1. Recursively-regular subdivisions and applications
- Author
-
Rafel Jaume and Günter Rote
- Subjects
Computer software ,QA76.75-76.765 ,Analysis ,QA299.6-433 - Abstract
We generalize regular subdivisions (polyhedral complexes resulting from the projection of the lower faces of a polyhedron) introducing the class of recursively-regular subdivisions. Informally speaking, a recursively-regular subdivision is a subdivision that can be obtained by splitting some faces of a regular subdivision by other regular subdivisions (and continue recursively). We also define the finest regular coarsening and the regularity tree of a polyhedral complex. We prove that recursively-regular subdivisions are not necessarily connected by flips and that they are acyclic with respect to the in-front relation. We show that the finest regular coarsening of a subdivision can be efficiently computed, and that whether a subdivision is recursively regular can be efficiently decided. As an application, we also extend a theorem known since 1981 on illuminating space by cones and present connections of recursive regularity to tensegrity theory and graph-embedding problems.
- Published
- 2016
- Full Text
- View/download PDF