1. Application of Getis-Ord Correlation Index (Gi) for Burned Area Detection Improvement in Mediterranean Ecosystems (Southern Italy and Sardinia) Using Sentinel-2 Data
- Author
-
Antonio Lanorte, Gabriele Nolè, and Giuseppe Cillis
- Subjects
burned area mapping ,Sentinel-2 ,spatial autocorrelation ,similarity index ,Italy ,CEMS ,Science - Abstract
This study collects the results obtained using the Getis-Ord local spatial autocorrelation index (Gi) with the aim of improving the classification of burned area detection maps generated from spectral indices (i.e., dNBR index) derived from Sentinel-2 satellite data. Therefore, the work proposes an adaptive thresholding approach that also includes the application of a similarity index (Sorensen–Dice Similarity Index) with the aim of adaptively correcting classification errors (false-positive burned pixels) related to the spectral response of burned/unburned areas. In this way, two new indices derived from the application of the Getis-Ord local autocorrelation analysis were created to test their effectiveness. Three wildfire events were considered, two of which occurred in Southern Italy in the summer of 2017 and one in Sardinia in the summer of 2019. The accuracy assessment analysis was carried out using the CEMS (Copernicus Emergency Management Service) on-demand maps. The results show the remarkable performance of the two new indices in terms of their ability to reduce the false positives generated by dNBR. In the three sites considered, the false-positive reduction percentage was around 95–96%. The proposed approach seems to be adaptable to different vegetation contexts, and above all, it could be a useful tool for mapping burned areas to support post-fire management activities.
- Published
- 2024
- Full Text
- View/download PDF