46 results on '"G. A. Keating"'
Search Results
2. SPT-SLIM: A Line Intensity Mapping Pathfinder for the South Pole Telescope
- Author
-
K. S. Karkare, A. J. Anderson, P. S. Barry, B. A. Benson, J. E. Carlstrom, T. Cecil, C. L. Chang, M. A. Dobbs, M. Hollister, G. K. Keating, D. P. Marrone, J. McMahon, J. Montgomery, Z. Pan, G. Robson, M. Rouble, E. Shirokoff, and G. Smecher
- Subjects
Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,FOS: Physical sciences ,General Materials Science ,Condensed Matter Physics ,Astrophysics - Instrumentation and Methods for Astrophysics ,Instrumentation and Methods for Astrophysics (astro-ph.IM) ,Atomic and Molecular Physics, and Optics ,Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
The South Pole Telescope Summertime Line Intensity Mapper (SPT-SLIM) is a pathfinder experiment that will demonstrate the use of on-chip filter-bank spectrometers for mm-wave line intensity mapping (LIM). The SPT-SLIM focal plane consists of 18 dual-polarization R=300 filter-bank spectrometers covering 120-180 GHz, coupled to aluminum kinetic inductance detectors. A compact cryostat holds the detectors at 100 mK and performs observations without removing the SPT-3G receiver. SPT-SLIM will be deployed to the 10-m South Pole Telescope for observations during the 2023-24 austral summer. We discuss the overall instrument design, expected detector performance and sensitivity to the LIM signal from CO at 0.5 < z < 2. The technology and observational techniques demonstrated by SPT-SLIM will enable next-generation LIM experiments that constrain cosmology beyond the redshift reach of galaxy surveys., 7 pages, 4 figures. Submitted to the Journal of Low Temperature Physics (Proceedings of the 19th International Workshop on Low Temperature Detectors)
- Published
- 2021
3. Design of SPT-SLIM focal plane; a spectroscopic imaging array for the South Pole Telescope
- Author
-
P. S. Barry, A. Anderson, B. Benson, J. E. Carlstrom, T. Cecil, C. Chang, M. Dobbs, M. Hollister, K. S. Karkare, G. K. Keating, D. Marrone, J. McMahon, J. Montgomery, Z. Pan, G. Robson, M. Rouble, E. Shirokoff, and G. Smecher
- Subjects
Physics - Instrumentation and Detectors ,FOS: Physical sciences ,General Materials Science ,Instrumentation and Detectors (physics.ins-det) ,Astrophysics - Instrumentation and Methods for Astrophysics ,Condensed Matter Physics ,Instrumentation and Methods for Astrophysics (astro-ph.IM) ,Atomic and Molecular Physics, and Optics - Abstract
The Summertime Line Intensity Mapper (SLIM) is a mm-wave line-intensity mapping (mm-LIM) experiment for the South Pole Telescope (SPT). The goal of SPT-SLIM is to serve as a technical and scientific pathfinder for the demonstration of the suitability and in-field performance of multi-pixel superconducting filterbank spectrometers for future mm-LIM experiments. Scheduled to deploy in the 2023-24 austral summer, the SPT-SLIM focal plane will include 18 dual-polarization pixels, each coupled to an $R = \lambda/\Delta\lambda$ = 300 thin- film microstrip filterbank spectrometer that spans the 2 mm atmospheric window (120-180 GHz). Each individual spectral channel feeds a microstrip-coupled lumped-element kinetic inductance detector, which provides the highly multiplexed readout for the 10k detectors needed for SPT-SLIM. Here we present an overview of the preliminary design of key aspects of the SPT-SLIM the focal plane array, a description of the detector architecture and predicted performance, and initial test results that will be used to inform the final design of the SPT- SLIM spectrometer array., Comment: Submitted to special issue of JLTP (proceedings of LTD19)
- Published
- 2021
- Full Text
- View/download PDF
4. SYMBA: An end-to-end VLBI synthetic data generation pipeline. Simulating Event Horizon Telescope observations of M 87
- Author
-
F. Roelofs, M. Janssen, I. Natarajan, R. Deane, J. Davelaar, H. Olivares, O. Porth, S. N. Paine, K. L. Bouman, R. P. J. Tilanus, I. M. van Bemmel, H. Falcke, K. Akiyama, A. Alberdi, W. Alef, K. Asada, R. Azulay, A. Baczko, D. Ball, M. Baloković, J. Barrett, D. Bintley, L. Blackburn, W. Boland, G. C. Bower, M. Bremer, C. D. Brinkerink, R. Brissenden, S. Britzen, A. E. Broderick, D. Broguiere, T. Bronzwaer, D. Byun, J. E. Carlstrom, A. Chael, C. Chan, S. Chatterjee, K. Chatterjee, M. Chen, Y. Chen, I. Cho, P. Christian, J. E. Conway, J. M. Cordes, G. B. Crew, Y. Cui, M. De Laurentis, J. Dempsey, G. Desvignes, J. Dexter, S. S. Doeleman, R. P. Eatough, V. L. Fish, E. Fomalont, R. Fraga-Encinas, P. Friberg, C. M. Fromm, J. L. Gómez, P. Galison, C. F. Gammie, R. García, O. Gentaz, B. Georgiev, C. Goddi, R. Gold, M. Gu, M. Gurwell, K. Hada, M. H. Hecht, R. Hesper, L. C. Ho, P. Ho, M. Honma, C. L. Huang, L. Huang, D. H. Hughes, S. Ikeda, M. Inoue, S. Issaoun, D. J. James, B. T. Jannuzi, B. Jeter, W. Jiang, M. D. Johnson, S. Jorstad, T. Jung, M. Karami, R. Karuppusamy, T. Kawashima, G. K. Keating, M. Kettenis, J. Kim, M. Kino, J. Y. Koay, P. M. Koch, S. Koyama, M. Kramer, C. Kramer, T. P. Krichbaum, C. Kuo, T. R. Lauer, S. Lee, Y. Li, Z. Li, M. Lindqvist, R. Lico, K. Liu, E. Liuzzo, W. Lo, A. P. Lobanov, L. Loinard, C. Lonsdale, R. Lu, N. R. MacDonald, J. Mao, S. Markoff, D. P. Marrone, A. P. Marscher, I. Martí-Vidal, S. Matsushita, L. D. Matthews, L. Medeiros, K. M. Menten, Y. Mizuno, I. Mizuno, J. M. Moran, K. Moriyama, M. Moscibrodzka, C. Müller, H. Nagai, N. M. Nagar, M. Nakamura, R. Narayan, G. Narayanan, R. Neri, C. Ni, A. Noutsos, H. Okino, G. N. Ortiz-León, T. Oyama, F. Özel, D. C. M. Palumbo, N. Patel, U. Pen, D. W. Pesce, V. Piétu, R. Plambeck, A. PopStefanija, B. Prather, J. A. Preciado-López, D. Psaltis, H. Pu, V. Ramakrishnan, R. Rao, M. G. Rawlings, A. W. Raymond, L. Rezzolla, B. Ripperda, A. Rogers, E. Ros, M. Rose, A. Roshanineshat, H. Rottmann, A. L. Roy, C. Ruszczyk, B. R. Ryan, K. L. J. Rygl, S. Sánchez, D. Sánchez-Arguelles, M. Sasada, T. Savolainen, F. P. Schloerb, K. Schuster, L. Shao, Z. Shen, D. Small, B. Won Sohn, J. SooHoo, F. Tazaki, P. Tiede, M. Titus, K. Toma, P. Torne, E. Traianou, T. Trent, S. Trippe, S. Tsuda, H. J. van Langevelde, D. R. van Rossum, J. Wagner, J. Wardle, J. Weintroub, N. Wex, R. Wharton, M. Wielgus, G. N. Wong, Q. Wu, A. Young, K. Young, Z. Younsi, F. Yuan, Y. Yuan, J. A. Zensus, G. Zhao, S. Zhao, Z. Zhu, High Energy Astrophys. & Astropart. Phys (API, FNWI), Institut de RadioAstronomie Millimétrique (IRAM), Centre National de la Recherche Scientifique (CNRS), Instituto de RadioAstronomía Milimétrica (IRAM), Event Horizon Telescope, Academy of Finland, European Commission, Alexander von Humboldt Foundation, John Templeton Foundation, China Scholarship Council, Comisión Nacional de Investigación Científica y Tecnológica (Chile), Consejo Nacional de Ciencia y Tecnología (México), European Research Council, Generalitat Valenciana, Ministerio de Economía y Competitividad (España), Ministerio de Ciencia, Innovación y Universidades (España), Gordon and Betty Moore Foundation, Istituto Nazionale di Fisica Nucleare, Japanese Government, Japan Society for the Promotion of Science, Chinese Academy of Sciences, Max Planck Society, Ministry of Science and Technology (Taiwan), National Aeronautics and Space Administration (US), National Science Foundation (US), National Natural Science Foundation of China, Natural Sciences and Engineering Research Council of Canada, National Research Foundation of Korea, Netherlands Organization for Scientific Research, National Research Foundation (South Africa), Russian Science Foundation, Ministero dell'Istruzione, dell'Università e della Ricerca, Roelofs, F., Janssen, M., Natarajan, I., Deane, R., Davelaar, J., Olivares, H., Porth, O., Paine, S. N., Bouman, K. L., Tilanus, R. P. J., Van Bemmel, I. M., Falcke, H., Akiyama, K., Alberdi, A., Alef, W., Asada, K., Azulay, R., Baczko, A., Ball, D., Balokovic, M., Barrett, J., Bintley, D., Blackburn, L., Boland, W., Bower, G. C., Bremer, M., Brinkerink, C. D., Brissenden, R., Britzen, S., Broderick, A. E., Broguiere, D., Bronzwaer, T., Byun, D., Carlstrom, J. E., Chael, A., Chan, C., Chatterjee, S., Chatterjee, K., Chen, M., Chen, Y., Cho, I., Christian, P., Conway, J. E., Cordes, J. M., Crew, G. B., Cui, Y., De Laurentis, M., Dempsey, J., Desvignes, G., Dexter, J., Doeleman, S. S., Eatough, R. P., Fish, V. L., Fomalont, E., Fraga-Encinas, R., Friberg, P., Fromm, C. M., Gomez, J. L., Galison, P., Gammie, C. F., Garcia, R., Gentaz, O., Georgiev, B., Goddi, C., Gold, R., Gu, M., Gurwell, M., Hada, K., Hecht, M. H., Hesper, R., Ho, L. C., Ho, P., Honma, M., Huang, C. L., Huang, L., Hughes, D. H., Ikeda, S., Inoue, M., Issaoun, S., James, D. J., Jannuzi, B. T., Jeter, B., Jiang, W., Johnson, M. D., Jorstad, S., Jung, T., Karami, M., Karuppusamy, R., Kawashima, T., Keating, G. K., Kettenis, M., Kim, J., Kino, M., Koay, J. Y., Koch, P. M., Koyama, S., Kramer, M., Kramer, C., Krichbaum, T. P., Kuo, C., Lauer, T. R., Lee, S., Li, Y., Li, Z., Lindqvist, M., Lico, R., Liu, K., Liuzzo, E., Lo, W., Lobanov, A. P., Loinard, L., Lonsdale, C., Lu, R., Macdonald, N. R., Mao, J., Markoff, S., Marrone, D. P., Marscher, A. P., Marti-Vidal, I., Matsushita, S., Matthews, L. D., Medeiros, L., Menten, K. M., Mizuno, Y., Mizuno, I., Moran, J. M., Moriyama, K., Moscibrodzka, M., Muller, C., Nagai, H., Nagar, N. M., Nakamura, M., Narayan, R., Narayanan, G., Neri, R., Ni, C., Noutsos, A., Okino, H., Ortiz-Leon, G. N., Oyama, T., Ozel, F., Palumbo, D. C. M., Patel, N., Pen, U., Pesce, D. W., Pietu, V., Plambeck, R., Popstefanija, A., Prather, B., Preciado-Lopez, J. A., Psaltis, D., Pu, H., Ramakrishnan, V., Rao, R., Rawlings, M. G., Raymond, A. W., Rezzolla, L., Ripperda, B., Rogers, A., Ros, E., Rose, M., Roshanineshat, A., Rottmann, H., Roy, A. L., Ruszczyk, C., Ryan, B. R., Rygl, K. L. J., Sanchez, S., Sanchez-Arguelles, D., Sasada, M., Savolainen, T., Schloerb, F. P., Schuster, K., Shao, L., Shen, Z., Small, D., Won Sohn, B., Soohoo, J., Tazaki, F., Tiede, P., Titus, M., Toma, K., Torne, P., Traianou, E., Trent, T., Trippe, S., Tsuda, S., Van Langevelde, H. J., Van Rossum, D. R., Wagner, J., Wardle, J., Weintroub, J., Wex, N., Wharton, R., Wielgus, M., Wong, G. N., Wu, Q., Young, A., Young, K., Younsi, Z., Yuan, F., Yuan, Y., Zensus, J. A., Zhao, G., Zhao, S., Zhu, Z., Universidad de Concepción, Anne Lähteenmäki Group, Radboud University, Department of Electronics and Nanoengineering, Aalto-yliopisto, Aalto University, and Astronomy
- Subjects
010504 meteorology & atmospheric sciences ,Computer science ,Image quality ,Pipeline (computing) ,Astronomy ,black hole physics ,01 natural sciences ,Black hole physic ,0103 physical sciences ,Very-long-baseline interferometry ,Calibration ,Angular resolution ,[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det] ,010303 astronomy & astrophysics ,0105 earth and related environmental sciences ,Remote sensing ,Event Horizon Telescope ,astro-ph.HE ,Atmospheric effect ,Astrophysics::Instrumentation and Methods for Astrophysics ,techniques: high angular resolution ,Astronomy and Astrophysics ,telescopes ,Black hole physics ,Atmospheric effects ,Galaxies ,Techniques ,high angular resolution [Techniques] ,13. Climate action ,Space and Planetary Science ,techniques: interferometric ,nuclei [Galaxies] ,interferometric ,nuclei ,interferometric [Techniques] ,galaxies: nuclei ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] ,high angular resolution ,Telescopes ,atmospheric effects ,astro-ph.IM - Abstract
Context. Realistic synthetic observations of theoretical source models are essential for our understanding of real observational data. In using synthetic data, one can verify the extent to which source parameters can be recovered and evaluate how various data corruption effects can be calibrated. These studies are the most important when proposing observations of new sources, in the characterization of the capabilities of new or upgraded instruments, and when verifying model-based theoretical predictions in a direct comparison with observational data. Aims. We present the SYnthetic Measurement creator for long Baseline Arrays (SYMBA), a novel synthetic data generation pipeline for Very Long Baseline Interferometry (VLBI) observations. SYMBA takes into account several realistic atmospheric, instrumental, and calibration effects. Methods. We used SYMBA to create synthetic observations for the Event Horizon Telescope (EHT), a millimetre VLBI array, which has recently captured the first image of a black hole shadow. After testing SYMBA with simple source and corruption models, we study the importance of including all corruption and calibration effects, compared to the addition of thermal noise only. Using synthetic data based on two example general relativistic magnetohydrodynamics (GRMHD) model images of M 87, we performed case studies to assess the image quality that can be obtained with the current and future EHT array for different weather conditions. Results. Our synthetic observations show that the effects of atmospheric and instrumental corruptions on the measured visibilities are significant. Despite these effects, we demonstrate how the overall structure of our GRMHD source models can be recovered robustly with the EHT2017 array after performing calibration steps, which include fringe fitting, a priori amplitude and network calibration, and self-calibration. With the planned addition of new stations to the EHT array in the coming years, images could be reconstructed with higher angular resolution and dynamic range. In our case study, these improvements allowed for a distinction between a thermal and a non-thermal GRMHD model based on salient features in reconstructed images. © 2020 ESO., This work is supported by the ERC Synergy Grant "BlackHoleCam: Imaging the Event Horizon of Black Holes" (Grant 610058). I. Natarajan and R. Deane are grateful for the support from the New Scientific Frontiers with Precision Radio Interferometry Fellowship awarded by the South African Radio Astronomy Observatory (SARAO), which is a facility of the National Research Foundation (NRF), an agency of the Department of Science and Technology (DST) of South Africa. The authors of the present paper further thank the following organizations and programmes: the Academy of Finland (projects 274477, 284495, 312496); the Advanced European Network of E-infrastructures for Astronomy with the SKA (AENEAS) project, supported by the European Commission Framework Programme Horizon 2020 Research and Innovation action under grant agreement 731016; the Alexander von Humboldt Stiftung; the Black Hole Initiative at Harvard University, through a grant (60477) from the John Templeton Foundation; the China Scholarship Council; Comision Nacional de Investigacio Cientifica y Tecnologica (CONICYT, Chile, via PIA ACT172033, Fondecyt 1171506, BASAL AFB-170002, ALMAconicyt 31140007); Consejo Nacional de Ciencia y Tecnologia (CONACYT, Mexico, projects 104497, 275201, 279006, 281692); the Delaney Family via the Delaney Family John A. Wheeler Chair at Perimeter Institute; Direccion General de Asuntos del Personal Academico-Universidad Nacional Autonoma de Mexico (DGAPA-UNAM, project IN112417); the Generalitat Valenciana postdoctoral grant APOSTD/2018/177; the Gordon and Betty Moore Foundation (grants GBMF-3561, GBMF-5278); the Istituto Nazionale di Fisica Nucleare (INFN) sezione di Napoli, iniziative specifiche TEONGRAV; the GenT Program (Generalitat Valenciana) under project CIDEGENT/2018/021; the International Max Planck Research School for Astronomy and Astrophysics at the Universities of Bonn and Cologne; the Jansky Fellowship program of the National Radio Astronomy Observatory (NRAO); the Japanese Government (Monbukagakusho: MEXT) Scholarship; the Japan Society for the Promotion of Science (JSPS) Grant-in-Aid for JSPS Research Fellowship (JP17J08829); the Key Research Program of Frontier Sciences, Chinese Academy of Sciences (CAS, grants QYZDJ-SSW-SLH057, QYZDJ-SSW-SYS008); the Leverhulme Trust Early Career Research Fellowship; the Max-Planck-Gesellschaft (MPG); the Max Planck Partner Group of the MPG and the CAS; the MEXT/JSPS KAKENHI (grants 18KK0090, JP18K13594, JP18K03656, JP18H03721, 18K03709, 18H01245, 25120007); the MIT International Science and Technology Initiatives (MISTI) Funds; the Ministry of Science and Technology (MOST) of Taiwan (105-2112-M-001-025-MY3, 106-2112-M-001-011, 106-2119-M-001027, 107-2119-M-001-017, 107-2119-M-001-020, and 107-2119-M-110-005); the National Aeronautics and Space Administration (NASA, Fermi Guest Investigator grant 80NSSC17K0649); NASA through the NASA Hubble Fellowship grant #HST-HF2-51431.001-A awarded by the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc. , for NASA, under contract NAS5-26555; the National Institute of Natural Sciences (NINS) of Japan; the National Key Research and Development Program of China (grant 2016YFA0400704, 2016YFA0400702); the National Science Foundation (NSF, grants AST-0096454, AST-0352953, AST-0521233, AST-0705062, AST-0905844, AST-0922984, AST-1126433, AST-1140030, DGE-1144085, AST-1207704, AST-1207730, AST-1207752, MRI-1228509, OPP-1248097, AST-1310896, AST-1312651, AST-1337663, AST-1440254, AST-1555365, AST-1715061, AST-1615796, AST-1716327, OISE-1743747, AST-1816420); the Natural Science Foundation of China (grants 11573051, 11633006, 11650110427, 10625314, 11721303, 11725312, 11933007); the Natural Sciences and Engineering Research Council of Canada (NSERC, including a Discovery Grant and the NSERC Alexander Graham Bell Canada Graduate Scholarships-Doctoral Program); the National Youth Thousand Talents Program of China; the National Research Foundation of Korea (the Global PhD Fellowship Grant: grants NRF-2015H1A2A1033752, 2015-R1D1A1A01056807, the Korea Research Fellowship Program: NRF-2015H1D3A1066561); the Netherlands Organization for Scientific Research (NWO) VICI award (grant 639.043.513) and Spinoza Prize SPI 78-409; the New Scientific Frontiers with Precision Radio Interferometry Fellowship awarded by the South African Radio Astronomy Observatory (SARAO), which is a facility of the National Research Foundation (NRF), an agency of the Department of Science and Technology (DST) of South Africa; the Onsala Space Observatory (OSO) national infrastructure, for the provisioning of its facilities/observational support (OSO receives funding through the Swedish Research Council under grant 2017-00648) the Perimeter Institute for Theoretical Physics (research at Perimeter Institute is supported by the Government of Canada through the Department of Innovation, Science and Economic Development and by the Province of Ontario through the Ministry of Research, Innovation and Science); the Princeton/Flatiron Postdoctoral Prize Fellowship; the Russian Science Foundation (grant 17-12-01029); the Spanish Ministerio de Economia y Competitividad (grants AYA2015-63939-C21-P, AYA2016-80889-P); the State Agency for Research of the Spanish MCIU through the "Center of Excellence Severo Ochoa" award for the Instituto de Astrofisica de Andalucia (SEV-2017-0709); the Toray Science Foundation; the US Department of Energy (USDOE) through the Los Alamos National Laboratory (operated by Triad National Security, LLC, for the National Nuclear Security Administration of the USDOE (Contract 89233218CNA000001)); the Italian Ministero dell'Istruzione Universita e Ricerca through the grant Progetti Premiali 2012-iALMA (CUP C52I13000140001); the European Union's Horizon 2020 research and innovation programme under grant agreement No 730562 RadioNet; ALMA North America Development Fund; the Academia Sinica; Chandra TM6-17006X. This work used the Extreme Science and Engineering Discovery Environment (XSEDE), supported by NSF grant ACI-1548562, and CyVerse, supported by NSF grants DBI-0735191, DBI-1265383, and DBI1743442. XSEDE Stampede2 resource at TACC was allocated through TGAST170024 and TG-AST080026N. XSEDE JetStream resource at PTI and TACC was allocated through AST170028. The simulations were performed in part on the SuperMUC cluster at the LRZ in Garching, on the LOEWE cluster in CSC in Frankfurt, and on the HazelHen cluster at the HLRS in Stuttgart. This research was enabled in part by support provided by Compute Ontario (http://computeontario.ca), Calcul Quebec (http://www. calculquebec.ca) and Compute Canada (http://www.computecanada.ca).We thank the sta ff at the participating observatories, correlation centers, and institutions for their enthusiastic support. This paper makes use of the following ALMA data: ADS/JAO.ALMA#2017.1.00841.V. ALMA is a partnership of the European Southern Observatory (ESO; Europe, representing its member states), NSF, and National Institutes of Natural Sciences of Japan, together with National Research Council (Canada), Ministry of Science and Technology (MOST; Taiwan), Academia Sinica Institute of Astronomy and Astrophysics (ASIAA; Taiwan), and Korea Astronomy and Space Science Institute (KASI; Republic of Korea), in cooperation with the Republic of Chile. The Joint ALMA Observatory is operated by ESO, Associated Universities, Inc. (AUI)/NRAO, and the National Astronomical Observatory of Japan (NAOJ). The NRAO is a facility of the NSF operated under cooperative agreement by AUI. APEX is a collaboration between the Max-Planck-Institut fur Radioastronomie (Germany), ESO, and the Onsala Space Observatory (Sweden). The SMA is a joint project between the SAO and ASIAA and is funded by the Smithsonian Institution and the Academia Sinica. The JCMT is operated by the East Asian Observatory on behalf of the NAOJ, ASIAA, and KASI, as well as the Ministry of Finance of China, Chinese Academy of Sciences, and the National Key R&D Program (No. 2017YFA0402700) of China. Additional funding support for the JCMT is provided by the Science and Technologies Facility Council (UK) and participating universities in the UK and Canada. The LMT is a project operated by the Instituto Nacional de Astrofisica, Optica, y Electronica (Mexico) and the University of Massachusetts at Amherst (USA). The IRAM 30m telescope on Pico Veleta, Spain is operated by IRAM and supported by CNRS (Centre National de la Recherche Scientifique, France), MPG (Max-Planck-Gesellschaft, Germany) and IGN (Instituto Geografico Nacional, Spain). The SMT is operated by the Arizona Radio Observatory, a part of the Steward Observatory of the University of Arizona, with financial support of operations from the State of Arizona and financial support for instrumentation development from the NSF. The SPT is supported by the National Science Foundation through grant PLR-1248097. Partial support is also provided by the NSF Physics Frontier Center grant PHY-1125897 to the Kavli Institute of Cosmological Physics at the University of Chicago, the Kavli Foundation and the Gordon and Betty Moore Foundation grant GBMF 947. The SPT hydrogen maser was provided on loan from the GLT, courtesy of ASIAA. The EHTC has received generous donations of FPGA chips from Xilinx Inc., under the Xilinx University Program. The EHTC has benefited from technology shared under open-source license by the Collaboration for Astronomy Signal Processing and Electronics Research (CASPER). The EHT project is grateful to T4Science and Microsemi for their assistance with Hydrogen Masers. This research has made use of NASA's Astrophysics Data System. We gratefully acknowledge the support provided by the extended staff of the ALMA, both from the inception of the ALMA Phasing Project through the observational campaigns of 2017 and 2018. We would like to thank A. Deller and W. Brisken for EHT-specific support with the use of DiFX. We acknowledge the significance that Maunakea, where the SMA and JCMT EHT stations are located, has for the indigenous Hawaiian people. The software presented in this work makes use of the Numpy (van derWalt et al. 2011), Scipy (Jones et al. 2001), Astropy (Astropy Collaboration 2013, 2018) libraries and the KERN software bundle (Molenaar & Smirnov 2018).
- Published
- 2020
5. ERUPTION TO DOSE: COUPLING A TEPHRA DISPERSAL MODEL WITHIN A PERFORMANCE ASSESSMENT FRAMEWORK
- Author
-
G. N. Keating, J. Pelletier, primary
- Published
- 2005
- Full Text
- View/download PDF
6. Atmospheric Modeling Using Accelerometer Data During Mars Reconnaissance Orbiter Aerobraking Operations
- Author
-
G. M. Keating, Robert H. Tolson, S. Brown, E. Bemis, P. Thomas, K. Zaleski, A. Brickler, S. Hough, Michael D. Scher, and J. Shidner
- Subjects
Spacecraft ,business.industry ,Aerospace Engineering ,Atmosphere of Mars ,Mars Exploration Program ,Atmospheric model ,Accelerometer ,Aerobraking ,law.invention ,Orbiter ,Space and Planetary Science ,law ,Mars Orbiter Laser Altimeter ,Environmental science ,business ,Remote sensing - Abstract
Aerobraking as an enabling technology for the Mars Reconnaissance Orbiter mission was used in numerous analyses based on various data types to maintain the aerobraking time line. Among these data types were measurements from spacecraft accelerometers. This paper reports on the use of accelerometer data for determining atmospheric density during Mars Reconnaissance Orbiter aerobraking operations. Acceleration was measured alongthreeorthogonalaxes,althoughonlydatafromthecomponentalongtheaxisnominallyintothe flowwereused during operations. For a 1-s count time, the root-mean-square noise level was 0:004 mm=s 2 , permitting density recovery to 0:008 kg=km 3 , or about 0.023% of the mean density at periapsis, during aerobraking. Accelerometer data were analyzed in near real time to provide estimates of density, density scale height, orbit-to-orbit variability, latitudinal-seasonalvariations,longitudinalwaves,andotherphenomenainthethermosphere.Summariesaregiven of the aerobraking phase of the mission, the accelerometer data analysis methods and operational procedures, some applications to determining thermospheric properties, correlation with the Mars Global Surveyor and Odyssey missions, and some remaining issues on interpretation of the data.
- Published
- 2008
7. Application of Acclerometer Data to Atmospheric Modeling During Mars Aerobraking Operations
- Author
-
Stephen W. Bougher, G. M. Keating, Robert H. Tolson, Richard W. Zurek, D. C. Fritts, and C. G. Justus
- Subjects
Engineering ,Aeronautics ,Space and Planetary Science ,business.industry ,George (robot) ,Aerospace Engineering ,Mars global surveyor ,Mars Exploration Program ,business ,Archaeology ,Aerobraking - Abstract
R. H. Tolson∗ North Carolina State University, Hampton, Virginia 23666-6147 G. M. Keating George Washington University, Newport News, Virginia 23602 R. W. Zurek Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California 91109-8099 S. W. Bougher University of Michigan, Ann Arbor, Michigan 48109-2143 C. G. Justus Morgan Research Corporation, Huntsville, Alabama 35805-1948 and D. C. Fritts∗∗ NorthWest Research Associates, Inc., Boulder, Colorado 80301
- Published
- 2007
8. The thermosphere of Venus and its exploration by a Venus Express Accelerometer Experiment
- Author
-
G. M. Keating, I.C.F. Müller-Wodarg, and Jeffrey M. Forbes
- Subjects
Atmosphere of Venus ,biology ,Space and Planetary Science ,Global distribution ,Cryosphere ,Astronomy and Astrophysics ,Venus ,Atmospheric drag ,Thermosphere ,Accelerometer ,biology.organism_classification ,Geology ,Astrobiology - Abstract
The forthcoming observations by Venus Express provide an ideal opportunity to comprehensively study the atmosphere of Venus for the first time since Pioneer Venus (1978–1992), and for the first time ever in detail at polar latitudes. This article reviews some of our current knowledge from space and ground-based observations about the upper atmosphere of Venus, such as its thermal structure, the global distribution of gases and dynamics. We discuss the processes most likely responsible for phenomena such as the cold nightside cryosphere, the cloud top superrotation and waves, and highlight outstanding scientific challenges for Venus Express measurements. In particular, we describe an experiment to measure atmospheric drag using the on-board accelerometers.
- Published
- 2006
9. Application of Accelerometer Data to Mars Odyssey Aerobraking and Atmospheric Modeling
- Author
-
Jill L. Hanna, Ben George, Alicia M. Dwyer, Robert H. Tolson, M. R. Werner, G. M. Keating, and Paul Escalera
- Subjects
Atmospheric models ,Aerospace Engineering ,Scale height ,Atmosphere of Mars ,Mars Exploration Program ,Atmospheric model ,Accelerometer ,Exploration of Mars ,Aerobraking ,Acceleration ,Polar vortex ,Space and Planetary Science ,Maximum density ,Environmental science ,Remote sensing - Abstract
Aerobraking was an enabling technology for the Mars Odyssey mission even though it involved risk due primarily to the variability of the Mars upper atmosphere. Consequently, numerous analyses based on various data types were performed during operations to reduce these risk and among these data were measurements from spacecraft accelerometers. This paper reports on the use of accelerometer data for determining atmospheric density during Odyssey aerobraking operations. Acceleration was measured along three orthogonal axes, although only data from the component along the axis nominally into the flow was used during operations. For a one second count time, the RMS noise level varied from 0.07 to 0.5 mm/s2 permitting density recovery to between 0.15 and 1.1 kg per cu km or about 2% of the mean density at periapsis during aerobraking. Accelerometer data were analyzed in near real time to provide estimates of density at periapsis, maximum density, density scale height, latitudinal gradient, longitudinal wave variations and location of the polar vortex. Summaries are given of the aerobraking phase of the mission, the accelerometer data analysis methods and operational procedures, some applications to determining thermospheric properties, and some remaining issues on interpretation of the data. Pre-flight estimates of natural variability based on Mars Global Surveyor accelerometer measurements proved reliable in the mid-latitudes, but overestimated the variability inside the polar vortex.
- Published
- 2005
10. DYNAMO: a Mars upper atmosphere package for investigating solar wind interaction and escape processes, and mapping Martian fields
- Author
-
Jean-Claude Gérard, Jean-André Sauvaud, Jacques Porteneuve, Andrew F. Nagy, Fritz Primdahl, Janet G. Luhmann, Mustapha Meftah, François Leblanc, David L. Mitchell, Eric Chassefière, Sándor Szalai, G. Cerutti-Maori, Sue Smrekar, Sho Sasaki, F. Barlier, Michael E. Purucker, M. Mandea, Karoly Szego, Jean-Jacques Berthelier, Mario H. Acuña, G. Hulot, Thomas H. Zurbuchen, Doris Breuer, Robert Lin, Stephen W. Bougher, G. M. Keating, Michel Parrot, Eric Quémerais, Jean Lilensten, Jean-Pierre Barriot, H. Waite, John Clarke, Christian Malique, Pierre Rochus, François Forget, Jean-Gabriel Trotignon, Stefano Orsini, Jean-Loup Bertaux, Gérard Chanteur, S. Barabash, Bruce M. Jakosky, Henri Rème, Michel Menvielle, P. Touboul, D. T. Young, Service d'aéronomie (SA), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Department of Atmospheric, Oceanic, and Space Sciences [Ann Arbor] (AOSS), University of Michigan [Ann Arbor], University of Michigan System-University of Michigan System, Institut de Physique du Globe de Paris (IPGP), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Université de La Réunion (UR)-Institut de Physique du Globe de Paris (IPG Paris)-Centre National de la Recherche Scientifique (CNRS), Danish Space Research Institute (DSRI), Centre d'étude spatiale des rayonnements (CESR), Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), Space Sciences Laboratory [Berkeley] (SSL), University of California [Berkeley] (UC Berkeley), University of California (UC)-University of California (UC), Swedish Institute of Space Physics [Kiruna] (IRF), Centre d'étude des environnements terrestre et planétaires (CETP), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Southwest Research Institute [San Antonio] (SwRI), Boston University [Boston] (BU), Laboratoire de physique et chimie de l'environnement (LPCE), Institut national des sciences de l'Univers (INSU - CNRS)-Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS), Observatoire de la Côte d'Azur (OCA), Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Météorologie Dynamique (UMR 8539) (LMD), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-École polytechnique (X)-École des Ponts ParisTech (ENPC)-Centre National de la Recherche Scientifique (CNRS)-Département des Géosciences - ENS Paris, École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL), Laboratoire de Planétologie de Grenoble (LPG), Université Joseph Fourier - Grenoble 1 (UJF)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Observatoire Midi-Pyrénées (OMP), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France, NASA Goddard Space Flight Center (GSFC), Institut für Planetologie [Münster], Westfälische Wilhelms-Universität Münster = University of Münster (WWU), Jet Propulsion Laboratory (JPL), NASA-California Institute of Technology (CALTECH), Laboratory for Atmospheric and Space Physics [Boulder] (LASP), University of Colorado [Boulder], The University of Tokyo (UTokyo), The George Washington University (GW), ONERA - The French Aerospace Lab [Châtillon], ONERA-Université Paris Saclay (COmUE), Institut d'Astrophysique et de Géophysique [Liège], Université de Liège, Istituto di Fisica dello Spazio Interplanetario (IFSI), National Research Council of Italy | Consiglio Nazionale delle Ricerche (CNR), Institut Pierre-Simon-Laplace (IPSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-École polytechnique (X)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-IPG PARIS-Université Paris Diderot - Paris 7 (UPD7)-Université de La Réunion (UR)-Centre National de la Recherche Scientifique (CNRS), Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées, University of California [Berkeley], University of California-University of California, Université d'Orléans (UO)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Département des Géosciences - ENS Paris, École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-École des Ponts ParisTech (ENPC)-École polytechnique (X)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC), Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD), Westfälische Wilhelms-Universität Münster (WWU), California Institute of Technology (CALTECH)-NASA, and Consiglio Nazionale delle Ricerche (CNR)
- Subjects
Atmospheric Science ,010504 meteorology & atmospheric sciences ,Mars ,Aerospace Engineering ,Magnetosphere ,7. Clean energy ,01 natural sciences ,Astrobiology ,0103 physical sciences ,Gravity field ,Upper atmosphere ,Mercury's magnetic field ,010303 astronomy & astrophysics ,0105 earth and related environmental sciences ,Martian ,Atmospheric escape ,Astronomy and Astrophysics ,Mars Exploration Program ,Solar wind ,Escape ,Magnetic field ,Geophysics ,[SDU]Sciences of the Universe [physics] ,13. Climate action ,Space and Planetary Science ,Physics::Space Physics ,General Earth and Planetary Sciences ,Timekeeping on Mars ,Astrophysics::Earth and Planetary Astrophysics ,Thermosphere ,Geology - Abstract
International audience; DYNAMO is a small multi-instrument payload aimed at characterizing current atmospheric escape, which is still poorly constrained, and improving gravity and magnetic field representations, in order to better understand the magnetic, geologic and thermal history of Mars. The internal structure and evolution of Mars is thought to have influenced climate evolution. The collapse of the primitive magnetosphere early in Mars history could have enhanced atmospheric escape and favored transition to the present arid climate. These objectives are achieved by using a low periapsis orbit. DYNAMO has been proposed in response to the AO released in February 2002 for instruments to be flown as a complementary payload onboard the CNES Orbiter to Mars (MO-07), foreseen to be launched in 2007 in the framework of the French PREMIER Mars exploration program. MO-07 orbital phase 2b (with an elliptical orbit of periapsis 170 km), and in a lesser extent 2a, offers an unprecedented opportunity to investigate by in situ probing the chemical and dynamical properties of the deep ionosphere, thermosphere, and the interaction between the atmosphere and the solar wind, and therefore the present atmospheric escape rate. Ultraviolet remote sensing is an essential complement to characterize high, tenuous, layers of the atmosphere. One Martian year of operation, with about 5,000 low passes, should allow DYNAMO to map in great detail the residual magnetic field, together with the gravity field. Additional data on the internal structure will be obtained by mapping the electric conductivity, sinergistically with the NETLANDER magnetic data. Three options have been recommended by the International Science and Technical Review Board (ISTRB), who met on July 1st and 2nd, 2002. One of them is centered on DYNAMO. The final choice, which should be made before the end of 2002, will depend on available funding resources at CNES.
- Published
- 2004
11. Nonmigrating tides in the thermosphere of Mars: a quasi-empirical description
- Author
-
Jeffrey M. Forbes, M. Angelats i Coll, Xiaoli Zhang, and G. M. Keating
- Subjects
Atmospheric Science ,Aerospace Engineering ,Astronomy and Astrophysics ,Mars Exploration Program ,Geophysics ,Atmospheric sciences ,Aerobraking ,Latitude ,Atmosphere ,Amplitude ,Space and Planetary Science ,General Earth and Planetary Sciences ,Wavenumber ,Satellite ,Thermosphere ,Geology - Abstract
A methodology is proposed for using sparsely-distributed data to calibrate physics-based tidal functions, that can then be used to reconstruct global wind, temperature and density patterns associated with diurnal and semidiurnal tides throughout Mars’ upper atmosphere (i.e., 25–200 km). The functions, called Hough Mode Extensions, maintain self-consistent internal relationships between winds, densities and temperatures, and account for changes in vertical and latitudinal shape within the dissipative thermosphere. In the present work, total mass densities from the Mars Global Surveyor accelerometer experiment during Phases I and II of aerobraking are separated into zonal wavenumber components ( k s ) viewed from the satellite reference frame. Fits are performed to two of the wavenumber components to illustrate how the technique works, and to provide insight into its potential for analysing more comprehensive datasets anticipated for the future. Results indicate Phase-II wind and temperature amplitudes for the eastward-propagating diurnal tide with s = −1( k s = 2) to be of order 10–40 ms −1 (eastward) and 2–10 K, maximizing in the equatorial region above 120 km. Similar values are found for the westward-propagating semidiurnal tide with s = 1 ( k s = 1) during Phase I at polar latitudes, a wave that is identified for the first time in MGS aerobraking data. This is the same oscillation that appears prominently in the terrestrial lower thermosphere over south pole, and is thought to be excited by nonlinear interaction between the terrestrial migrating semidiurnal tide and the stationary planetary wave with s = 1. The above wind and temperature estimates must be viewed as preliminary, however, as more data are required to more definitively constrain the fits.
- Published
- 2004
12. The effects of topographically-controlled thermal tides in the martian upper atmosphere as seen by the MGS accelerometer
- Author
-
Stephen W. Bougher, G. M. Keating, and Paul Withers
- Subjects
Martian ,Northern Hemisphere ,Astronomy and Astrophysics ,Atmosphere of Mars ,Atmospheric sciences ,Physics::Geophysics ,Latitude ,Atmosphere ,Amplitude ,Altitude ,Space and Planetary Science ,Physics::Space Physics ,Astrophysics::Earth and Planetary Astrophysics ,Longitude ,Astrophysics::Galaxy Astrophysics ,Physics::Atmospheric and Oceanic Physics ,Geology - Abstract
Mars Global Surveyor accelerometer observations of the martian upper atmosphere revealed large variations in density with longitude during northern hemisphere spring at altitudes of 130–160 km, all latitudes, and mid-afternoon local solar times (LSTs). This zonal structure is due to tides from the surface. The zonal structure is stable on timescales of weeks, decays with increasing altitude above 130 km, and is dominated by wave-3 (average amplitude 22% of mean density) and wave-2 (18%) harmonics. The phases of these harmonics are constant with both altitude and latitude, though their amplitudes change significantly with latitude. Near the South Pole, the phase of the wave-2 harmonic changes by 90° with a change of half a martian solar day while the wave-3 phase stays constant, suggesting diurnal and semidiurnal behaviour, respectively. We use a simple application of classical tidal theory to identify the dominant tidal modes and obtain results consistent with those of General Circulation Models. Our method is less rigorous, but simpler, than the General Circulation Models and hence complements them. Topography has a strong influence on the zonal structure.
- Published
- 2003
13. The Failure of E-Commerce Businesses: A Surprise or Not?
- Author
-
Bryan G. Martin-Keating, David S. Evans, and Daniel D. Garcia Swartz
- Subjects
ComputingMilieux_THECOMPUTINGPROFESSION ,Short run ,business.industry ,Information technology ,E-commerce ,Venture capital ,Human capital ,A share ,Financial capital ,Political Science and International Relations ,Business ,New economy ,Business and International Management ,Marketing ,Law - Abstract
Only a couple years ago various analysts were hailing the arrival of a radically new economy fueled by the expansion of information technology and focused on the Internet. New Internet-based businesses were coming to life every day, attracting some of the best human capital available – both new MBA's fresh out of school and seasoned managers from management consulting firms and the so-called “old-economy” companies. Since in the very short run the supply of talent is fixed, salaries for these talented individuals skyrocketed under the influence of this explosion in demand. A few of the established companies and management consulting firms even set up so-called e-business incubators in an attempt to stop the exodus of talent. They also invested in the development of these e-businesses with the hope of getting a share of returns that were expected to be phenomenal. Furthermore, financial capital flowed to e-business not only directly through these incubators but also from many venture capital firms and private investors.
- Published
- 2002
14. Caspofungin
- Author
-
G M, Keating and B, Jarvis
- Subjects
Antifungal Agents ,Fever ,Vomiting ,Candidiasis ,Nausea ,Peptides, Cyclic ,Anti-Bacterial Agents ,Echinocandins ,Lipopeptides ,Treatment Outcome ,Caspofungin ,Aspergillosis ,Humans ,Pharmacology (medical) ,Infusions, Intravenous ,Peptides ,Randomized Controlled Trials as Topic - Abstract
Caspofungin is the first in a new class of antifungal agents, the glucan synthesis inhibitors, that interfere with fungal cell wall synthesis. Caspofungin exhibited in vitro and in vivo efficacy against a wide range of fungi and yeasts including Aspergillus and Candida species. A complete or partial response to caspofungin therapy was seen in 40.7% of immunocompromised adults with invasive aspergillosis who did not respond to, or did not tolerate, other antifungal agents in a noncomparative multicentre study. Caspofungin was effective in patients with oropharyngeal or oesophageal candidiasis, according to the preliminary results of 2 randomised double-blind trials. Caspofungin was generally well tolerated in a multicentre noncomparative trial involving patients with invasive aspergillosis. One or more drug-related clinical adverse effects were experienced by 13.8% of caspofungin recipients (the most common were fever, nausea, vomiting and complications associated with the vein into which caspofungin was infused). The tolerability of caspofungin appeared to be better than that of amphotericin B and similar to that of fluconazole in double-blind, randomised trials involving patients with mucosal candidiasis.
- Published
- 2001
15. Evidence of long term global decline in the Earth's thermospheric densities apparently related to anthropogenic effects
- Author
-
R. H. Tolson, G. M. Keating, and M. S. Bradford
- Subjects
Solar minimum ,Global change ,Atmospheric sciences ,Orbital decay ,Atmosphere ,chemistry.chemical_compound ,Geophysics ,Altitude ,chemistry ,Greenhouse gas ,Physics::Space Physics ,Carbon dioxide ,General Earth and Planetary Sciences ,Environmental science ,Astrophysics::Earth and Planetary Astrophysics ,Thermosphere ,Physics::Atmospheric and Oceanic Physics - Abstract
A study was performed of the long-term orbital decay of five Earth satellites with perigee altitudes averaging near 350km. To decouple long-term trend measurements from the effects of solar variability, measurements were evaluated during the years of solar minimum (1976, 1986 and 1996). Atmospheric densities derived from these essentially global measurements showed substantial evidence of a decline averaging 9.8 ± 2.5% in thermospheric density over 20 years pointing toward a long-term cooling of the upper atmosphere. Increases in greenhouse gases induced by human activity are hypothesized to warm the Earth's surface and lower atmosphere, but strongly cool the upper atmosphere. Assuming that the 10% increase in CO2 over these 20 years caused cooling resulting in the 10% decline in density, a doubling of CO2 could cause the thermospheric densities measured near 350km to decrease by a factor of 3. This decrease may shrink the altitude of a constant density surface by 40km before the end of the 21st century.
- Published
- 2000
16. Mars Global Surveyor aerobraking: Atmospheric trends and model interpretation
- Author
-
Jeffery L. Hollingsworth, James R. Murphy, Robert M. Haberle, R. T. Clancy, Richard W. Zurek, Stephen W. Bougher, and G. M. Keating
- Subjects
Atmospheric Science ,Spacecraft ,business.industry ,Aerospace Engineering ,Astronomy and Astrophysics ,Mars Exploration Program ,Atmospheric sciences ,Aerobraking ,Atmosphere ,Geophysics ,Space and Planetary Science ,Local time ,Orbit (dynamics) ,Precession ,General Earth and Planetary Sciences ,Environmental science ,Thermosphere ,business - Abstract
Mars Global Surveyor (MGS) recently obtained coordinated lower-atmosphere (thermal and dust) measurements and simultaneous upper atmosphere accelerometer data (densities, scale heights and temperatures) for the purpose of safely aerobraking the spacecraft toward its mapping orbit (Keating et al. 1998). Much useful scientific information was also gleaned that describes the coupling of these atmospheric regions during this Phase I aerobraking period (September 1997–March 1998; Ls = 184–300). The major features of this aerobraking data are presented, and its trends elucidated in order to: (1) illustrate the aerobraking environment experienced by the spacecraft, and (2) decompose the processes responsible for the atmospheric variations observed. Coupled general circulation models of the Mars lower and upper atmospheres are exercised to investigate the solar-orbital, seasonal, wave, and dust variations observed during MGS aerobraking. The precession of the MGS periapsis position during Phase I permits longitudinal, latitudinal, local time, and vertical variations of the thermosphere to be monitored. Future aerobraking activities at Mars will benefit greatly from this MGS aerobraking data and its model interpretation.
- Published
- 1999
17. The Structure of the Upper Atmosphere of Mars: In Situ Accelerometer Measurements from Mars Global Surveyor
- Author
-
R. W. Shane, John C. Pearl, Manoj Joshi, R. T. Clancy, Richard W. Zurek, James R. Murphy, C. W. Whetzel, J. S. Parker, R. G. Wilmoth, Pasquale Esposito, G. M. Keating, Jeffery L. Hollingsworth, M. D. Johnston, Didier F. Rault, Torge Martin, Robert C. Blanchard, George J. Cancro, Robert M. Haberle, T. J. Schellenberg, C. G. Justus, J. M. Babicke, Stephen W. Bougher, S. N. Noll, R. H. Tolson, Barney J. Conrath, M. D. Smith, D. T. Lyons, and B. L. Wilkerson
- Subjects
Atmosphere ,Mars general circulation model ,Multidisciplinary ,Altitude ,Dust storm ,Planet ,Atmosphere of Mars ,Atmospheric sciences ,Southern Hemisphere ,Geology ,Latitude - Abstract
The Mars Global Surveyor (MGS) z -axis accelerometer has obtained over 200 vertical structures of thermospheric density, temperature, and pressure, ranging from 110 to 170 kilometers, compared to only three previous such vertical structures. In November 1997, a regional dust storm in the Southern Hemisphere triggered an unexpectedly large thermospheric response at mid-northern latitudes, increasing the altitude of thermospheric pressure surfaces there by as much as 8 kilometers and indicating a strong global thermospheric response to a regional dust storm. Throughout the MGS mission, thermospheric density bulges have been detected on opposite sides of the planet near 90°E and 90°W, in the vicinity of maximum terrain heights. This wave 2 pattern may be caused by topographically-forced planetary waves propagating up from the lower atmosphere.
- Published
- 1998
18. Retrospective Review of Rapid Pediatric Brain MR Imaging at an Academic Institution Including Practice Trends and Factors Affecting Scan Times
- Author
-
Blake D. Niederhauser, G. F. Keating, K. M. Welker, Laurence J. Eckel, David F. Kallmes, E. M. Broomall, Kara M. Schwartz, Christopher H. Hunt, Felix E. Diehn, Nicholas M. Wetjen, and Robert J. McDonald
- Subjects
medicine.medical_specialty ,Pediatrics ,Time Factors ,Sedation ,Minnesota ,Academic practice ,Workload ,Radiation Dosage ,Sensitivity and Specificity ,Academic institution ,Radiation Protection ,Risk Factors ,medicine ,Prevalence ,Humans ,Radiology, Nuclear Medicine and imaging ,Medical physics ,Practice Patterns, Physicians' ,Retrospective Studies ,Retrospective review ,Academic Medical Centers ,business.industry ,Brain ,Infant ,Reproducibility of Results ,medicine.disease ,Mr imaging ,Magnetic Resonance Imaging ,Hydrocephalus ,Radiation exposure ,Pediatric brain ,Neurology (clinical) ,medicine.symptom ,business - Abstract
BACKGROUND AND PURPOSE: In an effort to reduce radiation exposure in children requiring regular follow up for shunted hydrocephalus, our institution implemented a rapid brain MR imaging protocol. The purpose of this study was to review an academic practice experience with pediatric rapid brain MR imaging without patient sedation in the evaluation of hydrocephalus and a limited group of other conditions. MATERIALS AND METHODS: We retrospectively analyzed limited-sequence, rapid brain MR imaging scans performed in nonsedated patients younger than 14 years between April 2009 and December 2011. So-called failed examinations were determined by consensus of 2 authors as insufficiently diagnostic for evaluation of ventricular size. CT and MR imaging quarterly volumes for hydrocephalus-related indications were determined from 2005–2012. Multivariable logistic regression analysis was performed to elucidate factors potentially affecting scan durations including examination indication and patient age, sex, inpatient status, and clinical conditions. RESULTS: A total of 398 examinations were performed on 168 patients (103 boys, 65 girls; median age, 13 months). None were deemed to be failed examinations. Median scan duration was 4.43 minutes (interquartile range, 4.42 minutes-5.88 minutes; SD, 2.42 minutes). Examination indication of altered mental status was the only factor associated with increased scan duration (+1.77 minutes; P = .0021). Hydrocephalus-related imaging volumes approximately doubled in the 7 years reviewed, but rapid MR imaging introduced in 2009 is quickly replacing CT scanning for these indications, accounting for nearly 7 of every 8 examinations at the end of the study period. CONCLUSIONS: In every case of initial work-up and follow-up, rapid brain MR imaging effectively evaluated ventricular size and/or intracranial fluid and represents a viable alternative to CT scanning, irrespective of a child's age or clinical condition. For this indication and patient group, MR imaging is now the predominant imaging method in our practice.
- Published
- 2013
19. Optical transmission properties of a square cross-section U Rod refractometer
- Author
-
R.T. Rakowski, G. de Keating-Hart, Y. Gao, and Barry E. Jones
- Subjects
Total internal reflection ,Engineering ,business.industry ,Applied Mathematics ,Beverage industry ,Skew ,Linearity ,Condensed Matter Physics ,Square (algebra) ,Optics ,Refractometer ,Electrical and Electronic Engineering ,business ,Instrumentation ,Refractive index ,Intensity (heat transfer) - Abstract
A novel square cross-section U Rod refractometer has shown the potential for providing a simple and cheap sensor for use in the food processing industries. The design parameters can be optimised for accuracy of refractive index measurement and linearity. The transmission properties of the optical rays, especially non-parallel rays in the vertical and horizontal planes, as well as the more general skew rays, are discussed in this paper. Computer calculation results show that the linearity is well maintained even for non-parallel rays. Multiple reflections in the U Rod overcome the non-linear influence of non-total internal reflection and preserve output intensity linearity. Techniques to improve the accuracy of the U Rod even further are suggested.
- Published
- 1996
20. RADIOLOGY
- Author
-
S. Bluml, A. Panigrahy, M. Laskov, G. Dhall, M. D. Nelson, J. L. Finlay, F. H. Gilles, H. Arita, M. Kinoshita, N. Kagawa, Y. Fujimoto, N. Hashimoto, T. Yoshimine, J. D. Hamilton, J. Wang, V. A. Levin, P. Hou, M. E. Loghin, M. R. Gilbert, N. E. Leeds, J. F. deGroot, V. Puduvalli, E. F. Jackson, W. K. A. Yung, A. J. Kumar, B. M. Ellingson, T. F. Cloughesy, W. B. Pope, T. Zaw, H. Phillips, S. Lalezari, P. L. Nghiemphu, H. Ibrahim, K. Motevalibashinaeini, A. Lai, R. Harris, L. Douw, M. E. Van de Nieuwenhuijzen, J. J. Heimans, J. C. Baayen, C. J. Stam, J. C. Reijneveld, C. Juhasz, S. Mittal, D. Altinok, N. L. Robinette, O. Muzik, P. K. Chakraborty, G. R. Barger, T. M. Zaw, J. Goldin, W. Chen, M. A. Ahlman, P. Giglio, T. J. Kaufmann, S. K. Anderson, K. A. Jaeckle, J. H. Uhm, D. W. Northfelt, P. J. Flynn, J. C. Buckner, E. Galanis, O. Zalatimo, C. Weston, D. Allison, D. Bota, S. Kesari, M. Glantz, J. Sheehan, R. E. Harbaugh, Y. Chiba, A. Tsuboi, J. Hatazawa, H. Sugiyama, T. Nariai, J. Toyohara, Y. Tanaka, M. Inaji, M. Aoyagi, M. Yamamoto, K. Ishiwara, K. Ohno, L. Jalilian, E. Essock-Burns, S. Cha, S. Chang, M. Prados, N. Butowski, S. Nelson, Y. Kawahara, M. Nakada, Y. Hayashi, Y. Kai, N. Uchiyama, J.-i. Kuratsu, J.-i. Hamada, K. Yeom, J. Rosenberg, J. B. Andre, P. G. Fisher, M. S. Edwards, P. D. Barnes, S. Partap, J. M. Lupo, J. C. Crane, S. M. Chang, S. J. Nelson, C. A. Romanowski, N. Hoggard, D. A. Jellinek, S. Clenton, F. McKevitt, S. Wharton, I. Craven, A. Buller, C. Waddle, J. Bigley, I. D. Wilkinson, P. Metherall, L. J. Eckel, G. F. Keating, N. M. Wetjen, C. Giannini, C. Wetmore, R. Jain, J. Narang, A. S. Arbab, L. Schultz, L. Scarpace, T. Mikkelsen, A. Babajni-Feremi, L. Poisson, D. Gutman, C. Jaffe, J. Saltz, A. Flanders, B. Daniel, L. Zach, D. Guez, D. Last, D. Daniels, C. Hoffman, Y. Mardor, N. Guha-Thakurta, J. M. Debnam, C. Kotsarini, D. Jellinek, P. D. Griffiths, N. Khandanpour, P. Bambrough, S. Prabhu, R. L. Bassett, W. A. Yung, C. J. Campen, S. Soman, K. W. Yeom, M. J. Vos, J. Berkhof, T. J. Postma, E. Sanchez, E. M. Sizoo, F. J. Lagerwaard, J. Buter, D. P. Noske, R. R. Colen, B. Mahajan, F. A. Jolesz, P. O. Zinn, A. Molinaro, K. Lawton, D. Alexandru, M. E. Linskey, M. M. Chaumeil, B. Gini, H. Yang, A. Iwanami, S. Subramanian, T. Ozawa, E. J. Read, R. O. Pieper, P. Mischel, C. D. James, S. M. Ronen, P. S. LaViolette, E. Cochran, M. Al-Gizawiy, J. M. Connelly, M. G. Malkin, S. D. Rand, W. M. Mueller, K. M. Schmainda, A. D. Cohen, M. Prah, C. J. Hartman, X. J. Qiao, R. He, M. Brown, and T. Cloughesy
- Subjects
Cancer Research ,Abstracts ,Oncology ,Neurology (clinical) - Published
- 2011
21. Publisher’s Note: Demonstration of Ignition Radiation Temperatures in Indirect-Drive Inertial Confinement Fusion Hohlraums [Phys. Rev. Lett.106, 085004 (2011)]
- Author
-
B. L. Pepmeier, D. L. Hodtwalker, B. V. Beeman, J. D. Hollis, P. S. Yang, S. A. Silva, M. J. Richardson, J. L. Vaher, K. Gu, B. N. M. Balaoing, J. E. Krammen, P. J. van Arsdall, N. I. Spafford, M. M. Montoya, M. A. Jackson, F. W. Chambers, J. Grippen, M. Neto, P. H. Gschweng, J. D. Moody, C. A. Haynam, S. Huber, A. P. Ludwigsen, E T Alger, G. M. Curnow, J. Watkins, J. C. Ellefson, S. Sailors, B. McHale, L. F. Alvarez, H. Chandrasekaran, T. E. Mills, Cliff Thomas, P. L. Stratton, R. Zacharias, J. D. Hitchcock, P. M. Bell, J. F. Meeker, E. L. Dewald, R. K. Butlin, T. G. Stone, K. P. Youngblood, Mark W. Bowers, M. Runkel, E. Padilla, M. W. Owens, S. S. Alvarez, J. G. Soto, L. J. Atherton, J. McBride, W. A. Reid, M. Y. Mauvais, G. Heestand, O. D. Edwards, S. W. Lane, A. A. Marsh, T. N. Malsbury, S. R. Robison, P. M. Danforth, J. D. Kilkenny, J. A. Baltz, M. J. Dailey, R. C. Montesanti, J. D. Driscoll, B. J. MacGowan, M. K. Shiflett, Donald F. Browning, F. J. Lopez, C. R. Gibson, F. E. Wade, R. Darbee, Mark R. Hermann, B Fishler, Y. Chen, Edward I. Moses, G. A. Kyrala, R. D. Demaret, J. G. Lown, M. D. Magat, S. Azevedo, G. Erbert, R. K. Kirkwood, K. Charron, Harry B. Radousky, R. T. Shelton, M. E. Sheldrick, R. R. Lyons, C. T. Warren, Paul J. Wegner, P. V. Amick, B. Johnson, G. Hermes, K. M. Morriston, G. A. Keating, T. G. Parham, K. S. Andersson, G. Ross, C. H. Ellerbee, D. A. Callahan, A. S. Rivenes, C. B. Foxworthy, M. C. Johnson, R. Miramontes-Ortiz, P. T. Springer, P. Datte, T. Kohut, J. Neumann, A. J. van Prooyen, C. Thai, M. J. Edwards, K. Work, Tilo Döppner, K. D. Pletcher, G. Frieder, D. S. Hey, T. Ma, A. J. Churby, I. L. Maslennikov, M. C. Witte, Siegfried Glenzer, G. J. Mauger, B. E. Smith, Suhas Bhandarkar, S. C. Burkhart, Joseph Ralph, T. J. Clancy, E. Ng, Thomas J. Johnson, K. L. Griffin, Rolf K. Reed, J. Braucht, R. Rinnert, J.M.Fisher, J. M. Di Nicola, N. Lao, A. L. Throop, S. Hunter, R. L. Rampke, Nathan Meezan, D. A. Barker, Otto Landen, Mark Eckart, M. A. Bergonia, K. N. La Fortune, J. R. Kimbrough, T. R. Huppler, R. A. London, G. L. Tietbohl, J. J. Rhodes, Christoph Niemann, Richard Town, W. J. Fabyan, Joseph W. Carlson, K. M. Skulina, G. Pavel, T. W. Phillips, B. D. Cline, R. G. Hartley, R. J. Wallace, T. L. Lee, C. C. Widmayer, Steven H. Langer, L. F. Finnie, J. Morris, G. T. Villanueva, S. W. Kramer, L. K. Smith, J. W. Florio, D. Pigg, J. L. Vickers, A. S. Runtal, F. E. Coffield, D. G. Cocherell, Pamela K. Whitman, S. Le Pape, Michael Stadermann, E. A. Stout, J. Liebman, V. K. Lakamsani, D. K. Bradley, J. A. Borgman, D. G. Mathisen, M. D. Vergino, P. A. Arnold, Kenneth S. Jancaitis, M. D. Rosen, Jeremy Kroll, J. Dugorepec, M. F. Swisher, J. M. Tillman, D. Pendleton, D. E. Speck, E. Mertens, K. King, Q. M. Ngo, G. Bardsley, E. A. Tekle, R. Costa, Robert L. Kauffman, D. T. Boyle, J. E. Hamblen, D. M. Lord, B. L. Lechleiter, M.S.Hutton, T. Fung, J. R. Schaffer, E. M. Giraldez, S. N. Dixit, John R. Celeste, Laurent Divol, L. C. Clowdus, B. K. Young, D. Trummer, H. Gonzales, B. P. Golick, D. T. Maloy, J. P. Holder, Wendi Sweet, S. R. Marshall, G. J. Edwards, Sally Andrews, G. A. Deis, L. J. Bernardez, D. Larson, L. L. Silva, A. McGrew, G Brunton, S. M. Glenn, Alexander Thomas, Jay D. Salmonson, R. E. Olson, C. M. Estes, Wade H. Williams, K. G. Koka, A. I. Barnes, M. A. Vitalich, A. Y. Chakicherla, J. L. Reynolds, B. Haid, J. T. Salmon, L. V. Berzins, O. S. Jones, B. A. Wilson, M. G. Miller, L. M. Kegelmeyer, Mark J. Schmitt, E. J. Bond, D. R. Bopp, G. T. Lau, N. W. Lum, Kevin S. White, J. T. Fink, D. R. Hart, Marilyn Schneider, F. Stanley, D. B. Dobson, F. Barbosa, L. J. Suter, M. Shor, A. V. Hamza, D. L. Hardy, T. McCarville, D. L. Hipple, C. J. Roberts, P. W. Edwards, R. W. Patterson, Ronald B. Robinson, J. B. Tassano, B. S. Raimondi, S. R. Hahn, G. Gururangan, P. C. Dupuy, R. L. Hibbard, J. R. Nelson, D. A. Smauley, M. J. Fischer, J. H. Kamperschroer, G. Holtmeier, Andrew MacPhee, E. A. Williams, P. A. Adams, K. G. Krauter, Jose Milovich, Stephen P. Vernon, L. J. Lagin, G. N. Gawinski, J. S. Taylor, G. Antonini, M. P. Johnston, M. C. Valadez, M. A. Weingart, S. L. Edson, John Kline, S. M. Gross, A. Baron, J. D. Tappero, N. L. Orsi, J. A. Davis, J. Klingmann, N. J. Cahayag, Carlos E. Castro, J. D. Lindl, A. T. Rivera, L. R. Belk, S. L. Kenitzer, J. Duncan, K. E. Burns, A. L. Solomon, R. C. Bettenhausen, B. M. Van Wonterghem, S. P. Rogers, R G Beeler, D. Latray, H. K. Loey, T. M. Pannell, B. Felker, T. Frazier, V. Rekow, P. G. Zapata, A. J. Mackinnon, R. W. Carey, P. S. Cardinale, J. Jackson, John Moody, S. Burns, L. Willis, J. L. Bragg, D. E. Petersen, E. G. Dzenitis, D. R. Jedlovec, J. R. Cox, D. E. Hinkel, J. A. Robinson, John R. Bower, E. O. Vergel de Dios, B. A. Hammel, L. M. Burrows, Daniel H. Kalantar, Klaus Widmann, M. J. Christensen, R. Prasad, A. L. Warrick, K. Wilhelmsen, R. Chapman, O. R. Rodriguez, A. W. Huey, B. L. Olejniczak, G. W. Krauter, S. W. Haan, Claire Bishop, H. Zhang, J. B. Alfonso, J. H. Truong, S. Weaver, K. S. Segraves, S. Sommer, J. C. Bell, Y. Lee, S. Shiromizu, R. Saunders, R. N. Fallejo, K. Piston, J. Wen, R. M. Marquez, K. L. Tribbey, S. A. Gonzales, P. Di Nicola, R. M. Franks, A. Nikroo, G. A. Bowers, J. B. McCloud, K. A. Moreno, Nobuhiko Izumi, S. F. Locke, S. A. Vonhof, E. F. Wilson, M. D. Finney, D. P. Atkinson, Damien Hicks, R. Lowe-Webb, R. A. Sacks, B. Riordan, M. Fedorov, A. B. Langdon, Z. Alherz, D. N. Hulsey, E. K. Krieger, S. J. Cohen, T. M. Schindler, B. Burr, J. S. Merill, C. Powell, Pierre Michel, J. S. Zielinski, M. J. Gonzales, C. Marshall, Richard Berger, C. Chan, J. Li, S. L. Townsend, L. Auyang, F. A. Penko, A. D. Casey, C. Chang, D. L. Brinkerhoff, K. M. Knittel, R. J. Strauser, G. Markham, and M. J. Shaw
- Subjects
Nuclear physics ,Physics ,Ignition system ,Hohlraum ,law ,General Physics and Astronomy ,Plasma confinement ,Magnetic confinement fusion ,Plasma ,Atomic physics ,Radiation ,Inertial confinement fusion ,law.invention - Published
- 2011
22. Demonstration of Ignition Radiation Temperatures in Indirect-Drive Inertial Confinement Fusion Hohlraums
- Author
-
L. V. Berzins, L. M. Kegelmeyer, D. R. Hart, L. J. Suter, M. Shor, Ronald B. Robinson, S. S. Alvarez, G. Gururangan, Robert L. Kauffman, C. T. Warren, R. Darbee, Andrew MacPhee, J. R. Nelson, D. A. Smauley, M. J. Fischer, K. S. Andersson, D. A. Callahan, L. J. Atherton, D. S. Hey, J. D. Kilkenny, T. Ma, J. H. Kamperschroer, T. Frazier, T. J. Clancy, E. A. Williams, P. A. Adams, C. Thai, Laurent Divol, G. J. Edwards, Suhas Bhandarkar, K. Work, M. D. Magat, S. Hunter, Stephen P. Vernon, T. L. Lee, Rolf K. Reed, J.M.Fisher, O. S. Jones, D. Trummer, G. N. Gawinski, G. Antonini, M. P. Johnston, A. J. Mackinnon, M. E. Sheldrick, T. R. Huppler, B. A. Wilson, J. P. Holder, P. L. Stratton, Yiping Chen, J. Jackson, S. Sailors, John Moody, Mark J. Schmitt, L. K. Smith, R. G. Hartley, E. J. Bond, P. Datte, S. Burns, B. McHale, G. Bardsley, D. T. Boyle, D. R. Bopp, E. L. Dewald, J. E. Hamblen, L. Willis, K. G. Krauter, J. R. Schaffer, D. G. Mathisen, M. D. Rosen, J. Morris, M.S.Hutton, G. T. Lau, N. W. Lum, G. Hermes, G. A. Deis, K. N. La Fortune, M. C. Johnson, J. Neumann, C. C. Widmayer, Steven H. Langer, L. F. Finnie, M. C. Witte, K. King, Michael Stadermann, E. A. Stout, M. G. Miller, Wendi Sweet, T. G. Stone, E. A. Tekle, P. M. Danforth, H. Chandrasekaran, D. Larson, M. F. Swisher, J. T. Fink, G. Frieder, L. Bezerides, Kenneth S. Jancaitis, A. L. Throop, B. L. Lechleiter, S. N. Dixit, Kevin S. White, C. Chang, M. K. Shiflett, G. A. Kyrala, F. Stanley, J. Braucht, John Kline, S. M. Gross, A. Baron, R G Beeler, S. Azevedo, R. A. London, T. E. Mills, G Brunton, Marilyn Schneider, M. J. Dailey, R. C. Montesanti, J. Dugorepec, A. J. Churby, I. L. Maslennikov, D. Latray, F. Barbosa, P. A. Arnold, A. A. Marsh, J. J. Rhodes, G. L. Tietbohl, Alexander Thomas, D. B. Dobson, J. M. Tillman, L. L. Silva, G. Erbert, D. A. Barker, R. D. Demaret, J. A. Davis, S. M. Glenn, J. Klingmann, Edward I. Moses, T. M. Pannell, R. T. Shelton, J. M. Di Nicola, N. J. Cahayag, T. Fung, R. L. Rampke, S. Le Pape, Jay D. Salmonson, G. Ross, R. E. Olson, E. Mertens, J. D. Lindl, J. G. Lown, C. M. Estes, A. T. Rivera, Mark W. Bowers, M. Runkel, F. E. Coffield, Wade H. Williams, K. G. Koka, B. A. Hammel, L. M. Burrows, A. S. Rivenes, Daniel H. Kalantar, M. A. Vitalich, M. Y. Mauvais, D. G. Cocherell, J. Grippen, P. V. Amick, B. K. Young, J. G. Soto, A. McGrew, M. J. Edwards, Tilo Döppner, M. J. Christensen, Jeremy Kroll, J. L. Vaher, C. H. Ellerbee, T. N. Malsbury, C. A. Haynam, B. Haid, J. T. Salmon, A. J. van Prooyen, A. L. Warrick, R. Costa, A. V. Hamza, T. G. Parham, C. R. Gibson, S. A. Silva, D. Pendlton, A. W. Huey, P. M. Bell, K. P. Youngblood, B. N. M. Balaoing, Joseph Ralph, R. Rinnert, B Fishler, D. L. Hardy, K. D. Pletcher, J. Liebman, R. K. Butlin, B. Johnson, T. McCarville, L. C. Clowdus, Otto Landen, V. K. Lakamsani, B. P. Golick, F. W. Chambers, D. T. Maloy, D. L. Hipple, C. B. Foxworthy, O. D. Edwards, C. J. Roberts, T. Zaleski, S. C. Burkhart, Thomas J. Johnson, N. Lao, S. R. Marshall, J. A. Baltz, D. E. Speck, R. Miramontes, J. E. Krammen, P. J. van Arsdall, M. A. Bergonia, K. M. Skulina, R. J. Strausser, K. M. Knittel, Siegfried Glenzer, G. J. Mauger, B. E. Smith, Sally Andrews, G. Heestand, P. W. Edwards, E. M. Giraldez, John R. Celeste, N. I. Spafford, R. W. Patterson, J. Watkins, J. B. Tassano, J. C. Ellefson, B. S. Raimondi, Christoph Niemann, M. M. Montoya, M. A. Jackson, T. W. Phillips, H. Gonzales, E. Ng, Mark Eckart, D. M. Lord, S. R. Hahn, L. J. Bernardez, B. D. Cline, A. Forsman, J. W. Florio, D. Pigg, Donald F. Browning, J. L. Vickers, K. M. Morriston, G. A. Keating, G. Pavel, P. C. Dupuy, A. S. Runtal, R. L. Hibbard, P. T. Springer, T. Kohut, B. L. Pepmeier, Richard Town, W. J. Fabyan, S. Huber, A. P. Ludwigsen, G. Holtmeier, D. L. Hodtwalker, M. Neto, P. H. Gschweng, J. D. Moody, K. L. Griffin, B. V. Beeman, J. D. Hollis, E T Alger, G. M. Curnow, P. S. Yang, E. Padilla, M. W. Owens, M. J. Richardson, S. R. Robison, K. Gu, F. J. Lopez, G. Markham, M. J. Shaw, F. E. Wade, R. K. Kirkwood, Pamela K. Whitman, Cliff Thomas, L. F. Alvarez, D. K. Bradley, J. F. Meeker, J. A. Borgman, M. D. Vergino, J. McBride, W. A. Reid, D. E. Petersen, J. S. Taylor, G. T. Villanueva, M. C. Valadez, D. E. Hinkel, M. A. Weingart, K. Charron, S. W. Kramer, R. R. Lyons, S. L. Edson, Klaus Widmann, Q. M. Ngo, H. Zhang, J. B. Alfonso, S. Weaver, J. D. Driscoll, R. M. Marquez, R. M. Franks, A. Nikroo, Mark R. Hermann, R. A. Sacks, Harry B. Radousky, A. B. Langdon, Paul J. Wegner, E. K. Krieger, Pierre Michel, Richard Berger, C. Chan, J. Li, Jose Milovich, J. S. Merill, C. Powell, J. S. Zielinski, L. J. Lagin, S. P. Rogers, J. D. Tappero, N. L. Orsi, S. L. Townsend, L. Auyang, F. A. Penko, V. Rekow, P. G. Zapata, Carlos E. Castro, R. W. Carey, A. D. Casey, K. S. Segraves, D. R. Jedlovec, J. R. Cox, S. Sommer, J. C. Bell, D. L. Brinkerhoff, E. O. Vergel de Dios, G. A. Bowers, R. Zacharias, J. D. Hitchcock, S. W. Lane, R. Prasad, K. A. Moreno, B. J. MacGowan, K. Wilhelmsen, Nobuhiko Izumi, S. F. Locke, R. Chapman, O. R. Rodriguez, S. A. Vonhof, E. F. Wilson, B. L. Olejniczak, G. W. Krauter, R. Lowe-Webb, Nathan Meezan, J. R. Kimbrough, Claire Bishop, D. N. Hulsey, Joseph W. Carlson, R. N. Fallejo, M. J. Gonzalez, L. R. Belk, R. J. Wallace, S. L. Kenitzer, J. Duncan, K. Piston, J. Wen, K. E. Burns, K. L. Tribbey, S. A. Gonzales, J. H. Truong, P. Di Nicola, J. B. McCloud, Y. Lee, S. Shiromizu, T. M. Schindler, B. Burr, R. Saunders, C. Marshall, A. L. Solomon, R. C. Bettenhausen, B. M. Van Wonterghem, H. K. Loey, B. Felker, P. S. Cardinale, M. D. Finney, D. P. Atkinson, Damien Hicks, J. L. Bragg, E. G. Dzenitis, J. A. Robinson, John R. Bower, B. Riordan, S. W. Haan, M. Fedorov, Z. Alherz, S. J. Cohen, A. I. Barnes, A. Y. Chakicherla, and J. L. Reynolds
- Subjects
Physics ,business.industry ,Physics::Optics ,General Physics and Astronomy ,Implosion ,Radiation ,Laser ,law.invention ,Ignition system ,Optics ,Physics::Plasma Physics ,Hohlraum ,law ,Laser power scaling ,Atomic physics ,National Ignition Facility ,business ,Inertial confinement fusion ,Astrophysics::Galaxy Astrophysics - Abstract
We demonstrate the hohlraum radiation temperature and symmetry required for ignition-scale inertial confinement fusion capsule implosions. Cryogenic gas-filled hohlraums with 2.2 mm-diameter capsules are heated with unprecedented laser energies of 1.2 MJ delivered by 192 ultraviolet laser beams on the National Ignition Facility. Laser backscatter measurements show that these hohlraums absorb 87% to 91% of the incident laser power resulting in peak radiation temperatures of T(RAD)=300 eV and a symmetric implosion to a 100 μm diameter hot core.
- Published
- 2011
23. Application of MGS and ODY Aerobraking Accelerometer Data to Atmospheric Modeling
- Author
-
Robert H. Tolson, G. M. Keating, Richard W. Zurek, Stephen W. Bougher, C. Justus, and David C. Fritts
- Subjects
Orbiter ,Geography ,Meteorology ,law ,Equator ,Scale height ,Upper-atmospheric models ,Mars Exploration Program ,Atmospheric model ,Aerobraking ,Latitude ,law.invention - Abstract
This paper reviews the use of accelerometer data for determining atmospheric density during the Mars Global Survey and Mars Odyssey missions and provides preliminary results from the Mars Reconnaissance Orbiter aerobraking operations. For MGS and ODY, accelerometer data were analyzed in both near real time and post flight to provide estimates of density, density scale height, latitudinal gradients, global longitudinal wave structure, and small scale (gravity) wave spectra. MGS (Odyssey) provided data during about 850 (300) passes at altitudes ranging from 100 to 160 km (95 to 150) and covering a latitude range of 60 o N to 90 o S (30N to 90N). A summary is given of the atmospheric phenomena encountered during the aerobraking phase of the missions and of some of the scientific results based on these data. MRO is expected to provide another 500 aerobraking passes over an altitude range from 95 to 170 km and from the south pole to the equator. These data provide powerful constraints on upper atmospheric models. Accelerometer and space craft requirements to enhance scientific return are discussed.
- Published
- 2006
24. Trip Report for the 2005 Sino-American SF6 Tracer Experiment
- Author
-
G A Keating Ii, M J Leach, M M Bradley, and T J Sullivan
- Subjects
Engineering ,Emergency management ,Delegation ,Operations research ,Scope (project management) ,business.industry ,media_common.quotation_subject ,Atomic energy ,Nuclear power ,Fiscal year ,Work (electrical) ,Aeronautics ,business ,China ,media_common - Abstract
The Chinese Institute for Radiation Protection (CIRP) conducted an SF6 atmospheric tracer experiment in July 2005 in the vicinity of the Qinshan Nuclear Power Company complex on the coast of the East China Sea. The experiment was partially sponsored by the US Department of Energy National Nuclear Security Administration, under the NA-23 International Emergency Management and Cooperation Program. NA-23 sent a delegation of five scientists to observe the experiment; four of the observers were from Lawrence Livermore National Laboratory (LLNL) and one was from the Japan Atomic Energy Research Institute (JAERI). CIRP's cooperation with the US-Japanese delegation was excellent, and the project was very successful from the international cooperation perspective. Although the experiment was modest in scope, it may provide one or more data sets that can be used for international dispersion model validation and intercomparison projects. Several areas for procedural improvements were noted by the US and Japanese observers, and a more concise measure of the experiment's scientific value will be available after CIRP completes and delivers the database of the experiment results by the end of the fiscal year. The consensus recommendation of the observers is that CIRP and DOE/NNSA NA-23 build on the experience and personal contactsmore » gained during the experiment to plan and conduct an even more effective experiment in the future, perhaps as early as next year (2006). If the decision is made to conduct a follow-on experiment, we strongly recommend that the LLNL and JAERI representatives work cooperatively with CIRP throughout the entire planning phase of the experiment. As discussed in Section V, a 2006 China tracer experiment could serve as a springboard to a 2007 long-range international tracer experiment involving South Korea.« less
- Published
- 2005
25. ERUPTION TO DOSE: COUPLING A TEPHRA DISPERSAL MODEL WITHIN A PERFORMANCE ASSESSMENT FRAMEWORK
- Author
-
J. Pelletier and G. N. Keating
- Subjects
Hydrology ,education.field_of_study ,Vulcanian eruption ,Population ,Biological dispersal ,Eruption column ,Atmospheric sciences ,education ,Tephra ,Spatial analysis ,Geology ,Wind variability ,System model - Abstract
The tephra dispersal model used by the Yucca Mountain Project (YMP) to evaluate the potential consequences of a volcanic eruption through the waste repository must incorporate simplifications in order to function within a large Monte-Carlo style performance assessment framework. That is, the explicit physics of the conduit, vent, and eruption column processes are abstracted to a 2-D, steady-state advection-dispersion model (ASHPLUME) that can be run quickly over thousands of realizations of the overall system model. Given the continuous development of tephra dispersal modeling techniques in the last few years, we evaluated the adequacy of this simplified model for its intended purpose within the YMP total system performance assessment (TSPA) model. We evaluated uncertainties inherent in model simplifications including (1) instantaneous, steady-state vs. unsteady eruption, which affects column height, (2) constant wind conditions, and (3) power-law distribution of the tephra blanket; comparisons were made to other models and published ash distributions. Spatial statistics are useful for evaluating differences in these model output vs. results using more complex wind, column height, and tephra deposition patterns. However, in order to assess the adequacy of the model for its intended use in TSPA, we evaluated the propagation of these uncertainties through FAR, the YMPmore » ash redistribution model, which utilizes ASHPLUME tephra deposition results to calculate the concentration of nuclear waste-contaminated tephra at a dose-receptor population as a result of sedimentary transport and mixing processes on the landscape. Questions we sought to answer include: (1) what conditions of unsteadiness, wind variability, or departure from simplified tephra distribution result in significant effects on waste concentration (related to dose calculated for the receptor population)? (2) What criteria can be established for the adequacy of a tephra dispersal model within the TSPA framework?« less
- Published
- 2005
26. Scientific objectives of the DYNAMO mission
- Author
-
R. Lin, M. Moncuquet, François Leblanc, David L. Mitchell, C. Mazelle, John Clarke, L. Duvet, E. Lellouch, Tilman Spohn, D. Toublanc, J. Dyment, Michael E. Purucker, S. Smrekar, Robert M. Haberle, P. Tarits, R. Hodges, G. Balmino, J. Luhmann, Bruce M. Jakosky, Michel Parrot, François Forget, Y. Cohen, Eric Chassefière, J. Connerney, O. Grasset, A M Buckley, Paul Gough, Olivier Witasse, D. T. Young, D. Bass, J. Lilensten, Doris Breuer, M. Blanc, Eric Quémerais, Karoly Szego, Ph. Lognonné, G. Hulot, H. Rème, K. Issautier, Jean-Pierre Barriot, D. T. Lyons, Jean-Gabriel Trotignon, Stephen W. Bougher, N. Meyer, P.-L. Blelly, Michel Menvielle, K. Sperveslage, A. Nagy, Jean-Claude Cerisier, Jean-Loup Bertaux, F. Vial, D. Vignes, C. Berger, Gérard Chanteur, M. Pätzold, M. Parmentier, F. Hourdin, J.-A. Sauvaud, C. Sotin, M. Acuna, Sho Sasaki, G. M. Keating, J. L. Bougeret, Robert E. Johnson, H. Waite, F. Barlier, Jean-Jacques Berthelier, P. Pinet, P. Touboul, Laboratoire de Météorologie Dynamique (UMR 8539) (LMD), Département des Géosciences - ENS Paris, École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-École des Ponts ParisTech (ENPC)-École polytechnique (X)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC), Centre d'étude spatiale des rayonnements (CESR), Observatoire Midi-Pyrénées (OMP), Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées, Centre d'étude des environnements terrestre et planétaires (CETP), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Planétologie de Grenoble (LPG), Université Joseph Fourier - Grenoble 1 (UJF)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), ONERA - The French Aerospace Lab [Palaiseau], ONERA-Université Paris Saclay (COmUE), Service d'aéronomie (SA), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Institut de Physique du Globe de Paris (IPGP), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-IPG PARIS-Université Paris Diderot - Paris 7 (UPD7)-Université de La Réunion (UR)-Centre National de la Recherche Scientifique (CNRS), Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD), Laboratoire de physique et chimie de l'environnement (LPCE), Université d'Orléans (UO)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Observatoire de Paris - Site de Paris (OP), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Planétologie et Géodynamique [UMR 6112] (LPG), Université d'Angers (UA)-Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST), Université de Nantes (UN)-Université de Nantes (UN)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Observatoire de la Côte d'Azur (OCA), Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Université de Bretagne Occidentale - UFR Sciences et Techniques (UBO UFR ST), Université de Brest (UBO), Institut für Planetologie [Münster], Westfälische Wilhelms-Universität Münster (WWU), Institut für Geophysik und Meteorologie [Köln], Universität zu Köln, University of Sussex, Hungarian Academy of Sciences (MTA), The University of Tokyo (UTokyo), Jet Propulsion Laboratory (JPL), California Institute of Technology (CALTECH)-NASA, NASA Goddard Space Flight Center (GSFC), Space Sciences Laboratory [Berkeley] (SSL), University of California [Berkeley], University of California-University of California, University of Virginia [Charlottesville], University of Michigan [Ann Arbor], University of Michigan System, University of Arizona, The George Washington University (GW), NASA Ames Research Center (ARC), University of Colorado [Boulder], University of Texas at Dallas [Richardson] (UT Dallas), Brown University, Southwest Research Institute [San Antonio] (SwRI), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-École polytechnique (X)-École des Ponts ParisTech (ENPC)-Centre National de la Recherche Scientifique (CNRS)-Département des Géosciences - ENS Paris, École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL), Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Université de La Réunion (UR)-Institut de Physique du Globe de Paris (IPG Paris)-Centre National de la Recherche Scientifique (CNRS), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France, Institut national des sciences de l'Univers (INSU - CNRS)-Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS), Westfälische Wilhelms-Universität Münster = University of Münster (WWU), Universität zu Köln = University of Cologne, NASA-California Institute of Technology (CALTECH), University of California [Berkeley] (UC Berkeley), University of California (UC)-University of California (UC), and University of Virginia
- Subjects
Atmospheric Science ,010504 meteorology & atmospheric sciences ,Aerospace Engineering ,01 natural sciences ,Astrobiology ,law.invention ,Orbiter ,law ,0103 physical sciences ,Mercury's magnetic field ,010303 astronomy & astrophysics ,0105 earth and related environmental sciences ,Physics ,Atmospheric escape ,Astronomy and Astrophysics ,Mars Exploration Program ,Aerobraking ,Solar wind ,Geophysics ,13. Climate action ,Space and Planetary Science ,[SDU]Sciences of the Universe [physics] ,Physics::Space Physics ,General Earth and Planetary Sciences ,Timekeeping on Mars ,Astrophysics::Earth and Planetary Astrophysics ,Thermosphere - Abstract
International audience; DYNAMO is a small Mars orbiter planned to be launched in 2005 or 2007, in the frame of the NASA/ CNES Mars exploration program. It is aimed at improving gravity and magnetic field resolution, in order to better understand the magnetic, geologic and thermal history of Mars, and at characterizing current atmospheric escape, which is still poorly constrained. These objectives are achieved by using a low periapsis orbit, similar to the one used by the Mars Global Surveyor spacecraft during its aerobraking phases. The proposed periapsis altitude for DYNAMO of 120–130 km, coupled with the global distribution of periapses to be obtained during one Martian year of operation, through about 5000 low passes, will produce a magnetic/gravity field data set with approximately five times the spatial resolution of MGS. Additional data on the internal structure will be obtained by mapping the electric conductivity. Low periapsis provides a unique opportunity to investigate the chemical and dynamical properties of the deep ionosphere, thermosphere, and the interaction between the atmosphere and the solar wind, therefore atmospheric escape, which may have played a crucial role in removing atmosphere and water from the planet.
- Published
- 2001
27. Physician unionization efforts gain momentum, support
- Author
-
G C, Keating
- Subjects
Employment ,Labor Unions ,Physicians ,Collective Bargaining ,Medical Staff, Hospital ,Workforce ,Internship and Residency ,Contract Services ,Hospitals, Teaching ,United States ,Antitrust Laws - Abstract
Physicians increasingly are assuming the status of employees in healthcare organizations. Physicians also are seeing restrictions imposed on their practices by healthcare organizations seeking to control costs of care delivery. These trends have led a growing number of physicians to attempt to organize into unions. Obstacles to physician unionization efforts have included Federal antitrust laws that prohibit physicians from organizing, as well as physician reluctance to engage in organized activities they see as antithetical to their professional duties (e.g., strikes). In addition, physicians' attempts to unionize frequently have failed due to provisions of the National Labor Relations Act, which authorize collective bargaining only among individuals designated as "employees." Physicians seeking to form unions often are thwarted by the argument that they are not employees, but rather students, independent contractors, or supervisors, and therefore not entitled to protection under the act. Nonetheless, a number of recent developments, such as the American Medical Association's decision to endorse unionization by physicians and the National Labor Relations Board's decision that attending physicians should be regarded as employees, not supervisors, are creating a climate more conducive to physician unionization in the United States.
- Published
- 2000
28. Comparison of heterocyclic amine levels in home-cooked meats with exposure indicators (United States)
- Author
-
G A, Keating, R, Sinha, D, Layton, C P, Salmon, M G, Knize, K T, Bogen, C F, Lynch, and M, Alavanj
- Subjects
Meat ,Heterocyclic Compounds ,Cooking ,Amines ,United States - Abstract
To compare indicators of heterocyclic amine (HCA) exposure with HCA concentrations in home-cooked meat samples.Pan-fried hamburger and steak samples were obtained from individuals stating a preference for medium, well done and very well done meat. Concentrations of DiMelQx, IFP, MeIQx and PhIP were determined by HPLC.HCA concentrations at the three doneness levels were not significantly different using the participants' self-reported doneness preference to categorize samples. Using doneness levels determined at the time the meat was cooked and photograph analysis to categorize samples, HCA concentrations increased with doneness level and significant differences were observed between the very well done and lower doneness levels. When assigned to doneness levels by photograph analysis, mean concentrations (ng/g cooked meat) of DiMelQx, IFP, MelQx, and PhIP were 0.18, 0.16, 0.65 and 0.47 in well done hamburger and 0.61, 0.74, 1.88 and 2.04 in very well done hamburger. In steak, mean concentrations were 0.24, 0.10, 0.79 and 0.59 in well done steak and 0.45, 0.14, 1.87 and 0.62 in very well done steak.HCA levels in home-cooked meat samples were significantly different when samples were visually classified for doneness, but not when self-reported doneness preference was used to classify doneness.
- Published
- 2000
29. Production and characterization of anti-coumarin scFv antibodies
- Author
-
A J, Killard, G J, Keating, and R, O'Kennedy
- Subjects
Coumarins ,Antibody Affinity ,Immunoglobulin Variable Region ,Enzyme-Linked Immunosorbent Assay ,Antibodies - Published
- 2000
30. Initial uptake kinetics in human skin exposed to dilute aqueous trichloroethylene in vitro
- Author
-
K T, Bogen, G A, Keating, S, Meissner, and J S, Vogel
- Subjects
Kinetics ,Models, Statistical ,Culture Techniques ,Solvents ,Humans ,Female ,Tissue Distribution ,Breast ,Environmental Exposure ,Forecasting ,Skin ,Trichloroethylene - Abstract
In vitro uptake of 14C-labeled trichloroethylene (TCE) from dilute (approximately 5-ppb) aqueous solutions into human surgical skin was measured using accelerator mass spectrometry (AMS). We analyzed 105 breast-tissue samples obtained from three subjects, representing 27 separate exposure experiments conducted at approximately 20 degrees C for 0, 1, 5, 15, 30, or 60 min. The AMS data obtained positively correlate with (p approximately 0) and vary significantly nonlinearly with (p = 0.0094) exposure duration. These data are inconsistent (p approximately 0) with predictions made for TCE by a proposed U.S. Environmental Protection Agency (USEPA) dermal-exposure model, even when uncertainties in its recommended parameter values for TCE are considered, but are consistent (p = 0.17) with a 1-compartment model for exposed skin-surface tissue governed in vitro by a maximum effective permeability of K*p = 0.28 cm h-1 (+/- 7.0%) and a first-order rate constant of k1 = 1.2 h-1 (+/- 16%). The apparent compartment depth is estimated to be approximately 40-100 microns, i.e., to comprise much or all of the epidermis. In contrast, the USEPA model implies only negligible TCE penetration beyond SC during a 1-h exposure. The K*p estimate based on the 1-compartment model fit is consistent with estimates for TCE based on in vivo studies, which supports the hypothesis that the USEPA model underpredicts short-term dermal uptake of TCE from water. It is shown that for humans, this fit also implies that normalized total uptake of TCE from water by short-term dermal contact in vivo is predicted to be fK*p, where f is approximately 80% for longer normothermic exposures and approximately 95% during a brief hot shower or bath. This study illustrates the power of AMS to facilitate analyses of contaminant biodistribution and uptake kinetics at very low environmental concentrations.
- Published
- 1998
31. Erratum
- Author
-
G. M. Keating
- Subjects
Oncology ,medicine.medical_specialty ,business.industry ,Myelodysplastic syndromes ,Azacitidine ,Pharmacology toxicology ,medicine.disease ,Pharmacotherapy ,Internal medicine ,medicine ,Pharmacology (medical) ,Myeloid leukaemia ,business ,medicine.drug - Published
- 2012
32. 195 DERMAL UPTAKE OF CONTAMINANTS IN TAP WATER NEW MEASUREMENTS AND THEIR IMPACT ON MODEL PRECISION
- Author
-
R. H. Guy, G. A. Keating, A Naik, and T. E. McKone
- Subjects
Tap water ,Epidemiology ,Environmental chemistry ,Environmental science ,Contamination - Published
- 1995
33. Venus international reference atmosphere (1985)
- Author
-
G. M. Keating, V. I. Moroz, and Arvydas J. Kliore
- Subjects
Atmosphere ,biology ,Space and Planetary Science ,Environmental science ,Astronomy and Astrophysics ,Venus ,biology.organism_classification ,Astrobiology - Published
- 1992
34. GIBRAT'S LAW AND THE GROWTH OF FIRMS
- Author
-
G. R. Keating
- Subjects
Gibrat's law ,Economics ,Classical economics ,General Economics, Econometrics and Finance - Published
- 1974
35. Size, Industrial Classification and Growth of Australian Factories
- Author
-
G. R. Keating and Colin Aislabie
- Subjects
Economics and Econometrics ,Economics - Published
- 1976
36. DIRECT ACCESS AND PHONOLOGICAL ENCODING PROCESSES IN CHILDREN'S READING: EFFECTS OF WORD CHARACTERISTICS
- Author
-
Margaret M. Pool, Veronica J. Laxon, Veronika Coltheart, and G. Corriene Keating
- Subjects
Visual perception ,Phonology ,Linguistics ,Education ,Comprehension ,Language development ,Developmental and Educational Psychology ,Lexical decision task ,Lexico ,Psychology ,computer ,Sentence ,Coding (social sciences) ,computer.programming_language - Abstract
Summary. Nine-year-old children were presented with reading tasks in which psycholinguistic properties of words were manipulated. Although word imageability affected reading accuracy, grammatical class of words and regularity of spelling-to-sound correspondence did not. Regularity had no effects on lexical decision and judgments of phonology. Accuracy in reading aloud and judgments of phonology was substantially lower for non-words than for words. Only the best readers had well-developed skills in grapheme-to-phoneme sound conversion, and all appeared to rely on direct visual access when reading. A sentence comprehension task devised by Doctor and Coltheart (1980) was used for investigating the role of phonological coding in reading for meaning. Phonological effects were evident since children found it difficult to reject meaningless sentences which sounded correct. It is argued that the phonological effects could arise through post-lexical phonological coding. The results support models of reading acquisition which suggest that the development of non-lexical grapheme-phoneme conversion skills lags behind the development of direct visual access.
- Published
- 1986
37. Short-Term Cyclic Variations and Diurnal Variations of the Venus Upper Atmosphere
- Author
-
G. M. Keating, J. Y. Nicholson, E. W. Hinson, and Fredric W. Taylor
- Subjects
Multidisciplinary ,biology ,Terminator (solar) ,Astrophysics::Instrumentation and Methods for Astrophysics ,Venus ,Atmospheric temperature ,biology.organism_classification ,Atmospheric sciences ,Atmosphere ,Atmosphere of Venus ,Physics::Space Physics ,Astrophysics::Earth and Planetary Astrophysics ,Thermosphere ,Stratosphere ,Geology ,Exosphere - Abstract
Measurements of satellite drag obtained from the orbital decay of the Pioneer Venus orbiter on the nightside of Venus indicate an atomic oxygen atmosphere near 155 kilometers (an order of magnitude less dense than expected) with nighttime inferred exospheric temperatures averaging as low as 110 K. Densities at these altitudes decrease sharply from day to night, contrary to the predicted nighttime oxygen bulge. This decrease may be indicative of an unexpectedly weak transport across the evening terminator or a very strong heat sink at night that is possibly related to vertical eddy heat transport. Large periodic oscillations in density and inferred exospheric temperature are detected with a period of 5 to 6 days. We have subsequently discovered temperature variations of the same period in the stratosphere, which are tentatively interpreted as planetary-scale waves that may propagate upward producing the periodic variations in the thermosphere and exosphere. The peak-to-peak amplitude of the temperature oscillations associated with these waves apparently increases with altitude approximately as follows: 1 K (70 kilometers), 3 K (90 kilometers), 40 K (155 kilometers). Inferred nighttime exospheric temperatures are found to be asymmetric relative to midnight, minimizing on the morning side. The possibility of superrotation of the thermosphere, and exosphere is discussed.
- Published
- 1979
38. Annual and Semiannual Density Variations in the Earth's Exosphere
- Author
-
C. Wulf-Mathies, E . J Prior, and G. M. Keating
- Published
- 1975
39. A Critical Evaluation of the OGO 6 Helium Model
- Author
-
G. M. Keating, E . J Prior, D . S Mcdougal, and J Nicholson
- Published
- 1975
40. Venus thermosphere and exosphere: first satellite drag measurements of an extraterrestrial atmosphere
- Author
-
G. M. Keating, E. W. Hinson, and R. H. Tolson
- Subjects
Physics ,Multidisciplinary ,biology ,Venus ,Orbital decay ,biology.organism_classification ,Astrobiology ,Atmosphere of Venus ,Atmosphere ,Drag ,Physics::Space Physics ,Extraterrestrial Environment ,Astrophysics::Earth and Planetary Astrophysics ,Thermosphere ,Exosphere - Abstract
Atmospheric drag measurements obtained from the study of the orbital decay of Pioneer Venus 1 indicate that atomic oxygen predominates in the Venus atmosphere above 160 kilometers. Drag measurements give evidence that conditions characteristic of a planetary thermosphere disappear near sundown, with inferred exospheric temperatures sharply dropping from approximately 300 K to less than 150 K. Observed denisities are generally lower than given by theoretical models.
- Published
- 1979
41. A re-evaluation of tribromoethanol anesthesia for cardiac catheterization; our experience with avertin in cardiac catheterization: a review of 300 cases
- Author
-
F A, BALBONI, R C, ANDRIELLO, and G A, KEATING
- Subjects
Cardiac Catheterization ,Ethanol ,Anesthesia and Analgesia ,Anesthesia ,Analgesia ,Catheterization - Published
- 1958
42. The response of the neutral upper atmosphere to variations in solar activity
- Author
-
J. S. Levine and G. M. Keating
- Subjects
Physics ,Atmospheric physics ,genetic structures ,integumentary system ,Atmospheric models ,food and beverages ,chemistry.chemical_element ,respiratory system ,Atmospheric sciences ,Atmospheric temperature ,Oxygen ,respiratory tract diseases ,Atmospheric composition ,Atmosphere ,Solar wind ,chemistry ,Astrophysics::Solar and Stellar Astrophysics ,Astrophysics::Earth and Planetary Astrophysics ,Helium - Abstract
Neutral upper atmosphere response to solar activity variations, discussing temperature, density and helium/oxygen composition
- Published
- 1970
43. Étude des défauts ponctuels dans le niobium
- Author
-
G. de Keating-Hart, R. Pichon, P. Bichon, F. Vanoni, and P. Moser
- Subjects
[PHYS.HIST]Physics [physics]/Physics archives ,0103 physical sciences ,radiation effects ,02 engineering and technology ,021001 nanoscience & nanotechnology ,0210 nano-technology ,niobium ,01 natural sciences ,010305 fluids & plasmas - Abstract
Un niobium de très haute pureté a été élaboré par fusion de zone puis recuit sous ultra-vide. La pureté a été contrôlée par des mesures de résistivité à 4 °K et par des analyses par activation (Rumb/R 4 °K = 2 000 ; 0 < 1 ppm, C < 1 ppm . Ce niobium a été irradié avec des électrons à très basse température, une étude du revenu de la résistivité a été entreprise dans le but de préciser un modèle décrivant les processus d'annihilation et d'agglomération des défauts créés par irradiation. Une étude comparative avec d'autres métaux cubiques centrés (Fe, Mo) conduit à accepter l'hypothèse d'un interstitiel intrinsèque migrant à basse température. Elle permet de rejeter l'hypothèse d'un second interstitiel intrinsèque migrant à une température plus élevée. L'étude des interactions des défauts intrinsèques avec les impuretés a été faite sous deux aspects : premièrement modification des processus d'annihilation et d'agglomération des défauts ; deuxièmement piégeage des impuretés par les défauts.
- Published
- 1970
44. The volunteer rescue squad: the impact of a group on the psychological adaptation of its members
- Author
-
G W, Keating, W A, Brown, and K, Standley
- Subjects
Adult ,Male ,Volunteers ,Psychological Tests ,Adolescent ,Thematic Apperception Test ,Self Concept ,Group Processes ,Child Development ,Transportation of Patients ,MMPI ,Adaptation, Psychological ,Humans ,Family ,Interpersonal Relations ,Voluntary Health Agencies ,Parent-Child Relations ,Internal-External Control ,Defense Mechanisms ,Personality - Published
- 1973
45. Relation between monthly variations of global ozone and solar activity
- Author
-
G. M. Keating
- Subjects
Satellite observation ,Multidisciplinary ,Ozone ,Spectrometer ,Solar irradiance ,Atmospheric sciences ,Solar cycle ,chemistry.chemical_compound ,chemistry ,Atmospheric chemistry ,Physics::Space Physics ,Astrophysics::Solar and Stellar Astrophysics ,Environmental science ,Astrophysics::Earth and Planetary Astrophysics ,Ultraviolet radiation - Abstract
Monthly averaged variations of global ozone determined from infrared interferometer spectrometer measurements aboard Nimbus 4 are shown to be consistently in agreement with monthly averaged variations of solar activity. The relationship between monthly changes of ozone and solar activity are found to be generally consistent with the longer-term variations of ozone over the last solar cycle and can be accounted for by assuming monthly solar flux variations near 0.2 micron of about 2%.
- Published
- 1978
46. ERUPTION TO DOSE: COUPLING A TEPHRA DISPERSAL MODEL WITHIN A PERFORMANCE ASSESSMENT FRAMEWORK
- Author
-
G N Keating, J
- Published
- 2005
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.