1. Lower Bounds for Induced Cycle Detection in Distributed Computing
- Author
-
Gall, Fran��ois Le and Miyamoto, Masayuki
- Subjects
FOS: Computer and information sciences ,Computer Science - Distributed, Parallel, and Cluster Computing ,Distributed, Parallel, and Cluster Computing (cs.DC) - Abstract
The distributed subgraph detection asks, for a fixed graph $H$, whether the $n$-node input graph contains $H$ as a subgraph or not. In the standard CONGEST model of distributed computing, the complexity of clique/cycle detection and listing has received a lot of attention recently. In this paper we consider the induced variant of subgraph detection, where the goal is to decide whether the $n$-node input graph contains $H$ as an \emph{induced} subgraph or not. We first show a $\tilde{\Omega}(n)$ lower bound for detecting the existence of an induced $k$-cycle for any $k\geq 4$ in the CONGEST model. This lower bound is tight for $k=4$, and shows that the induced variant of $k$-cycle detection is much harder than the non-induced version. This lower bound is proved via a reduction from two-party communication complexity. We complement this result by showing that for $5\leq k\leq 7$, this $\tilde{\Omega}(n)$ lower bound cannot be improved via the two-party communication framework. We then show how to prove stronger lower bounds for larger values of $k$. More precisely, we show that detecting an induced $k$-cycle for any $k\geq 8$ requires $\tilde{\Omega}(n^{2-\Theta{(1/k)}})$ rounds in the CONGEST model, nearly matching the known upper bound $\tilde{O}(n^{2-\Theta{(1/k)}})$ of the general $k$-node subgraph detection (which also applies to the induced version) by Eden, Fiat, Fischer, Kuhn, and Oshman~[DISC 2019]. Finally, we investigate the case where $H$ is the diamond (the diamond is obtained by adding an edge to a 4-cycle, or equivalently removing an edge from a 4-clique), and show non-trivial upper and lower bounds on the complexity of the induced version of diamond detecting and listing., Comment: 21 pages. To appear in ISAAC 2021
- Published
- 2021