1. Honeycomb-like MXene/NiFePx–NC with 'continuous' single-crystal enabling high activity and robust durability in electrocatalytic oxygen evolution reactions
- Author
-
Xiaojun Zeng, Yifei Ye, Yongqing Wang, Ronghai Yu, Martin Moskovits, and Galen D. Stucky
- Subjects
layered mxene ,ultrasmall nifepx nanoparticles (nps) ,"continuous" single-crystal ,honeycomb-like heterostructure ,oxygen evolution reaction (oer) activity ,Clay industries. Ceramics. Glass ,TP785-869 - Abstract
The development of low-cost, stable, and robust non-noble metal catalysts for water oxidation is a pivotal challenge for sustainable hydrogen production through electrocatalytic water splitting. Currently, such catalysts suffer from high overpotential and sluggish kinetics in oxygen evolution reactions (OERs). Herein, we report a "continuous" single-crystal honeycomb-like MXene/NiFePx–N-doped carbon (NC) heterostructure, in which ultrasmall NiFePx nanoparticles (NPs) encapsulated in the NC are tightly anchored on a layered MXene. Interestingly, this MXene/NiFePx–NC delivers outstanding OER catalytic performance, which stems from "continuous" single-crystal characteristics, abundant active sites derived from the ultrasmall NiFePx NPs, and the stable honeycomb-like heterostructure with an open structure. The experimental results are rationalized theoretically (by density functional theory (DFT) calculations), which suggests that it is the unique MXene/NiFePx–NC heterostructure that promotes the sluggish OER, thereby enabling superior durability and excellent activity with an ultralow overpotential of 240 mV at a current density of 10 mA·cm−2.
- Published
- 2023
- Full Text
- View/download PDF