9% were aged 40-50 years, whereas the maximum patients (50%) of the conservative treatment group were aged <40 years, with male predominance in both groups. The type of fracture was recorded according to Judet and Letournel in both groups. Merle d'Aubigne's scoring and Matta's hip score were recorded at three and six months in both groups. A positive correlation was seen between radiological and functional outcomes at three and six months, which means that the higher the radiological scoring, the better the functional outcome of the patient managed either conservatively or surgically in the entire cohort., Conclusion: Our study revealed that surgically managed patients had better functional and radiological outcomes than the patients who were conservatively managed at six months of follow-up. However, this is associated with more complications depending on fracture complexity and initial presentation of hip dislocation. The higher the radiological scoring, the better the functional outcome of the patient managed either conservatively or surgically in the entire cohort., Competing Interests: The authors have declared that no competing interests exist., (Copyright © 2024, Buddhist et al.)
- Published
- 2024
- Full Text
- View/download PDF
11. EIDD-1931 Treatment Tweaks CYP3A4 and CYP2C8 in Arthritic Rats to Expedite Drug Interaction: Implication in Oral Therapy of Molnupiravir.
- Author
-
Bhardwaj M, Kour D, Rai G, Bhattacharya S, Manhas D, Vij B, Kumar A, Mukherjee D, Ahmed Z, Gandhi SG, and Nandi U
- Abstract
EIDD-1931 is the active form of molnupiravir, an orally effective drug approved by the United States Food and Drug Administration (USFDA) against COVID-19. Pharmacokinetic alteration can cause untoward drug interaction (drug-drug/disease-drug), but hardly any information is known about this recently approved drug. Therefore, we first investigated the impact of the arthritis state on the oral pharmacokinetics of EIDD-1931 using a widely accepted complete Freund's adjuvant (CFA)-induced rat model of rheumatoid arthritis (RA) after ascertaining the disease occurrence by paw swelling measurement and X-ray examination. Comparative oral pharmacokinetic assessment of EIDD-1931 (normal state vs arthritis state) showed that overall plasma exposure was augmented (1.7-fold) with reduced clearance (0.54-fold), suggesting its likelihood of dose adjustment in arthritis conditions. In order to elucidate the effect of EIDD-1931 treatment at a therapeutic regime (normal state vs arthritis state) on USFDA-recommended panel of cytochrome P450 (CYP) enzymes (CYP1A2, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, and CYP3A4) for drug interaction using the same disease model, we monitored protein and mRNA expressions (rat homologs) in liver tissue by western blotting (WB) and real time-polymerase chain reaction (RT-PCR), respectively. Results reveal that EIDD-1931 treatment could strongly influence CYP3A4 and CYP2C8 among experimental proteins/mRNAs. Although CYP2C8 regulation upon EIDD-1931 treatment resembles similar behavior under the arthritis state, results dictate a potentially reverse phenomenon for CYP3A4. Moreover, the lack of any CYP inhibitory effect by EIDD-1931 in human/rat liver microsomes (HLM/RLM) helps to ascertain EIDD-1931 treatment-mediated disease-drug interaction and the possibility of drug-drug interaction with disease-modifying antirheumatic drugs (DMARDs) upon coadministration. As elevated proinflammatory cytokine levels are prevalent in RA and nuclear factor-kappa B (NF-kB) and nuclear receptors control CYP expressions, further studies should focus on understanding the regulation of affected CYPs to subside unexpected drug interaction., Competing Interests: The authors declare no competing financial interest., (© 2024 The Authors. Published by American Chemical Society.)
- Published
- 2024
- Full Text
- View/download PDF
12. Metarhabditis amsactae: A potential biopesticide isolated from Punjab (India) with potent insecticidal activity and immunomodulatory effects against Galleria mellonella (Lepidoptera: Pyralidae).
- Author
-
Kour S, Sharma N, Singh R, Gandhi SG, and Ohri P
- Subjects
- Animals, Biological Control Agents pharmacology, Larva, Insecticides pharmacology, Moths, Rhabditoidea, Nematoda, Nematode Infections
- Abstract
A survey was undertaken to isolate entomopathogenic nematodes from Amritsar district of Punjab, India. Out of 20 soil samples collected, two were found positive for the presence of nematodes. 18S and ITS rDNA gene sequencing revealed their identity as Metarhabditis amsactae. To assess its biocontrol potential, Galleria mellonella larvae were treated with concentrations of 20, 40, 80 and 160 IJs/L (infective juveniles/larva) and mortality was recorded from 24 h up to 96 h of nematode exposure. Distilled water without nematodes was used as an untreated control. M. amsactae showed potent larvicidal activity against G. mellonella that was found to be concentration and time dependent. Nematode infection caused 93.33 % larval mortality at 80 IJs/L after 72 h of treatment. 100 % mortality was observed after 96 h. No mortality was observed in control. To evaluate the immunomodulatory effects of M. amsactae, G. mellonella larvae were infected with 100 IJs/L and activities of antioxidant and detoxifying enzymes viz., superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APOX), phenol oxidase (PO), glutathione-S-transferase (GST) and acetylcholine esterase (AChE) were appraised after 12, 24, 36 and 48 h of nematode exposure. Malondialdehyde content was also determined. The results obtained demonstrated a significant elevation in all the enzyme activities at all time intervals in treated larvae when compared with untreated control. MDA levels were also enhanced in response to nematode infection. Thus, the present study revealed high insecticidal potential and immunomodulatory effects of M. amsactae on G. mellonella that should be further explored on other insect pests as well., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2023 Elsevier Inc. All rights reserved.)
- Published
- 2024
- Full Text
- View/download PDF
13. Dietary tannic acid attenuates elastase-induced pulmonary inflammation and emphysema in mice.
- Author
-
Rajasekar N, Gandhi D, Sivanantham A, Ravikumar V, Raj D, Paramasivam SG, Mukhopadhyay S, and Rajasekaran S
- Subjects
- Humans, Animals, Mice, Mice, Inbred C57BL, Pancreatic Elastase, Inflammation drug therapy, Peptide Hydrolases, Emphysema, Pneumonia chemically induced, Pneumonia drug therapy, Pulmonary Disease, Chronic Obstructive chemically induced, Pulmonary Disease, Chronic Obstructive drug therapy, Polyphenols
- Abstract
Emphysema is one of the major components of chronic obstructive pulmonary disease (COPD), which is characterised by the destruction and enlargement of air spaces, leading to airflow limitation and dyspnoea, finally progressing to oxygen dependency. The alveolar wall destruction is due to chronic inflammation, oxidative stress, apoptosis, and proteinase/anti-proteinase imbalance. So far, there has been no effective therapy for patients with COPD. We evaluated the therapeutic efficacy of tannic acid (TA), a naturally occurring plant-derived polyphenol in the murine emphysema model. In C57BL/6 J mice, we established emphysema by intratracheal instillation of elastase (EL). Then, mice were treated with TA and evaluated 1 and 21 days post-EL instillation. After 24 h, TA treatment significantly reduced EL-induced histopathological alterations, infiltrating leukocytes, and gene expression of markers of inflammation and apoptosis. Similarly, after 21 days, TA treatment suppressed the mean linear intercept, gene expression of proteinases, and increased elastic fiber contents in the lungs when compared to the EL-alone group. Furthermore, EL induced the activation of p38 mitogen-activated protein kinase (MAPK) and nuclear factor kappa light chain enhancer of activated B cells (NF-kB) p65 pathways in the lungs was suppressed by TA treatment. In summary, TA has the potential to mitigate EL-induced inflammation, apoptosis, proteinase/anti-proteinase imbalance, and subsequent emphysema in mice., (© 2023. The Author(s), under exclusive licence to Springer Nature Switzerland AG.)
- Published
- 2024
- Full Text
- View/download PDF
14. Repurposing of Plant-based Antiviral Molecules for the Treatment of COVID-19.
- Author
-
Khazir J, Ahmed S, Thakur RK, Hussain M, Gandhi SG, Babbar S, Mir SA, Shafi N, Tonfack LB, Rajpal VR, Maqbool T, Mir BA, and Peer LA
- Subjects
- Humans, COVID-19 virology, Animals, Antiviral Agents pharmacology, Antiviral Agents chemistry, Antiviral Agents therapeutic use, COVID-19 Drug Treatment, Drug Repositioning, SARS-CoV-2 drug effects
- Abstract
COVID-19, stemming from SARS-CoV-2, poses a formidable threat to global healthcare, with a staggering 77 million confirmed cases and 690,067 deaths recorded till December 24, 2023. Given the absence of specific drugs for this viral infection, the exploration of novel antiviral compounds becomes imperative. High-throughput technologies are actively engaged in drug discovery, and there is a parallel effort to repurpose plant-based molecules with established antiviral properties. In this context, the review meticulously delves into the potential of plant-based folk remedies and existing molecules. These substances have showcased substantial viral inhibition in diverse in vivo, in silico , and in vitro studies, particularly against critical viral protein targets, including SARS-CoV-2. The findings position these plant-based molecules as promising antiviral drug candidates for the swift advancement of treatments for COVID-19. It is noteworthy that the inherent attributes of these plant-based molecules, such as their natural origin, potency, safety, and cost-effectiveness, contribute to their appeal as lead candidates. The review advocates for further exploration through comprehensive in vivo studies conducted on animal models, emphasizing the potential of plant-based compounds to help in the ongoing quest to develop effective antivirals against COVID-19., (Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.net.)
- Published
- 2024
- Full Text
- View/download PDF
15. Plant salinity stress, sensing, and its mitigation through WRKY.
- Author
-
Rai GK, Mishra S, Chouhan R, Mushtaq M, Chowdhary AA, Rai PK, Kumar RR, Kumar P, Perez-Alfocea F, Colla G, Cardarelli M, Srivastava V, and Gandhi SG
- Abstract
Salinity or salt stress has deleterious effects on plant growth and development. It imposes osmotic, ionic, and secondary stresses, including oxidative stress on the plants and is responsible for the reduction of overall crop productivity and therefore challenges global food security. Plants respond to salinity, by triggering homoeostatic mechanisms that counter salt-triggered disturbances in the physiology and biochemistry of plants. This involves the activation of many signaling components such as SOS pathway, ABA pathway, and ROS and osmotic stress signaling. These biochemical responses are accompanied by transcriptional modulation of stress-responsive genes, which is mostly mediated by salt-induced transcription factor (TF) activity. Among the TFs, the multifaceted significance of WRKY proteins has been realized in many diverse avenues of plants' life including regulation of plant stress response. Therefore, in this review, we aimed to highlight the significance of salinity in a global perspective, the mechanism of salt sensing in plants, and the contribution of WRKYs in the modulation of plants' response to salinity stress. This review will be a substantial tool to investigate this problem in different perspectives, targeting WRKY and offering directions to better manage salinity stress in the field to ensure food security., Competing Interests: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest., (Copyright © 2023 Rai, Mishra, Chouhan, Mushtaq, Chowdhary, Rai, Kumar, Kumar, Perez-Alfocea, Colla, Cardarelli, Srivastava and Gandhi.)
- Published
- 2023
- Full Text
- View/download PDF
16. Rottlerin renders a selective and highly potent CYP2C8 inhibition to impede EET formation for implication in cancer therapy.
- Author
-
Manhas D, Bhatt S, Rai G, Kumar V, Bharti S, Dhiman S, Jain SK, Sharma DK, Ojha PK, Gandhi SG, Goswami A, and Nandi U
- Subjects
- Humans, Rats, Animals, Cytochrome P-450 CYP2C8 metabolism, Molecular Docking Simulation, Acetophenones, Microsomes, Liver metabolism, Cytochrome P-450 Enzyme System metabolism, Neoplasms metabolism
- Abstract
CYP2C8 is a crucial CYP isoform responsible for the metabolism of xenobiotics and endogenous molecules. CYP2C8 converts arachidonic acid to epoxyeicosatrienoic acids (EETs) that cause cancer progression. Rottlerin possess significant anticancer actions. However, information on its CYP inhibitory action is lacking in the literature and therefore, we aimed to explore the same using in silico, in vitro, and in vivo approaches. Rottlerin showed highly potent and selective CYP2C8 inhibition (IC
50 < 0.1 μM) compared to negligible inhibition (IC50 > 10 μM) for seven other experimental CYPs in human liver microsomes (HLM) (in vitro) using USFDA recommended index reactions. Mechanistic studies reveal that rottlerin could reversibly (mixed-type) block CYP2C8. Molecular docking (in silico) results indicate a strong interaction could occur between rottlerin and the active site of human CYP2C8. Rottlerin boosted the plasma exposure of repaglinide and paclitaxel (CYP2C8 substrates) by delaying their metabolism using the rat model (in vivo). Multiple-dose treatment of rottlerin with CYP2C8 substrates lowered the CYP2C8 protein expression and up-regulated & down-regulated the mRNA for CYP2C12 & CYP2C11 (rat homologs), respectively, in rat liver tissue. Rottlerin substantially hindered the EET formation in HLM. Overall results of rottlerin on CYP2C8 inhibition and EET formation insinuate further exploration for cancer therapy., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2023 Elsevier B.V. All rights reserved.)- Published
- 2023
- Full Text
- View/download PDF
17. A wound inducible chalcone synthase gene from Dysoxylum gotadhora ( DbCHS ) regulates flavonoid biosynthesis.
- Author
-
Mahajan V, Chouhan R, Jamwal VL, Kapoor N, and Gandhi SG
- Abstract
Chalcone synthase (CHS) is a type III polyketide synthase and a key enzyme of the phenylpropanoid pathway that generates precursors for flavonoid biosynthesis. The tree species D. gotadhora is known for having an abundance of rohitukine, which has anti-inflammatory and immune-modulating effects. In this study, we used the leaves of D. gotadhora to clone CHS gene ( DbCHS ). The 1188-bp open reading frame (ORF) was part of the 1373-bp full-length DbCHS clone. Compared to other parts of the plant, DbCHS is expressed more in the leaves and fruits. This is linked to anti-microbial action against a panel of microbes in these tissues. The leaves and seeds extracts inhibit Bacillus subtilis , Streptococcus pyogenes , Bacillus cereus , and Candida albicans . When a plant is hurt, it leaves its tissues open to attack by microbes. To protect themselves, plants often make chemicals that kill microbes. We found that wounding had a big effect on the production of DbCHS. Based on these tests and the results of phylogenetic analysis and molecular docking, we believe that DbCHS is a wound-inducible enzyme that is needed to make flavonoids, which may give the plant antimicrobial properties., Supplementary Information: The online version contains supplementary material available at 10.1007/s12298-023-01344-2., Competing Interests: Conflict of interestAuthors declare that they do not have any conflict of interest., (© Prof. H.S. Srivastava Foundation for Science and Society 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.)
- Published
- 2023
- Full Text
- View/download PDF
18. An assessment of the physicochemical characteristics and essential oil composition of Mentha longifolia (L.) Huds. exposed to different salt stress conditions.
- Author
-
Singh R, Ahmed S, Luxmi S, Rai G, Gupta AP, Bhanwaria R, and Gandhi SG
- Abstract
Salt stress adversely influences growth, development, and productivity in plants, resulting in a limitation on agriculture production worldwide. Therefore, this study aimed to investigate the effect of four different salts, i.e., NaCl, KCl, MgSO
4 , and CaCl2 , applied at various concentrations of 0, 12.5, 25, 50, and 100 mM on the physico-chemical properties and essential oil composition of M. longifolia . After 45 days of transplantation, the plants were irrigated at different salinities at 4-day intervals for 60 days. The resulting data revealed a significant reduction in plant height, number of branches, biomass, chlorophyll content, and relative water content with rising concentrations of NaCl, KCl, and CaCl2 . However, MgSO4 poses fewer toxic effects than other salts. Proline concentration, electrolyte leakage, and DPPH inhibition (%) increase with increasing salt concentrations. At lower-level salt conditions, we had a higher essential oil yield, and GC-MS analysis reported 36 compounds in which (-)-carvone and D-limonene covered the most area by 22%-50% and 45%-74%, respectively. The expression analyzed by qRT-PCR of synthetic Limonene (LS) and Carvone (ISPD) synthetic genes has synergistic and antagonistic relationships in response to salt treatments. To conclude, it can be said that lower levels of salt enhanced the production of essential oil in M. longifolia , which may provide future benefits commercially and medicinally. In addition to this, salt stress also resulted in the emergence of novel compounds in essential oils, for which future strategies are needed to identify the importance of these compounds in M. longifolia ., Competing Interests: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest., (Copyright © 2023 Singh, Ahmed, Luxmi, Rai, Gupta, Bhanwaria and Gandhi.)- Published
- 2023
- Full Text
- View/download PDF
19. Fungal production of kojic acid and its industrial applications.
- Author
-
Chib S, Jamwal VL, Kumar V, Gandhi SG, and Saran S
- Subjects
- Humans, Pyrones pharmacology, Monophenol Monooxygenase metabolism, Skin metabolism, Cosmetics
- Abstract
Kojic acid has gained its importance after it was known worldwide that the substance functions primarily as skin-lightening agent. Kojic acid plays a vital role in skin care products, as it enhances the ability to prevent exposure to UV radiation. It inhibits the tyrosinase formation which suppresses hyperpigmentation in human skin. Besides cosmetics, kojic acid is also greatly used in food, agriculture, and pharmaceuticals industries. Conversely, according to Global Industry Analysts, the Middle East, Asia, and in Africa especially, the demand of whitening cream is very high, and probably the market will reach to $31.2 billion by 2024 from $17.9 billion of 2017. The important kojic acid-producing strains were mainly belongs to the genus Aspergillus and Penicillium. Due to its commercial potential, it continues to attract the attention for its green synthesis, and the studies are still widely conducted to improve kojic acid production. Thus, the present review is focused on the current production processes, gene regulation, and limitation of its commercial production, probable reasons, and possible solutions. For the first time, detailed information on the metabolic pathway and the genes involved in kojic acid production, along with illustrations of genes, are highlighted in the present review. Demand and market applications of kojic acid and its regulatory approvals for its safer use are also discussed. KEY POINTS: • Kojic acid is an organic acid that is primarily produced by Aspergillus species. • It is mainly used in the field of health care and cosmetic industries. • Kojic acid and its derivatives seem to be safe molecules for human use., (© 2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.)
- Published
- 2023
- Full Text
- View/download PDF
20. Changing Rhizosphere Microbial Community and Metabolites with Developmental Stages of Coleus barbatus .
- Author
-
Jamwal VL, Rather IA, Ahmed S, Kumar A, and Gandhi SG
- Abstract
Coleus barbatus is a medicinal herb belonging to Lamiaceae. It is the only living organism known to produce forskolin, which is a labdane diterpene and is reported to activate adenylate cyclase. Microbes associated with plants play an important role in maintaining plant health. Recently, the targeted application of beneficial plant-associated microbes and their combinations in abiotic and biotic stress tolerance has gained momentum. In this work, we carried out the rhizosphere metagenome sequencing of C. barbatus at different developmental stages to understand how rhizosphere microflora are affected by and affect the metabolite content in plants. We found that the Kaistobacter genus was abundantly present in the rhizosphere of C. barbatus and its accumulation pattern appears to correlate with the quantities of forskolin in the roots at different developmental stages. Members of the Phoma genus, known for several pathogenic species, were in lower numbers in the C. barbatus rhizosphere in comparison with C. blumei . To our knowledge, this is the first metagenomic study of the rhizospheric microbiome of C. barbatus , which may help to explore and exploit the culturable and non-culturable microbial diversity present in the rhizosphere.
- Published
- 2023
- Full Text
- View/download PDF
21. Interactive effect of 24-epibrassinolide and plant growth promoting rhizobacteria inoculation restores photosynthetic attributes in Brassica juncea L. under chlorpyrifos toxicity.
- Author
-
Bakshi P, Sharma P, Chouhan R, Mir BA, Gandhi SG, Bhardwaj R, Alam P, and Ahmad P
- Subjects
- Mustard Plant metabolism, Brassinosteroids pharmacology, Brassinosteroids metabolism, Carotenoids metabolism, Chlorophyll metabolism, Seedlings, Chlorpyrifos toxicity, Chlorpyrifos metabolism
- Abstract
Chlorpyrifos (CP) is a commonly used organophosphorous pesticide that is frequently utilised in the agricultural industry because of its great efficiency and inexpensive cost. The focus of the present study was to assess the impact of CP toxicity on Brassica juncea L. and to unravel the ameliorative potential of phytohormone, 24-epibrassinolide (EBL) mediated plant-microbe (Pseudomonas aeruginosa (B1), Burkholderia gladioli (B2)) interaction in B. juncea L. The maximum significant increment in the total chlorophyll, carotenoids, xanthophyll, anthocyanin and flavonoid content with EBL and B2 treatment in CP stressed B. juncea seedlings on spectrophotometric analysis were observed. Autofluorescence imaging of photosynthetic pigments i.e. chlorophyll, carotenoids, and total phenols with confocal microscopy showed maximum fluorescence with EBL and B2. Furthermore, when compared to CP stressed seedlings, scanning electron microscopy (SEM) study of the abaxial surface of leaves revealed a recovery in stomatal opening. The supplementation of EBL and PGPR (plant growth promoting rhizobacteria) improved the level of psb A (D1 subunit PSII) and psb B (CP 47 subunit of PSII) genes expression. The expression analysis of chalcone synthase (CHS), Phenylalanine ammonialyase (PAL), Phyotene synthase (PSY) with RT-PCR system showed up-regulation in the expression when supplemented with EBL and PGPR. As a result, the current study suggests that EBL and PGPR together, can reduce CP-induced toxicity in B. juncea seedlings and recovering the seedling biomass., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2022 Elsevier Ltd. All rights reserved.)
- Published
- 2023
- Full Text
- View/download PDF
22. Transcriptome analysis and differential expression in Arabidopsis thaliana in response to rohitukine (a chromone alkaloid) treatment.
- Author
-
Ahmed S, Chouhan R, Junaid A, Jamwal VL, Thakur J, Mir BA, and Gandhi SG
- Subjects
- Animals, Chromones pharmacology, Chromones therapeutic use, Gene Expression Profiling, Transcriptome, Gene Expression Regulation, Plant, Mammals, Arabidopsis genetics, Antineoplastic Agents pharmacology, Alkaloids pharmacology
- Abstract
Rohitukine is a chromone alkaloid and precursor of potent anticancer drugs flavopiridol, P-276-00, and 2,6-dichloro-styryl derivative (11d) (IIIM-290). The metabolite is reported to possess anticancer, anti-inflammatory, antiadipogenic, immunomodulatory, gastroprotective, anti-implantation, antidyslipidemic, anti-arthritic, and anti-fertility properties. However, the physiological role of rohitukine in plant system is yet to be explored. Here, we studied the effect of rohitukine isolated from Dysoxylum gotadhora on Arabidopsis thaliana. The A. thaliana plants grown on a medium fortified with different rohitukine concentrations showed a significant effect on the growth and development. The root growth of A. thaliana seedlings showed considerable inhibition when grown on medium containing 1.0 mM of rohitukine. Transcriptomic analysis indicated the expression of 895 and 932 genes in control and treated samples respectively at a cut-off of FPKM ≥ 1 and P-value < 0.05. Gene ontology (GO) analysis revealed the upregulation of genes related to photosynthesis, membrane transport, antioxidation, xenobiotic degradation, and some transcription factors (TFs) in response to rohitukine. Conversely, rohitukine downregulated several genes including RNA helicases and those involved in nitrogen compound metabolism. The RNA-seq result was also validated by real-time qRT-PCR analysis. In light of these results, we discuss (i) likely ecological importance of rohitukine in parent plant as well as (ii) comparison between responses to rohitukine treatment in plants and mammals., (© 2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.)
- Published
- 2023
- Full Text
- View/download PDF
23. Avian Haemosporidian (Plasmodium and Haemoproteus) Status in Two Bird Groups (Old-World Flycatchers and Thrushes) of India and Their Phylogenetic Relationships with Other Lineages of the World.
- Author
-
Vipin, Singh A, Sharma V, Tripathi NK, Dixit R, Singh B, Sharma CP, Gandhi SG, Mohan D, and Gupta SK
- Subjects
- Animals, Phylogeny, Prevalence, Songbirds, Protozoan Infections, Animal epidemiology, Bird Diseases epidemiology, Haemosporida genetics, Plasmodium genetics, Passeriformes
- Abstract
Purpose: Avian haemosporidian may affect the host from body damage to the extinction of a population. Knowledge of their status may help in future avifauna conservation plans. Hence, their status in two bird groups of India and their phylogenetic relationships with other known lineages of the world were examined., Methods: Cytochrome b gene sequences (479 bp) generated from India and available at MalAvi database were used to study the avian haemosporidian prevalence and phylogenetic analysis of lineages at local and world levels., Results: One common (COLL2) and only once in the study (CYOPOL01, CHD01, CYORUB01, EUMTHA01, GEOCIT01) haemosporidian lineages were discovered. 5.88% prevalence of haemosporidian infection was found in 102 samples belonging to 6 host species. Haemoproteus prevalence was 4.90% across five host species (Phylloscopus trochiloides, Cyornis poliogenys, C. hainanus dialilaemus, C. rubeculoides, Eumiyas thalassinus) and Plasmodium prevalence was 0.98% in Geokichla citrina. Spatial phylogeny at the global level showed that COLL2 lineage, found in C. poliogenys in India, was genetically identical to H. pallidus lineages (COLL2) in parts of Africa, Europe, North America, Malaysia, and the Philippines. The Plasmodium lineage (GEOCIT01) was related to PADOM16 in Egypt, but the sequences were only 93.89% alike., Conclusions: Four new lineages of Haemoproteus and one of Plasmodium were reported. COLL2 similarity with other H. pallidus lineages may suggest their hosts as possible infection sources., (© 2022. The Author(s) under exclusive licence to Witold Stefański Institute of Parasitology, Polish Academy of Sciences.)
- Published
- 2022
- Full Text
- View/download PDF
24. Antimicrobial and Cytotoxic Potential of Helminthosporin from Rumex abyssiniscus Jacq. Discovered as a Novel Source of Syringic Acid and Bis(2-ethyloctyl) Phthalate.
- Author
-
Ntemafack A, Qayum A, Dhiman SK, Guefack MF, Thapa S, Wamba BEN, Kuete V, Singh SK, Bharate SB, Hassan QP, and Gandhi SG
- Subjects
- Anti-Bacterial Agents, Rumex, Anti-Infective Agents pharmacology, Antineoplastic Agents
- Abstract
Rumex abyssinicus Jacq. is a perennial medicinal herb widely used in traditional medicine to treat many diseases. Phytochemicals of the plant were isolated using column chromatography and thin layer chromatography techniques. Extract, fractions and pure compounds were screened for antimicrobial activity against sensitive and multi-drug resistant microbes and their cytotoxicity was performed on different cancer cell lines. The mechanism of action of purified helminthosporin as well as the potent fraction containing a mixture of two compounds was assessed. Fraction R7C3 was the most potent antibacterial with the lowest MIC value of 0.12 µg/mL. Helminthosporin was the most potent compound with the lowest MIC value of 1.95 µg/mL. The compound was more potent than the antibiotic chloramphenicol against multi-drug resistant (MDR) bacteria with MIC equal to 16 µg/mL. The fraction and helminthosporin were shown to destroy the cell wall of the yeast and bacteria, and DNA fragmentation effect on the genome of Candida albicans and Bacillus cereus. Helminthosporin was the most cytotoxic compound with IC
50 ˂ 10 µM. Fraction R7C3 showed the most potent cytotoxic effects on all cancer cell lines, with IC50 ranging from ˂1 to 4.35 ng/mL. Our study is the first report on the mechanism of action of helminthosporin, a potent candidate in the development of new drugs against multi-resistant bacteria and cancer cells. In addition, this study uncovered Rumex abyssinicus as a new source of syringic acid and bis(2-ethyloctyl) phthalate., (© 2022. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.)- Published
- 2022
- Full Text
- View/download PDF
25. Protective effect of Bacillus species associated with Rumex dentatus against postharvest soil borne disease in potato tubers and GC-MS metabolite profile.
- Author
-
Ntemafack A, Chouhan R, Kapoor N, Kumar A, Dhiman SK, Manhas RS, Chaubey A, Hassan QP, and Gandhi SG
- Subjects
- Endophytes, Gas Chromatography-Mass Spectrometry, Plant Diseases microbiology, Plant Diseases prevention & control, RNA, Ribosomal, 16S genetics, Soil, Bacillus genetics, Rumex genetics, Solanum tuberosum
- Abstract
Potato is constantly exposed to various kinds of phytopathogens which cause diseases during the developmental stage and post-harvest storage. This investigation was designed to assay the anti-phytopathogen activity of bacterial endophytes and their suppressive effects on rot disease in potato. The study also aimed to screen isolates for their plant growth-promoting traits and establish GC-MS-based metabolite profile of the potent isolate. Endophytes were isolated from Rumex dentatus and identified based on 16S rRNA gene. They were screened in dual culture assay against fungal phytopathogens and the potent isolate was tested for its capability to suppress Fusarium rot disease in potato tubers. The mechanism of action of endophytes on the phytopathogens was assessed using scanning electron microcopy. Isolates were also screened in vitro to assay their capability to produce phytohormones, hydrolytic enzymes, and to solubilize phosphates. Endophytic isolates produced proteases with a diameter of halo zone ranging from 7 to 32 mm. Bacillus sp. KL5 exhibited the highest production of indole acetic acid (IAA) with the amount of 104.28 µg/mL and was the most potent antagonist of Fusarium oxysporum and Verticillium dahliae with an inhibitory percentage of 61.53 and 100%, respectively. It showed a reduction of potato rot disease severity by more than 50%. GC-MS of active fractions of KL5 showed the presence of dibutylphthalate and 2,4-di-tert-butylphenol as major metabolites. From this study, it is evident that endophytic Bacillus species from R. dentatus are potent antagonists of F. oxysporum and V. dahliae. Bacillus sp. KL5 is a potent inhibitor of pathogenic F. oxysporum in potato tubers and can be developed as a biocontrol agent., (© 2022. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.)
- Published
- 2022
- Full Text
- View/download PDF
26. Morphologically dissimilar spores of Aspergillus sojae exhibit genomic homogeneity but the differential in Kojic acid accumulation.
- Author
-
Chib S, Jamwal VL, Kumar V, Gandhi SG, and Saran S
- Abstract
We reported that Aspergillus sojae (SSC-3), an indigenous isolate from rice husk, is a potent kojic acid producer. During optimization, it was observed that under static fermentation conditions, this fungal strain produces two dissimilar morphological green and yellow spores, i.e., SSC-3(Y) and SSC-3(G). Furthermore, these different spore types differ in color, morphology, and in kojic acid metabolite accumulation, with green spores producing 12.87 g/l and yellow spores producing 8.63 g/l of kojic acid on the 12th day of fermentation. To understand if there is a genetic basis for the difference in morphology and metabolite accumulation characteristics, sequencing of internal transcribed spacer regions (ITS) and RAPD analysis from both the spore were carried out. Our study revealed that though the spores are dissimilar with respect to morphology and metabolite accumulation profile, they are genetically homogenous. This suggests that there could be epigenetic differences in these spore types, which may be explored in detail in further studies., Competing Interests: Conflict of interestThe authors declare that they have no conflicts of interest., (© King Abdulaziz City for Science and Technology 2022.)
- Published
- 2022
- Full Text
- View/download PDF
27. Functional significance of mouse seminal vesicle sulfhydryl oxidase on sperm capacitation in vitro.
- Author
-
Balu R, Ramachandran SS, Mathimaran A, Jeyaraman J, and Paramasivam SG
- Subjects
- Acrosome Reaction physiology, Animals, Calcium metabolism, Female, Male, Mice, Semen metabolism, Seminal Vesicles enzymology, Sulfhydryl Compounds metabolism, Oxidoreductases metabolism, Sperm Capacitation, Spermatozoa metabolism
- Abstract
During ejaculation, cauda epididymal spermatozoa are suspended in a protein-rich solution of seminal plasma, which is composed of proteins mostly secreted from the seminal vesicle. These seminal proteins interact with the sperm cells and bring about changes in their physiology, so that they can become capacitated in order for the fertilization to take place. Sulfhydryl oxidase (SOX) is a member of the QSOX family and its expression is found to be high in the seminal vesicle secretion (SVS) of mouse. Previously, it has been reported to cross-link thiol-containing amino acids among major SVS proteins. However, its role in male reproduction is unclear. In this study, we determined the role of SOX on epididymal sperm maturation and also disclosed the binding effect of SOX on the sperm fertilizing ability in vitro. In order to achieve the above two objectives, we constructed a Sox clone (1.7 kb) using a pET-30a vector. His-tagged recombinant Sox was overexpressed in Shuffle Escherichia coli cells and purified using His-Trap column affinity chromatography along with hydrophobic interaction chromatography. The purified SOX was confirmed by western blot analysis and by its activity with DTT as a substrate. Results obtained from immunocytochemical staining clearly indicated that SOX possesses a binding site on the sperm acrosome. The influence of SOX on oxidation of sperm sulfhydryl to disulfides during epididymal sperm maturation was evaluated by a thiol-labeling agent, mBBr. The SOX protein binds onto the sperm cells and increases their progressive motility. The effect of SOX binding on reducing the [Ca2+]i concentration in the sperm head was determined using a calcium probe, Fluo-3 AM. The inhibitory influence of SOX on the sperm acrosome reaction was shown by using calcium ionophore A32187 to induce the acrosome reaction. The acrosome-reacted sperm were examined by staining with FITC-conjugated Arachis hypogaea (peanut) lectin. Furthermore, immunocytochemical analysis revealed that SOX remains bound to the sperm cells in the uterus but disappears in the oviduct during their transit in the female reproductive tract. The results from the above experiment revealed that SOX binding onto the sperm acrosome prevents sperm capacitation by affecting the [Ca2+]i concentration in the sperm head and the ionophore-induced acrosome reaction. Thus, the binding of SOX onto the sperm acrosome may possibly serve as a decapacitation factor in the uterus to prevent premature capacitation and acrosome reaction, thus preserving their fertilizing ability., (© The Author(s) 2022. Published by Oxford University Press on behalf of European Society of Human Reproduction and Embryology. All rights reserved. For permissions, please email: journals.permissions@oup.com.)
- Published
- 2022
- Full Text
- View/download PDF
28. Exogenously Applied Rohitukine Inhibits Photosynthetic Processes, Growth and Induces Antioxidant Defense System in Arabidopsis thaliana .
- Author
-
Ahmed S, Asgher M, Kumar A, and Gandhi SG
- Abstract
The secondary metabolite rohitukine has been reported in only a few plant species, including Schumanniophyton magnificum , S. problematicum , Amoora rohituka , Dysoxylum acutangulum and D. gotadhora . It has several biological activities, such as anticancer, anti-inflammatory, antiadipogenic, immunomodulatory, gastroprotective, anti-implantation, antidyslipidemic, anti-arthritic and anti-fertility properties. However, the ecological and physiological roles of rohitukine in parent plants have yet to be explored. Here for the first time, we tried to decipher the physiological effect of rohitukine isolated from D. gotadhora on the model system Arabidopsis thaliana . Application of 0.25 mM and 0.5 mM rohitukine concentrations moderately affected the growth of A. thaliana , whereas a remarkable decrease in growth and the alteration of various morphological, physiological and biochemical mechanisms were observed in plants that received 1.0 mM of rohitukine as compared to the untreated control. A. thaliana showed considerable dose-dependent decreases in leaf area, fresh weight and dry weight when sprayed with 0.25 mM, 0.5 mM and 1.0 mM of rohitukine. Rohitukine exposure resulted in the disruption of photosynthesis, photosystem II (PSII) activity and degradation of chlorophyll content in A. thaliana . It also triggered oxidative stress in visualized tissues through antioxidant enzyme activity and the expression levels of key genes involved in the antioxidant system, such as superoxide dismutase (SOD), peroxidase (POD) and ascorbate peroxidase (APX). Rohitukine-induced changes in levels of metabolites (amino acids, sugars, organic acids, etc.) were also assessed. In light of these results, we discuss (i) the likely ecological importance of rohitukine in parent plants as well as (ii) the comparison of responses to rohitukine treatment in plants and mammals.
- Published
- 2022
- Full Text
- View/download PDF
29. A machine learning-based approach to determine infection status in recipients of BBV152 (Covaxin) whole-virion inactivated SARS-CoV-2 vaccine for serological surveys.
- Author
-
Singh P, Ujjainiya R, Prakash S, Naushin S, Sardana V, Bhatheja N, Singh AP, Barman J, Kumar K, Gayali S, Khan R, Rawat BS, Tallapaka KB, Anumalla M, Lahiri A, Kar S, Bhosale V, Srivastava M, Mugale MN, Pandey CP, Khan S, Katiyar S, Raj D, Ishteyaque S, Khanka S, Rani A, Promila, Sharma J, Seth A, Dutta M, Saurabh N, Veerapandian M, Venkatachalam G, Bansal D, Gupta D, Halami PM, Peddha MS, Veeranna RP, Pal A, Singh RK, Anandasadagopan SK, Karuppanan P, Rahman SN, Selvakumar G, Venkatesan S, Karmakar MK, Sardana HK, Kothari A, Parihar DS, Thakur A, Saifi A, Gupta N, Singh Y, Reddu R, Gautam R, Mishra A, Mishra A, Gogeri I, Rayasam G, Padwad Y, Patial V, Hallan V, Singh D, Tirpude N, Chakrabarti P, Maity SK, Ganguly D, Sistla R, Balthu NK, A KK, Ranjith S, Kumar BV, Jamwal PS, Wali A, Ahmed S, Chouhan R, Gandhi SG, Sharma N, Rai G, Irshad F, Jamwal VL, Paddar MA, Khan SU, Malik F, Ghosh D, Thakkar G, Barik SK, Tripathi P, Satija YK, Mohanty S, Khan MT, Subudhi U, Sen P, Kumar R, Bhardwaj A, Gupta P, Sharma D, Tuli A, Ray Chaudhuri S, Krishnamurthi S, Prakash L, Rao CV, Singh BN, Chaurasiya A, Chaurasiyar M, Bhadange M, Likhitkar B, Mohite S, Patil Y, Kulkarni M, Joshi R, Pandya V, Mahajan S, Patil A, Samson R, Vare T, Dharne M, Giri A, Mahajan S, Paranjape S, Sastry GN, Kalita J, Phukan T, Manna P, Romi W, Bharali P, Ozah D, Sahu RK, Dutta P, Singh MG, Gogoi G, Tapadar YB, Babu EV, Sukumaran RK, Nair AR, Puthiyamadam A, Valappil PK, Pillai Prasannakumari AV, Chodankar K, Damare S, Agrawal VV, Chaudhary K, Agrawal A, Sengupta S, and Dash D
- Subjects
- COVID-19 Vaccines therapeutic use, Humans, Machine Learning, Pandemics, SARS-CoV-2, Vaccines, Inactivated, Virion, COVID-19 epidemiology, COVID-19 prevention & control, Viral Vaccines
- Abstract
Data science has been an invaluable part of the COVID-19 pandemic response with multiple applications, ranging from tracking viral evolution to understanding the vaccine effectiveness. Asymptomatic breakthrough infections have been a major problem in assessing vaccine effectiveness in populations globally. Serological discrimination of vaccine response from infection has so far been limited to Spike protein vaccines since whole virion vaccines generate antibodies against all the viral proteins. Here, we show how a statistical and machine learning (ML) based approach can be used to discriminate between SARS-CoV-2 infection and immune response to an inactivated whole virion vaccine (BBV152, Covaxin). For this, we assessed serial data on antibodies against Spike and Nucleocapsid antigens, along with age, sex, number of doses taken, and days since last dose, for 1823 Covaxin recipients. An ensemble ML model, incorporating a consensus clustering approach alongside the support vector machine model, was built on 1063 samples where reliable qualifying data existed, and then applied to the entire dataset. Of 1448 self-reported negative subjects, our ensemble ML model classified 724 to be infected. For method validation, we determined the relative ability of a random subset of samples to neutralize Delta versus wild-type strain using a surrogate neutralization assay. We worked on the premise that antibodies generated by a whole virion vaccine would neutralize wild type more efficiently than delta strain. In 100 of 156 samples, where ML prediction differed from self-reported uninfected status, neutralization against Delta strain was more effective, indicating infection. We found 71.8% subjects predicted to be infected during the surge, which is concordant with the percentage of sequences classified as Delta (75.6%-80.2%) over the same period. Our approach will help in real-world vaccine effectiveness assessments where whole virion vaccines are commonly used., (Copyright © 2022 The Author(s). Published by Elsevier Ltd.. All rights reserved.)
- Published
- 2022
- Full Text
- View/download PDF
30. Amelioration of Chromium-Induced Oxidative Stress by Combined Treatment of Selected Plant-Growth-Promoting Rhizobacteria and Earthworms via Modulating the Expression of Genes Related to Reactive Oxygen Species Metabolism in Brassica juncea .
- Author
-
Sharma P, Chouhan R, Bakshi P, Gandhi SG, Kaur R, Sharma A, and Bhardwaj R
- Abstract
Chromium (Cr) toxicity leads to the enhanced production of reactive oxygen species (ROS), which are extremely toxic to the plant and must be minimized to protect the plant from oxidative stress. The potential of plant-growth-promoting rhizobacteria (PGPR) and earthworms in plant growth and development has been extensively studied. The present study was aimed at investigating the effect of two PGPR ( Pseudomonas aeruginosa and Burkholderia gladioli ) along with earthworms ( Eisenia fetida ) on the antioxidant defense system in Brassica juncea seedlings under Cr stress. The Cr toxicity reduced the fresh and dry weights of seedlings, enhanced the levels of superoxide anion (O
2 •- ), hydrogen peroxide (H2 O2 ), malondialdehyde (MDA), and electrolyte leakage (EL), which lead to membrane as well as the nuclear damage and reduced cellular viability in B. juncea seedlings. The activities of the antioxidant enzymes, viz ., superoxide dismutase (SOD), guaiacol peroxidase (POD), ascorbate peroxidase (APOX), glutathione peroxidase (GPOX), dehydroascorbate reductase (DHAR), and glutathione reductase (GR) were increased; however, a reduction was observed in the activity of catalase (CAT) in the seedlings under Cr stress. Inoculation of the PGPR and the addition of earthworms enhanced the activities of all other antioxidant enzymes except GPOX, in which a reduction of the activity was observed. For total lipid- and water-soluble antioxidants and the non-enzymatic antioxidants, viz ., ascorbic acid and glutathione, an enhance accumulation was observed upon the inoculation with PGPR and earthworms. The supplementation of PGPR with earthworms (combined treatment) reduced both the reactive oxygen species (ROS) and the MDA content by modulating the defense system of the plant. The histochemical studies also corroborated that the combined application of PGPR and earthworms reduced O2 •- , H2 O2 , lipid peroxidation, and membrane and nuclear damage and improved cell viability. The expression of key antioxidant enzyme genes, viz ., SOD, CAT, POD, APOX, GR, DHAR , and GST showed the upregulation of these genes at post-transcriptional level upon the combined treatment of the PGPR and earthworms, thereby corresponding to the improved plant biomass. However, a reduced expression of RBOH1 gene was noticed in seedlings supplemented under the effect of PGPR and earthworms grown under Cr stress. The results provided sufficient evidence regarding the role of PGPR and earthworms in the amelioration of Cr-induced oxidative stress in B. juncea ., Competing Interests: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest., (Copyright © 2022 Sharma, Chouhan, Bakshi, Gandhi, Kaur, Sharma and Bhardwaj.)- Published
- 2022
- Full Text
- View/download PDF
31. Plant growth promoting potential of butyl isobutyl phthalate and Streptomyces sp. from Rumex dentatus on rice.
- Author
-
Ntemafack A, Ahmed S, Kumar A, Chouhan R, Kapoor N, Bharate SB, Hassan QP, and Gandhi SG
- Subjects
- Endophytes, Phthalic Acids, Plant Extracts, Plant Growth Regulators, Oryza, Rumex, Streptomyces
- Abstract
Rice (Oryza sativa L.) is one of the most important staple foods consumed in many countries of the world. It is mostly consumed in developing countries where different chemical fertilizers are used to improve the productivity of the crop plant. In the present study, endophytic actinomycetes isolated from Rumex dentatus were identified morphologically and by scanning electron microscopy. Butyl isobutyl phthalate (BIBP) was isolated from the root endophyte Streptomyces sp. JR9 using column chromatography and HPLC methods. The compound was tested for its effect on rice seed germination. BIBP, extracts, and isolates were evaluated for their plant growth effect on rice in a growth chamber. Isolates were also screened in vitro for phosphate solubilization activity and enzyme production. Indole-3-acetic acid (IAA) and BIBP produced in extracts were quantified and detected using high performance liquid chromatography (HPLC) and liquid chromatography-mass spectrometry (LC-MS) methods, respectively. BIBP was found to increase the germination of rice seeds by 6 to 12% in treated samples and displayed potent effect at lowest concentration (0.437 µM). Both the compound and the extract depicted significant increases in almost all growth parameters at lowest concentration of 0.125 µg/mL and 62.5 µg/mL, respectively. BIBP also increased significantly shoot length, fresh root, fresh shoot, and dried shoot weight at high concentrations and was more potent than the standard phytohormone IAA. HPLC quantification showed 7.952 µg/mg and 0.371 µg/mg of IAA in extracts of Streptomyces sp. JR9 and the stem endophyte Streptomyces sp. KS3, respectively. IAA containing extract of JR9 increased significantly most growth parameters at lowest concentration (125 µg/mL). The extract of KS3 depicted significant increases in almost all growth parameters at high concentration (500 µg/mL). Our investigation showed that streptomycetes isolated from R. dentatus and BIBP are potent growth promoting agents and can be used in agriculture as bio-fertilizer to improve the growth and productivity of rice. KEY POINTS: • Butyl isobutyl phthalate (BIBP) isolated from endophytic Streptomyces sp. JR9 is a potent rice seed germination activator and promotes significantly the growth of rice • Isolated endophytes showed the ability to produce enzymes and phytohormone IAA • Isolates enhanced significantly the growth of rice., (© 2022. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.)
- Published
- 2022
- Full Text
- View/download PDF
32. Genetic Diversity, Identification, and Utilization of Novel Genetic Resources for Resistance to Meloidogyne incognita in Mulberry ( Morus spp.).
- Author
-
Arunakumar GS, Gnanesh BN, Manojkumar HB, Doss SG, Mogili T, Sivaprasad V, and Tewary P
- Subjects
- Alleles, Animals, Genetic Variation, Microsatellite Repeats genetics, Morus genetics, Tylenchoidea
- Abstract
Mulberry ( Morus spp.) is an important crop in the sericulture industry, as the leaves constitute the primary feed for the silkworm. The availability of diverse genetic sources of resistance to root-knot nematode (RKN; Meloidogyne spp.) are very scanty. To address this need, a set of 415 varied exotic and indigenous germplasm accessions were screened under glasshouse conditions. Twenty-one accessions were identified as highly resistant and 48 were resistant, with the highest numbers of highly resistant/resistant accessions being found in Morus alba . Further, 30 accessions based on rooting ability were evaluated for field resistance at four different locations with infested soil. Finally, eight germplasm accessions (BR-8, Karanjtoli-1, Hosur-C8, Nagalur Estate, Tippu, Calabresa, Thai Pecah, and SRDC-3) were identified as potential genetic sources in RKN-resistance breeding programs or as resistant rootstock for the establishment of mulberry gardens. Sixteen simple sequence repeat markers analyzed among the 77 resistant and susceptible accessions generated 55 alleles, ranging from two to five, with an average of 3.43 alleles per locus. Principal coordinates analysis grouped the accessions on the basis of susceptibility and resistance to RKN infestation. The RKN-susceptible accessions exhibited higher variability as compared with resistant accessions, and they were more dispersed. Analysis of molecular variance showed maximum molecular variance was 78% within the population, and 22% between populations. Results of this study indicate that simple sequence repeat markers are reliable for assessing genetic variability among the RKN-resistant and RKN-susceptible mulberry accessions.
- Published
- 2021
- Full Text
- View/download PDF
33. A mouse testis serine protease, TESP1, as the potential SPINK3 receptor protein on mouse sperm acrosome.
- Author
-
Ramachandran SS, Balu R, Vilwanathan R, Jeyaraman J, and Paramasivam SG
- Subjects
- Animals, Calcium metabolism, Glycoproteins genetics, Hydrogen Bonding, Male, Mice, Molecular Docking Simulation, Prostatic Secretory Proteins genetics, Protein Binding, Protein Conformation, Signal Transduction, Structure-Activity Relationship, Trypsin Inhibitor, Kazal Pancreatic genetics, Acrosome enzymology, Acrosome Reaction, Glycoproteins metabolism, Prostatic Secretory Proteins metabolism, Serine Endopeptidases metabolism, Trypsin Inhibitor, Kazal Pancreatic metabolism
- Abstract
Serine protease inhibitor Kazal type 3 (SPINK3) from mouse seminal vesicles is a Kazal-type trypsin inhibitor. It has been shown to bind to the sperm acrosome and modify sperm activity by influencing the sub-cellular Ca2+ influx. Previously, SPINK3 was reported to suppress in vitro sperm capacitation. However, under natural coitus, SPINK3 is removed from the mouse acrosome in the female reproductive tract, leading to successful fertilisation. Identification of the SPINK3 binding partner becomes essential to develop a contraceptive that works by prolonging the binding of SPINK3 to the sperm acrosome. We identified the SPINK3 receptor by using recombinant SPINK3 (rSPINK3). Testicular serine protease 1 (TESP1) was identified as the receptor for SPINK3 by 2D gel electrophoresis coupled with western blot analysis. To authenticate TESP1 as the receptor for SPINK3, sperm cells were incubated with TESP1 peptide antibody followed by determining the intracellular [Ca2+]i concentration by flow cytometry using Fluo-3 AM as a calcium probe. Furthermore, the 3D structures of SPINK3 and TESP1 were predicted by homology modelling (Schrodinger suite) using the crystal structure of pancreatic secretory trypsin inhibitor (PDB ID-1TGS) and human prostasin (PDB ID-3DFJ) as templates. The modelled protein structures were validated and subjected to molecular dynamics simulation (MDS) using GROMACS v5.0.5. Protein-protein docking was performed using HDOCK and the complex was validated by MDS. The results predicted that SPINK3 and TESP1 had strong binding affinity, with a dock score of -430.70 and 14 hydrogen bonds as key active site residues. If the binding affinity between SPINK3 and TESP1 could be increased, the SPINK3-TESP1 association will be prolonged, which will be helpful in the development of a male contraceptive., (© The Author(s) 2021. Published by Oxford University Press on behalf of European Society of Human Reproduction and Embryology. All rights reserved. For permissions, please email: journals.permissions@oup.com.)
- Published
- 2021
- Full Text
- View/download PDF
34. Anti-asthmatic effects of tannic acid from Chinese natural gall nuts in a mouse model of allergic asthma.
- Author
-
Rajasekar N, Sivanantham A, Kar A, Mukhopadhyay S, Mahapatra SK, Paramasivam SG, and Rajasekaran S
- Subjects
- Airway Remodeling, Allergens immunology, Animals, Disease Models, Animal, Female, Humans, Mice, Mucins metabolism, Nuts immunology, Respiratory Hypersensitivity, Th1 Cells, Th2 Cells, Asthma drug therapy, Hypersensitivity drug therapy, Tannins therapeutic use
- Abstract
Asthma is a chronic inflammatory disease of the airways, which is characterized by infiltration of inflammatory cells, airway hyperresponsiveness (AHR), and airway remodeling. This study aimed to explore the role and mechanism of tannic acid (TA), a naturally occurring plant-derived polyphenol, in murine asthma model. BALB/c mice were given ovalbumin (OVA) to establish an allergic asthma model. The results revealed that TA treatment significantly decreased OVA-induced AHR, inflammatory cells infiltration, and the expression of various inflammatory mediators (Th2 and Th1 cytokines, eotaxin, and total IgE). Additionally, TA treatment also attenuated increases in mucins (Muc5ac and Muc5b) expression, mucus production in airway goblet cells, mast cells infiltration, and airway remodeling induced by OVA exposure. Furthermore, OVA-induced NF-κB (nuclear factor- kappa B) activation and cell adhesion molecules expression in the lungs was suppressed by TA treatment. In conclusion, TA effectively attenuated AHR, inflammatory response, and airway remodeling in OVA-challenged asthmatic mice. Therefore, TA may be a potential therapeutic option against allergic asthma in clinical settings., (Copyright © 2021 Elsevier B.V. All rights reserved.)
- Published
- 2021
- Full Text
- View/download PDF
35. Optimization and validation of RT-LAMP assay for diagnosis of SARS-CoV2 including the globally dominant Delta variant.
- Author
-
Jamwal VL, Kumar N, Bhat R, Jamwal PS, Singh K, Dogra S, Kulkarni A, Bhadra B, Shukla MR, Saran S, Dasgupta S, Vishwakarma RA, and Gandhi SG
- Subjects
- COVID-19 diagnosis, Humans, Reverse Transcription, SARS-CoV-2 isolation & purification, SARS-CoV-2 physiology, Sensitivity and Specificity, COVID-19 virology, COVID-19 Testing methods, Molecular Diagnostic Techniques methods, Nucleic Acid Amplification Techniques methods, SARS-CoV-2 genetics
- Abstract
Background: Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), the causative agent of COVID-19 pandemic, has infected more than 179 million people worldwide. Testing of infected individuals is crucial for identification and isolation, thereby preventing further spread of the disease. Presently, Taqman™ Reverse Transcription Real Time PCR is considered gold standard, and is the most common technique used for molecular testing of COVID-19, though it requires sophisticated equipments, expertise and is also relatively expensive., Objective: Development and optimization of an alternate molecular testing method for the diagnosis of COVID-19, through a two step Reverse Transcription Loop-mediated isothermal AMPlification (RT-LAMP)., Results: Primers for LAMP were carefully designed for discrimination from other closely related human pathogenic coronaviruses. Care was also taken that primer binding sites are present in conserved regions of SARS-CoV2. Our analysis shows that the primer binding sites are well conserved in all the variants of concern (VOC) and variants of interest (VOI), notified by World Health Organization (WHO). These lineages include B.1.1.7, B.1.351, P.1, B.1.617.2, B.1.427/B.1.429, P.2, B.1.525, P.3, B.1.526 and B.1.617.1. Various DNA polymerases with strand displacement activity were evaluated and conditions were optimized for LAMP amplification and visualization. Different LAMP primer sets were also evaluated using synthetic templates as well as patient samples., Conclusion: In a double blind study, the RT-LAMP assay was validated on more than 150 patient samples at two different sites. The RT-LAMP assay appeared to be 89.2% accurate when compared to the Taqman™ rt-RT-PCR assay., (© 2021. The Author(s).)
- Published
- 2021
- Full Text
- View/download PDF
36. Corrigendum to 'Overlapping targets exist between the Par-4 and miR-200c axis which regulate EMT and proliferation of pancreatic cancer cells' [Translational Oncology 14 (2021) 100879].
- Author
-
Katoch A, Jamwal VL, Faheem MM, Kumar S, Senapati S, Yadav G, Gandhi SG, and Goswami A
- Published
- 2021
- Full Text
- View/download PDF
37. Comprehensive Review of Endophytic Flora from African Medicinal Plants.
- Author
-
Ntemafack A, Kapoor N, Ali S, Jamwal VL, Hassan QP, and Gandhi SG
- Subjects
- Endophytes genetics, Humans, Plants, Medicinal
- Abstract
Many people in different African countries are suffering from different diseases many of which result in serious life threat and public health problems with high risk of infection and mortality. Due to less accessibility and high cost of modern drugs, people of this continent often depend on traditional medicine using medicinal plants to manage the diseases. Africa has large tropical rain forests, which are very rich in medicinal plants. Many of them have been scientifically proven for their medicinal values. These medicinal plants which constitute a large repertoire of endophytes have not been significantly explored for the isolation of these microorganisms and their bioactive secondary metabolites. This review summarizes the research on endophytes isolated from medicinal plants of Africa, their pharmacological potential and some of their biotechnological aspects. Novel compounds reported from endophytes from Africa with their biological activities have also been reviewed. Information documented in this review might serve as starting point for future researches on endophytes in different African countries., (© 2021. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.)
- Published
- 2021
- Full Text
- View/download PDF
38. Amelioration of Chlorpyrifos-Induced Toxicity in Brassica juncea L. by Combination of 24-Epibrassinolide and Plant-Growth-Promoting Rhizobacteria.
- Author
-
Bakshi P, Chouhan R, Sharma P, Mir BA, Gandhi SG, Landi M, Zheng B, Sharma A, and Bhardwaj R
- Subjects
- Brassinosteroids metabolism, Burkholderia gladioli growth & development, Chlorpyrifos pharmacokinetics, Mustard Plant growth & development, Mustard Plant microbiology, Pseudomonas aeruginosa growth & development, Seedlings growth & development, Seedlings microbiology, Steroids, Heterocyclic metabolism
- Abstract
Pervasive use of chlorpyrifos (CP), an organophosphorus pesticide, has been proven to be fatal for plant growth, especially at higher concentrations. CP poisoning leads to growth inhibition, chlorosis, browning of roots and lipid and protein degradation, along with membrane dysfunction and nuclear damage. Plants form a linking bridge between the underground and above-ground communities to escape from the unfavourable conditions. Association with beneficial rhizobacteria promotes the growth and development of the plants. Plant hormones are crucial regulators of basically every aspect of plant development. The growing significance of plant hormones in mediating plant-microbe interactions in stress recovery in plants has been extensively highlighted. Hence, the goal of the current study was to investigate the effect of 24-epibrassinolide (EBL) and PGPRs ( Pseudomonas aeruginosa (Ma), Burkholderia gladioli (Mb)) on growth and the antioxidative defence system of CP-stressed Brassica juncea L. seedlings. CP toxicity reduced the germination potential, hypocotyl and radicle development and vigour index, which was maximally recuperated after priming with EBL and Mb. CP-exposed seedlings showed higher levels of superoxide anion (O
2 - ), hydrogen peroxide (H2 O2 ), lipid peroxidation and electrolyte leakage (EL) and a lower level of nitric oxide (NO). In-vivo visualisation of CP-stressed seedlings using a light and fluorescent microscope also revealed the increase in O2 - , H2 O2 and lipid peroxidation, and decreased NO levels. The combination of EBL and PGPRs reduced the reactive oxygen species (ROS) and malondialdehyde (MDA) contents and improved the NO level. In CP-stressed seedlings, increased gene expression of defence enzymes such as superoxide dismutase (SOD), ascorbate peroxidase (APOX), glutathione peroxidase (GPOX), dehydroascorbate reductase (DHAR) and glutathione reductase (GPOX) was seen, with the exception of catalase (CAT) on supplementation with EBL and PGPRs. The activity of nitrate reductase (NR) was likewise shown to increase after treatment with EBL and PGPRs. The results obtained from the present study substantiate sufficient evidence regarding the positive association of EBL and PGPRs in amelioration of CP-induced oxidative stress in Brassica juncea seedlings by strengthening the antioxidative defence machinery.- Published
- 2021
- Full Text
- View/download PDF
39. Plant aquaporins: A frontward to make crop plants drought resistant.
- Author
-
Ahmed S, Kouser S, Asgher M, and Gandhi SG
- Subjects
- Photosynthesis, Plant Growth Regulators, Plant Proteins genetics, Plant Proteins metabolism, Plants metabolism, Stress, Physiological, Water metabolism, Aquaporins genetics, Aquaporins metabolism, Droughts
- Abstract
Drought stress alters gene expression and causes cellular damage in crop plants. Drought inhibits photosynthesis by reducing the content and the activity of the photosynthetic carbon reduction cycle, ultimately decreasing the crop yield. The role of aquaporins (AQP) in improving the growth and adaptation of crop plants under drought stress is of importance. AQP form channels and control water transport in and out of the cells and are associated with drought tolerance mechanisms. The current review addresses: (1) the evolution of AQPs in plants, (2) the classification of plant AQPs, (3) the role of AQPs in drought alleviation in crop plants, and (4) the phytohormone crosstalk with AQPs in crops exposed to drought stress., (© 2021 Scandinavian Plant Physiology Society.)
- Published
- 2021
- Full Text
- View/download PDF
40. Insights from a Pan India Sero-Epidemiological survey (Phenome-India Cohort) for SARS-CoV2.
- Author
-
Naushin S, Sardana V, Ujjainiya R, Bhatheja N, Kutum R, Bhaskar AK, Pradhan S, Prakash S, Khan R, Rawat BS, Tallapaka KB, Anumalla M, Chandak GR, Lahiri A, Kar S, Mulay SR, Mugale MN, Srivastava M, Khan S, Srivastava A, Tomar B, Veerapandian M, Venkatachalam G, Vijayakumar SR, Agarwal A, Gupta D, Halami PM, Peddha MS, Sundaram GM, Veeranna RP, Pal A, Agarwal VK, Maurya AK, Singh RK, Raman AK, Anandasadagopan SK, Karuppanan P, Venkatesan S, Sardana HK, Kothari A, Jain R, Thakur A, Parihar DS, Saifi A, Kaur J, Kumar V, Mishra A, Gogeri I, Rayasam G, Singh P, Chakraborty R, Chaturvedi G, Karunakar P, Yadav R, Singhmar S, Singh D, Sarkar S, Bhattacharya P, Acharya S, Singh V, Verma S, Soni D, Seth S, Vashisht S, Thakran S, Fatima F, Singh AP, Sharma A, Sharma B, Subramanian M, Padwad YS, Hallan V, Patial V, Singh D, Tripude NV, Chakrabarti P, Maity SK, Ganguly D, Sarkar J, Ramakrishna S, Kumar BN, Kumar KA, Gandhi SG, Jamwal PS, Chouhan R, Jamwal VL, Kapoor N, Ghosh D, Thakkar G, Subudhi U, Sen P, Chaudhury SR, Kumar R, Gupta P, Tuli A, Sharma D, Ringe RP, D A, Kulkarni M, Shanmugam D, Dharne MS, Dastager SG, Joshi R, Patil AP, Mahajan SN, Khan AH, Wagh V, Yadav RK, Khilari A, Bhadange M, Chaurasiya AH, Kulsange SE, Khairnar K, Paranjape S, Kalita J, Sastry NG, Phukan T, Manna P, Romi W, Bharali P, Ozah D, Sahu RK, Babu EV, Sukumaran R, Nair AR, Valappil PK, Puthiyamadam A, Velayudhanpillai A, Chodankar K, Damare S, Madhavi Y, Aggarwal VV, Dahiya S, Agrawal A, Dash D, and Sengupta S
- Subjects
- Biomarkers blood, COVID-19 diagnosis, COVID-19 immunology, COVID-19 virology, Female, Host-Pathogen Interactions, Humans, Immunity, Humoral, India epidemiology, Longitudinal Studies, Male, Predictive Value of Tests, Risk Assessment, Risk Factors, Seroepidemiologic Studies, Time Factors, Antibodies, Neutralizing blood, Antibodies, Viral blood, COVID-19 epidemiology, COVID-19 Serological Testing, SARS-CoV-2 immunology
- Abstract
To understand the spread of SARS-CoV2, in August and September 2020, the Council of Scientific and Industrial Research (India) conducted a serosurvey across its constituent laboratories and centers across India. Of 10,427 volunteers, 1058 (10.14%) tested positive for SARS-CoV2 anti-nucleocapsid (anti-NC) antibodies, 95% of which had surrogate neutralization activity. Three-fourth of these recalled no symptoms. Repeat serology tests at 3 (n = 607) and 6 (n = 175) months showed stable anti-NC antibodies but declining neutralization activity. Local seropositivity was higher in densely populated cities and was inversely correlated with a 30-day change in regional test positivity rates (TPRs). Regional seropositivity above 10% was associated with declining TPR. Personal factors associated with higher odds of seropositivity were high-exposure work (odds ratio, 95% confidence interval, p value: 2.23, 1.92-2.59, <0.0001), use of public transport (1.79, 1.43-2.24, <0.0001), not smoking (1.52, 1.16-1.99, 0.0257), non-vegetarian diet (1.67, 1.41-1.99, <0.0001), and B blood group (1.36, 1.15-1.61, 0.001)., Competing Interests: SN, VS, RU, NB, RK, AB, SP, SP, RK, BR, KT, MA, GC, AL, SK, SM, MM, MS, SK, AS, BT, MV, GV, SV, AA, DG, PH, MP, GS, RV, AP, VA, AM, RS, AR, SA, PK, SV, HS, AK, RJ, AT, DP, AS, JK, VK, AM, IG, GR, PS, RC, GC, PK, RY, SS, DS, SS, PB, SA, VS, SV, DS, SS, SV, ST, FF, AS, AS, BS, MS, YP, VH, VP, DS, NT, PC, SM, DG, JS, SR, BK, KK, SG, PJ, RC, VJ, NK, DG, GT, US, PS, SC, RK, PG, AT, DS, RR, AD, MK, DS, MD, SD, RJ, AP, SM, AK, VW, RY, AK, MB, AC, SK, KK, SP, JK, NS, TP, PM, WR, PB, DO, RS, EB, RS, AN, PV, AP, AV, KC, SD, YM, VA, SD, AA, DD, SS No competing interests declared, (© 2021, Naushin et al.)
- Published
- 2021
- Full Text
- View/download PDF
41. Hydrogen peroxide modulates activity and expression of antioxidant enzymes and protects photosynthetic activity from arsenic damage in rice (Oryza sativa L.).
- Author
-
Asgher M, Ahmed S, Sehar Z, Gautam H, Gandhi SG, and Khan NA
- Subjects
- Antioxidants, Ascorbate Peroxidases metabolism, Glutathione metabolism, Hydrogen Peroxide, Oxidative Stress, Photosynthesis, Seedlings metabolism, Arsenic toxicity, Oryza metabolism
- Abstract
We studied the role of H
2 O2 in the protection of photosynthesis from arsenic (As) damage in rice (Oryza sativa L.) by examining the antioxidant system, photosynthesis, and growth attributes. Among the As concentrations (0, 20, 30, 40 and 50 μM) tested, maximum oxidative stress and inhibition in photosynthesis and growth were found with 50 μM As. The application of 50 μM H2 O2 resulted in alleviation of the adverse effects of 50 μM As on Pigment System (PS) II activity, photosynthesis, and growth. Hydrogen peroxide supplementation induced the activity of superoxide dismutase (SOD), ascorbate peroxidase (APX) and glutathione reductase (GR) and increased reduced glutathione (GSH) content and proline metabolism. The expression of SOD and APX, PSBA and PSBB was induced in the presence of H2 O2 to alleviate the As damage to PS II and maintain photosynthetic activity. The role of H2 O2 as a signaling molecule is shown in the protection of photosynthetic activity in rice from As toxicity through regulation on the activity and the expression of antioxidant enzymes., (Copyright © 2020 Elsevier B.V. All rights reserved.)- Published
- 2021
- Full Text
- View/download PDF
42. Overlapping targets exist between the Par-4 and miR-200c axis which regulate EMT and proliferation of pancreatic cancer cells.
- Author
-
Katoch A, Jamwal VL, Faheem MM, Kumar S, Senapati S, Yadav G, Gandhi SG, and Goswami A
- Abstract
The last decade has witnessed a substantial expansion in the field of microRNA (miRNA) biology, providing crucial insights into the role of miRNAs in disease pathology, predominantly in cancer progression and its metastatic spread. The discovery of tumor-suppressing miRNAs represents a potential approach for developing novel therapeutics. In this context, through miRNA microarray analysis, we examined the consequences of Prostate apoptosis response-4 (Par-4), a well-established tumor-suppressor, stimulation on expression of different miRNAs in Panc-1 cells. The results strikingly indicated elevated miR-200c levels in these cells upon Par-4 overexpression. Intriguingly, the Reverse Phase Protein Array (RPPA) analysis revealed differentially expressed proteins (DEPs), which overlap between miR200c- and Par-4-transfected cells, highlighting the cross-talks between these pathways. Notably, Phospho-p44/42 MAPK; Bim; Bcl-xL; Rb Phospho-Ser807, Ser811; Akt Phospho-Ser473; Smad1/5 Phospho-Ser463/Ser465 and Zyxin scored the most significant DEPs among the two data sets. Furthermore, the GFP-Par-4-transfected cells depicted an impeded expression of critical mesenchymal markers viz. TGF-β1, TGF-β2, ZEB-1, and Twist-1, concomitant with augmented miR-200c and E-cadherin levels. Strikingly, while Par-4 overexpression halted ZEB-1 at the transcriptional level; contrarily, silencing of endogenous Par-4 by siRNA robustly augmented the Epithelial-mesenchymal transition (EMT) markers, along with declining miR-200c levels. The pharmacological Par-4-inducer, NGD16, triggered Par-4 expression which corresponded with increased miR-200c resulting in the ZEB-1 downregulation. Noteworthily, tumor samples obtained from the syngenic mouse pancreatic cancer model revealed elevated miR-200c levels in the NGD16-treated mice that positively correlated with the Par-4 and E-cadherin levels in vivo; while a negative correlation was evident with ZEB-1 and Vimentin., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2020. Published by Elsevier Inc.)
- Published
- 2021
- Full Text
- View/download PDF
43. Tannic acid alleviates experimental pulmonary fibrosis in mice by inhibiting inflammatory response and fibrotic process.
- Author
-
Rajasekar N, Sivanantham A, Kar A, Mahapatra SK, Ahirwar R, Thimmulappa RK, Paramasivam SG, and Subbiah R
- Subjects
- Animals, Bleomycin, Disease Models, Animal, Inflammation drug therapy, Inflammation pathology, Inflammation Mediators metabolism, Mice, Mice, Inbred C57BL, Pulmonary Fibrosis pathology, Anti-Inflammatory Agents pharmacology, Pulmonary Fibrosis drug therapy, Tannins pharmacology
- Abstract
Pulmonary fibrosis (PF) is a chronic and irreversible scarring disease in the lung with limited treatment options. Therefore, it is critical to identify new therapeutic options. This study was undertaken to identify the effects of tannic acid (TA), a naturally occurring dietary polyphenol, in a mouse model of PF. Bleomycin (BLM) was intratracheally administered to induce PF. Administration of TA significantly reduced BLM-induced histological alterations, inflammatory cell infiltration and the levels of various inflammatory mediators (nitric oxide, leukotriene B
4 and cytokines). Additionally, treatment with TA also impaired BLM-mediated increases in pro-fibrotic (transforming growth factor-β1) and fibrotic markers (alpha-smooth muscle actin, vimentin, collagen 1 alpha and fibronectin) expression. Further investigation indicated that BLM-induced phosphorylation of Erk1/2 (extracellular signal-regulated kinases 1 and 2) in lungs was suppressed by TA treatment. Findings of this study suggest that TA has the potential to mitigate PF through inhibiting the inflammatory response and fibrotic process in lungs and that TA might be useful for the treatment of PF in clinical practice.- Published
- 2020
- Full Text
- View/download PDF
44. Convergence of therapy-induced senescence (TIS) and EMT in multistep carcinogenesis: current opinions and emerging perspectives.
- Author
-
Faheem MM, Seligson ND, Ahmad SM, Rasool RU, Gandhi SG, Bhagat M, and Goswami A
- Abstract
Drug induced resistance is a widespread problem in the clinical management of cancer. Cancer cells, when exposed to cytotoxic drugs, can reprogram their cellular machinery and resist cell death. Evasion of cell death mechanisms, such as apoptosis and necroptosis, are part of a transcriptional reprogramming that cancer cells utilize to mediate cytotoxic threats. An additional strategy adopted by cancer cells to resist cell death is to initiate the epithelial to mesenchymal transition (EMT) program. EMT is a trans-differentiation process which facilitates a motile phenotype in cancer cells which can be induced when cells are challenged by specific classes of cytotoxic drugs. Induction of EMT in malignant cells also results in drug resistance. In this setting, therapy-induced senescence (TIS), an enduring "proliferative arrest", serves as an alternate approach against cancer because cancer cells remain susceptible to induced senescence. The molecular processes of senescence have proved challenging to understand. Senescence has previously been described solely as a tumor-suppressive mechanism; however, recent evidences suggest that senescence-associated secretory phenotype (SASP) can contribute to tumor progression. SASP has also been identified to contribute to EMT induction. Even though the causes of senescence and EMT induction can be wholly different from each other, a functional link between EMT and senescence is still obscure. In this review, we summarize the evidence of potential cross-talk between EMT and senescence while highlighting some of the most commonly identified molecular players. This review will shed light on these two intertwined and highly conserved cellular process, while providing background of the therapeutic implications of these processes., Competing Interests: Conflict of interestThe authors declare that they have no conflict of interest., (© The Author(s) 2020.)
- Published
- 2020
- Full Text
- View/download PDF
45. Evaluation of rohitukine-enriched fraction of Dysoxylum binectariferum Hook.f. (leaves) as anti-arthritic phytopharmaceutical candidate: Chemical standardization, in-vivo validation, formulation development and oral pharmacokinetics.
- Author
-
Kumar V, Bharate SS, Bhurta D, Gupta M, Gandhi SG, Singh D, Jaglan S, Kumar A, Vishwakarma RA, and Bharate SB
- Subjects
- Animals, Anti-Inflammatory Agents pharmacokinetics, Arthritis, Experimental pathology, Chromones pharmacokinetics, Cytokines immunology, Cytokines metabolism, Delayed-Action Preparations pharmacokinetics, Delayed-Action Preparations therapeutic use, Female, Foot Joints drug effects, Foot Joints pathology, Humans, Male, Mice, Inbred BALB C, Mice, Inbred DBA, Piperidines pharmacokinetics, Plant Extracts pharmacokinetics, Plant Leaves, Rats, Sprague-Dawley, Shock, Septic immunology, THP-1 Cells, Tumor Necrosis Factor-alpha metabolism, Anti-Inflammatory Agents therapeutic use, Arthritis, Experimental drug therapy, Chromones therapeutic use, Meliaceae, Piperidines therapeutic use, Plant Extracts therapeutic use, Shock, Septic drug therapy
- Abstract
Ethnopharmacological Relevance: Rheumatoid arthritis is a chronic inflammatory disease of joints. Dysoxylum binectariferum Hook.f (Family: Meliaceae) is a Indian medicinal plant which is traditionally being used to heal inflammation of joints., Aim of the Study: This work was aimed to carry out chemical standardization, in-vitro/in-vivo validation, oral pharmacokinetics and formulation development of anti-arthritic botanical lead, the rohitukine-enriched fraction of D. binectariferum., Materials and Methods: The rohitukine-enriched fraction of D. binectariferum was standardized using four chemical markers and was checked for microbial load, heavy metal content, aflatoxins and pesticides. Its in-vitro inhibitory effect on the lipopolysaccharide (LPS) induced production of pro-inflammatory cytokines TNF-α and IL-6 was studied in THP-1 cells. The in-vivo anti-arthritic activity was investigated in collagen-induced arthritis model in DBA/1J mice. The sustained release capsule formulation was developed and characterized for physicochemical and pharmacokinetic properties., Results: Rohitukine and schumaniofioside A were found to be major chemical constituents of the botanical lead. The rohitukine-enriched fraction of D. binectariferum significantly reduced the production of both pro-inflammatory cytokines TNF-α and IL-6 (>50% inhibition at 3.12 μg/mL) in THP-1 cells. In LPS-treated wild-type mice model, the rohitukine-enriched fraction at 200 mg/kg (PO, QD) completely reduced serum TNF-α levels. In transgenic mice model (collagen-induced arthritis in DBA/1J mice), rohitukine-enriched fraction at 100 mg/kg (PO, QD) dose has resulted in >75% reduction of TNF-α/IL-6 serum levels, 68% reduction in anti-mouse type II collagen IgG1 antibody levels, decreased joint proteoglycan loss and reduced paw edema in DBA/1J mice. The sustained release capsule formulation of rohitukine-enriched fraction showed sustained-release of rohitukine over the period of 24 h, and resulted in an improved plasma-exposure of rohitukine in SD rats., Conclusions: The data presented herein demonstrated anti-arthritic potential of rohitukine-enriched fraction of D. binectariferum and this study will serve as the benchmark for further research on this botanical lead and developed sustained release capsule formulation., Competing Interests: Declaration of competing interest The authors declare that there is no conflict of interest for this work., (Copyright © 2020 Elsevier B.V. All rights reserved.)
- Published
- 2020
- Full Text
- View/download PDF
46. Par-4 mediated Smad4 induction in PDAC cells restores canonical TGF-β/ Smad4 axis driving the cells towards lethal EMT.
- Author
-
Mohd Faheem M, Rasool RU, Ahmad SM, Jamwal VL, Chakraborty S, Katoch A, Gandhi SG, Bhagat M, and Goswami A
- Subjects
- Carcinoma, Pancreatic Ductal pathology, Cell Line, Tumor, Epithelial-Mesenchymal Transition, G1 Phase Cell Cycle Checkpoints, Humans, NM23 Nucleoside Diphosphate Kinases genetics, NM23 Nucleoside Diphosphate Kinases metabolism, Pancreatic Neoplasms pathology, Plasmids genetics, Proto-Oncogene Proteins c-akt antagonists & inhibitors, Proto-Oncogene Proteins c-akt metabolism, RNA, Small Interfering administration & dosage, RNA, Small Interfering genetics, RNA-Binding Proteins metabolism, Receptors, Thrombin genetics, Signal Transduction, Smad4 Protein biosynthesis, Smad4 Protein genetics, Up-Regulation, Carcinoma, Pancreatic Ductal metabolism, Pancreatic Neoplasms metabolism, Receptors, Thrombin metabolism, Smad4 Protein metabolism, Transforming Growth Factor beta metabolism
- Abstract
Deregulation of TGF-β signaling is intricately engrossed in the pathophysiology of pancreatic adenocarcinomas (PDACs). The role of TGF-β all through pancreatic cancer initiation and progression is multifarious and somewhat paradoxical. TGF-β plays a tumor suppressive role in early-stage pancreatic cancer by promoting apoptosis and inhibiting epithelial cell cycle progression, but incites tumor promotion in late-stage by modulating genomic instability, neo-angiogenesis, immune evasion, cell motility, and metastasis. Here, we provide evidences that Par-4 acts as one of the vital mediators to regulate TGF-β/Smad4 pathway, wherein, Par-4 induction/over-expression induced EMT which was later culminated in to apoptosis in presence of TGF-β via positive regulation of Smad4. Intriguingly, Par-4
-/- cells were devoid of significant Smad4 induction compared to Par-4+/+ cells in presence of TGF-β and ectopic Par-4 steadily augmented Smad4 expression by restoring TGF-β/Smad4 axis in Panc-1 cells. Further, our FACS and western blotting results unveiled that Par-4 dragged the PDAC cells to G1 arrest in presence of TGF-β byelevating p21 and p27 levels while attenuating Cyclin E and A levels and augmenting caspase 3 cleavage triggering lethal EMT. Through restoration of Smad4, we further establish that in BxPC3 cell line (Smad4-/- ), Smad4 is essential for Par-4 to indulge TGF-β dependent lethal EMT program. The mechanistic relevance of Par-4 mediated Smad4 activation was additionally validated by co-immunoprecipitation wherein disruption of NM23H1-STRAP interaction by Par-4 rescues TGF-β/Smad4 pathway in PDAC and mediates the tumor suppressive role of TGF-β, therefore serving as a vital cog to restore the apoptotic functions of TGF-β pathway., Competing Interests: Declaration of Competing Interest The authors declare no conflict of interest., (Copyright © 2020 Elsevier GmbH. All rights reserved.)- Published
- 2020
- Full Text
- View/download PDF
47. Discovery of Helminthosporin, an Anthraquinone Isolated from Rumex abyssinicus Jacq as a Dual Cholinesterase Inhibitor.
- Author
-
Augustin N, Nuthakki VK, Abdullaha M, Hassan QP, Gandhi SG, and Bharate SB
- Abstract
Natural products have extensively contributed toward the discovery of new leads for Alzheimer's disease. During our search for new inhibitors of cholinesterase enzymes from natural sources, the ethyl acetate (EtOAc) extract of Rumex abyssinicus Jacq was identified as a dual cholinesterase inhibitor with IC
50 values of 2.7 and 11.4 μg/mL against acetylcholinesterase (AChE) and butyrylcholinesterase (BChE), respectively. The phytochemical investigation of the EtOAc extract has resulted in isolation of four anthraquinones, namely, helminthosporin, emodin, chrysophanol, and physcion, amongst which the helminthosporin has been isolated for the first time from Rumex sp. All isolated secondary metabolites have displayed significant inhibition of EeAChE with IC50 values of 2.63, 15.21, 33.7, and 12.16 μM, respectively. In addition, the helminthosporin was also found to inhibit BChE with an IC50 value of 2.99 μM. The enzyme kinetic study has indicated that helminthosporin inhibits AChE and BChE in a noncompetitive manner with ki values of 10.3 and 12.3 μM, respectively. The results of molecular modeling and propidium iodide displacement assay have revealed that helminthosporin occupies the peripheral anionic site of the active site gorge of AChE. In the PAMPA-BBB permeability assay, helminthosporin was found to possess high BBB permeability ( Pe = 6.16 × 10-6 cm/s). In a nutshell, helminthosporin has been identified as a brain permeable dual cholinesterase inhibitor, and thus its further synthetic exploration is warranted for optimization of its potency., Competing Interests: The authors declare no competing financial interest., (Copyright © 2020 American Chemical Society.)- Published
- 2020
- Full Text
- View/download PDF
48. Seed Priming with Jasmonic Acid Counteracts Root Knot Nematode Infection in Tomato by Modulating the Activity and Expression of Antioxidative Enzymes.
- Author
-
Bali S, Kaur P, Jamwal VL, Gandhi SG, Sharma A, Ohri P, Bhardwaj R, Ali MA, and Ahmad P
- Subjects
- Animals, Antioxidants metabolism, Cyclopentanes metabolism, Solanum lycopersicum growth & development, Solanum lycopersicum metabolism, Nematoda drug effects, Nematoda metabolism, Oxylipins metabolism, Seedlings metabolism, Seeds metabolism, Stress, Physiological drug effects, Cyclopentanes pharmacology, Solanum lycopersicum parasitology, Nematode Infections drug therapy, Oxylipins pharmacology
- Abstract
The environmental stress, biotic as well as abiotic, is the main cause of decreased growth and crop production. One of the stress-causing agents in plants are parasitic nematodes responsible for crop loss. Jasmonic acid (JA) is recognized as one of signaling molecules in defense-related responses in plants, however, its role under nematode infestation is unclear. Therefore, the present study was planned to traverse the role of JA in boosting the activities of antioxidative enzymes in tomato seedlings during nematode inoculation. Application of JA declined oxidative damage by decreasing O
2 •- content, nuclear and membrane damage under nematode stress. JA treatment elevated the activities of SOD, POD, CAT, APOX, DHAR, GPOX, GR, and PPO in nematode-infested seedlings. Seed soaking treatment of JA upregulated the expression of SOD, POD, CAT , and GPOX under nematode stress. Various amino acids were found in tomato seedlings and higher content of aspartic acid, histidine, asparagine, glutamine, glutamic acid, glycine, threonine, lysine, arginine, B-alanine, GABA, phenylalanine, proline, and ornithine was observed in seeds soaked with JA (100 nM) treatment during nematode inoculation. The results suggest an indispensable role of JA in basal defense response in plants during nematode stress.- Published
- 2020
- Full Text
- View/download PDF
49. Evidence for mouse sulfhydryl oxidase-assisted cross-linking of major seminal vesicle proteins.
- Author
-
Balu R, Ramachandran SS, and Paramasivam SG
- Subjects
- Animals, Hydrogen-Ion Concentration, Male, Mice, Flavin-Adenine Dinucleotide chemistry, Oxidoreductases chemistry, Oxidoreductases isolation & purification, Seminal Vesicle Secretory Proteins chemistry, Seminal Vesicle Secretory Proteins isolation & purification, Seminal Vesicles enzymology
- Abstract
Copulatory plug formation in animals is a general phenomenon by which competition is reduced among rival males. In mouse, the copulatory plug formation results from the coagulation of highly viscous seminal vesicle secretion (SVS) that is rich in proteins, such as dimers of SVS I, SVS I + II + III, and SVS II. These high-molecular-weight complexes (HMWCs) are also reported to be the bulk of proteins in the copulatory plug of the female mouse following copulation. In addition, mouse SVS contributes to the existence of sulfhydryl oxidase (Sox), which mediates the disulfide bond formation between cysteine residues. In this study, flavin adenine dinucleotide (FAD)-dependent Sox was purified from mouse SVS using ion exchange and high-performance liquid chromatography. The purified enzyme was identified to be Sox, based on western blot analysis with Sox antiserum and its capability of oxidizing dithiothreitol as substrate. The pH optima and thermal stability of the enzyme were determined. Among the metal ions tested, zinc showed an inhibitory effect on Sox activity. A prosthetic group of the enzyme was identified as FAD. The K
m and Vmax of the enzyme was also determined. In addition to purification and biochemical characterization of seminal vesicle Sox, the major breakthrough of this study was proving its cross-linking activity among SVS I-III monomers to form HMWCs in SVS., (© 2019 Wiley Periodicals, Inc.)- Published
- 2019
- Full Text
- View/download PDF
50. Jasmonic acid application triggers detoxification of lead (Pb) toxicity in tomato through the modifications of secondary metabolites and gene expression.
- Author
-
Bali S, Jamwal VL, Kohli SK, Kaur P, Tejpal R, Bhalla V, Ohri P, Gandhi SG, Bhardwaj R, Al-Huqail AA, Siddiqui MH, Ali HM, and Ahmad P
- Subjects
- Cyclopentanes metabolism, Gene Expression, Inactivation, Metabolic genetics, Lead metabolism, Lead toxicity, Solanum lycopersicum genetics, Solanum lycopersicum metabolism, Oxylipins metabolism, Phenols metabolism, Photosynthesis, Plant Growth Regulators metabolism, Polyphenols metabolism, Seedlings metabolism, Seeds metabolism, Soil Pollutants toxicity, Cyclopentanes chemistry, Lead chemistry, Solanum lycopersicum physiology, Oxylipins chemistry, Soil Pollutants chemistry
- Abstract
Jasmonic acid (JA) is an important phytohormone associated in defense responses against stress. Crop plants experience heavy metal toxicity and needs to be explored to enhance the crop production. Lead (Pb) is one of the dangerous heavy metal that pollutes soil and water bodies and is released from various sources like discharge from batteries, automobile exhaust, and paints. The present study was designed to evaluate the role of JA (100 nM) on photosynthetic pigments, secondary metabolites, organic acids, and metal ligation compounds in tomato seedlings under different concentrations of Pb (0.25, 0.50, and 0.75 mM). It was observed that Pb treatment declined pigment content, relative water content, and heavy metal tolerance index. Expression of chlorophyllase was also enhanced in Pb-treated seedlings. Seeds primed with JA lowered the expression of chlorophyllase under Pb stress. JA application enhanced the contents of secondary metabolites (total phenols, polyphenols, flavonoids, and anthocyanin) which were confirmed with enhanced expression of chalcone synthase and phenylalanine ammonia lyase in Pb-exposed seedlings. Treatment of JA further elevated the levels of organic acids and metal chelating compounds under Pb toxicity. JA up-regulated the expression of succinate dehydrogenase and fumarate hydratase in Pb-exposed seedlings. Results revealed that seeds primed with JA reduced Pb toxicity by elevating, the levels of photosynthetic pigments, secondary metabolites, osmolytes, metal ligation compounds, organic acids, and polyamine accumulation in tomato seedlings., (Copyright © 2019 Elsevier Ltd. All rights reserved.)
- Published
- 2019
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.