11 results on '"Gülzow, Jana"'
Search Results
2. Metal-mediated C–C bond formation in a platinum(II)-coordinated dipyridylmethane ligand: an unusual example of “ipso-coupling” with solvent involvement
- Author
-
Sommerfeld, Nadine S., primary, Gülzow, Jana, additional, Kohl, Julia, additional, and Grohmann, Andreas, additional
- Published
- 2022
- Full Text
- View/download PDF
3. O−O Bond Formation and Liberation of Dioxygen Mediated by N5‐Coordinate Non‐Heme Iron(IV) Complexes
- Author
-
Kroll, Nicole, Speckmann, Ina, Schoknecht, Marc, Gülzow, Jana, Diekmann, Marek, Pfrommer, Johannes, Stritt, Anika, Schlangen, Maria, Grohmann, Andreas, and Hörner, Gerald
- Subjects
ddc:540 - Abstract
Formation of the O−O bond is considered the critical step in oxidative water cleavage to produce dioxygen. High‐valent metal complexes with terminal oxo (oxido) ligands are commonly regarded as instrumental for oxygen evolution, but direct experimental evidence is lacking. Herein, we describe the formation of the O−O bond in solution, from non‐heme, N5‐coordinate oxoiron(IV) species. Oxygen evolution from oxoiron(IV) is instantaneous once meta‐chloroperbenzoic acid is administered in excess. Oxygen‐isotope labeling reveals two sources of dioxygen, pointing to mechanistic branching between HAT (hydrogen atom transfer)‐initiated free‐radical pathways of the peroxides, which are typical of catalase‐like reactivity, and iron‐borne O−O coupling, which is unprecedented for non‐heme/peroxide systems. Interpretation in terms of [FeIV(O)] and [FeV(O)] being the resting and active principles of the O−O coupling, respectively, concurs with fundamental mechanistic ideas of (electro‐) chemical O−O coupling in water oxidation catalysis (WOC), indicating that central mechanistic motifs of WOC can be mimicked in a catalase/peroxidase setting.
- Published
- 2019
4. O−O Bond Formation and Liberation of Dioxygen Mediated by N5‐Coordinate Non‐Heme Iron(IV) Complexes
- Author
-
Kroll, Nicole, primary, Speckmann, Ina, additional, Schoknecht, Marc, additional, Gülzow, Jana, additional, Diekmann, Marek, additional, Pfrommer, Johannes, additional, Stritt, Anika, additional, Schlangen, Maria, additional, Grohmann, Andreas, additional, and Hörner, Gerald, additional
- Published
- 2019
- Full Text
- View/download PDF
5. An unexpected effect of reactivity enhancement in catechol-oxidase-models
- Author
-
Gülzow, Jana, Grohmann, Andreas, Technische Universität Berlin, and Mohr, Fabian
- Subjects
bioinorganic chemistry ,Kupfer ,546 Anorganische Chemie ,heterogenous catalysis ,copper ,catechol-oxidase ,bioanorganische Chemie ,Modellsystem ,heterogene Katalyse ,ddc:546 ,model system - Abstract
This dissertation presents the synthesis and characterisation of two new tetradentate ligands, 2-(6-(1,1-di(pyridine-2-yl)ethyl)pyridine-2-yl)-2-methylpropane-1,3-diol (Py3OH, L1) and 2-(6-(1,1-di(pyridine-2-yl)ethyl)pyridine-2-yl)-2-methylpropane-1-amine (Py3N), as well as the copper(II) (1, 3(ClO4)2) and zinc(II) complexes (2) of L1. Furthermore, the complexation reaction of Py3OH2 (L2) with FeII (7, 8(Br), 9(BF4)), FeIII (10), CuI (12, 13(PF6)) and CuII salts (6(Cl), 6(PF6)) is described, and discussed on the basis of crystal structures. Use of the base NEt3 as an auxiliary reagent for deprotonating the hydroxyl functions of L1 or L2 in the presence of CuCl2, leads to the binuclear complexes 4(Cl)2 and 11(Cl)2, both of which have bis µ alkoxido bridged copper(II) centres. A reaction aiming to synthesise the binuclear complex from its mononuclear constituents, in the presence of NEt3, led to the trinuclear complex 5(Cl). The behaviour of 13(PF6) in the presence of dioxygen was studied by UV/Vis spectroscopy. The absorption spectrum of the oxidised complex is in good agreement with the absorption spectrum of the binuclear complex 11(Cl)2. A crystal structure determination confirmed the spontaneous assembly of a binuclear complex having bridging alkoxido donors (11‘(PF6)2). The use of 3,5-ditertbutyl-quinone (Q) as an oxidising agent leads to the same result. The mono- and binuclear copper(II) complexes 1, 4(Cl)2, 6(Cl), and 11(Cl)2 have been investigated regarding their suitability as model systems for the enzyme catechol oxidase (CatOx). In this context, 3,5-ditertbutyl-catechol (C) was used as a prototypical substrate. In contrast to the mononuclear complexes, the binuclear complexes are capable of oxidising C to Q. UV/Vis spectroscopic time-resolved tracking of product formation allowed the determination of kinetic parameters, such as the rate constant k. Using the Michaelis-Menten model and evaluating according to the Lineweaver Burk and Hanes Woolf procedures, respectively, leads to consistent results for the Michaelis Menten constant KM, the maximum rate of the reaction vmax, and the kinetic exchange rate kcat. Further, the influence of additionally administered dioxygen on the reactivity of the catalyst was investigated. For this, the copper-catalysed oxidation of C in dioxygen-saturated methanolic solution was followed by UV/Vis spectroscopy. Administering additional dioxygen to the solution through a glass frit increases the reactivity by a factor of 21. This is an unprecedented effect. The more highly dispersed the dioxygen, the stronger the observed reactivity increase. The effect is caused by the additionally administered dioxygen, which removes product inhibition. In order to assess its general validity, two established model systems were selected from the literature, and synthesised. In line with the initial observations, purging the reaction solution with dioxygen brings about a marked reactivity increase in both cases. In addition to the synthetic work, mechanistic investigations have also been carried out. For the determination of a second product, formed alongside Q, a quantitative method was used which had not previously been employed in the field of CatOx model systems. By adding a peroxidase to the assay, H2O2 was verified as the stoichiometric second product of the reaction. This necessitates the formation of a further product, very likely H2O. In contrast to most of the published model systems, the oxidation of C, when using 11(Cl)2 as the catalyst, proceeds only in the presence of dioxygen. The redox pair Cu2+/Cu+ is thus not involved in the oxidation of C to Q, unlike the natural enzyme. All of the relevant observations concerning the reactivity of 11(Cl)2 have been combined into a plausible proposal for the reaction mechanism., Die vorliegende Arbeit beschreibt die Synthese und Charakterisierung der zwei neuartigen tetradentaten Liganden 2-(6-(1,1-Di(pyridin-2-yl)ethyl)pyridin-2-yl)-2-methylpropan-1,3-diol (Py3OH, L1) und 2-(6-(1,1-Di(pyridin-2-yl)ethyl)pyridin-2-yl)-2-methylpropan-1-amin (Py3N) sowie der Kupfer(II)- (1, 3(ClO4)2) und Zink(II) Komplexe (2) von L1. Zusätzlich werden die Komplexierungsreaktionen des Liganden Py3OH2 (L2) mit FeII (7, 8(Br), 9(BF4)), FeIII (10), CuI- (12, 13(PF6)) und CuII Salzen (6(Cl), 6(PF6)) vorgestellt und entsprechende Kristallstrukturen diskutiert. Verwendung der Base NEt3 als Hilfsreagenz zur Deprotonierung der Hydroxylfunktionen von L1 und L2 führte in Anwesenheit von CuCl2 zur Bildung von dinuklearen Komplexen (4(Cl)2 und 11(Cl)2) mit bis µ Alkoxido-verbrückten Kupfer(II) Zentren. Der gezielte Versuch des Aufbaus eines dinuklearen Komplexes aus seinen einkernigen Komplexkomponenten führte unter Verwendung von NEt3 zum trinuklearen CuII Komplex 5(Cl). Das Verhalten des CuI Komplexes 13(PF6) gegenüber Sauerstoff wurde UV/Vis spektroskopisch untersucht. Ein Vergleich des Absorptionsspektrums der oxidierten Verbindung mit dem des zweikernigen Komplexes 11(Cl)2 zeigte sehr gute Übereinstimmung. Die Kristallstruktur bestätigte, dass Oxidation mit Luftsauerstoff die spontane Entstehung eines dinuklearen Kupfer(II) Komplexes mit verbrückenden Alkoxido Donoren bedingt (11‘(PF6)2). Verwendung von 3,5-Ditertbutylchinon (Q) als Oxidationsmittel führte zum gleichen Resultat. Die mono- und dinuklearen Kupfer(II) Komplexe 1, 4(Cl)2, 6(Cl) und 11(Cl)2 wurden hinsichtlich ihrer Eignung als Modellsysteme der Catechol Oxidase (CatOx) untersucht. Dafür wurde 3,5-Ditertbutylcatechol (C) als Testsubstrat verwendet. Im Unterschied zu den einkernigen Komplexen sind die zweikernigen Komplexe in der Lage, C zu Q zu oxidieren. Die zeitaufgelöste UV/Vis-spektroskopische Verfolgung der Produktbildung erlaubte die Bestimmung kinetischer Größen, wie der Reaktionsgeschwindigkeitskonstante k. Verwendung des Michaelis Menten Modells und Auswertung der Daten nach Lineweaver Burk und Hanes Woolf ergab konsistente Ergebnisse für die Michaelis Menten Konstante KM, die maximale Geschwindigkeit der Reaktion vmax und die kinetische Wechselzahl kcat. Weiter wurde der Einfluss von zusätzlichem Sauerstoff auf die Reaktivität des Katalysators untersucht. Dabei wurde die kupferkatalysierte Oxidation von C in sauerstoffgesättigter methanolischer Lösung studiert. Das Einleiten von Sauerstoff durch eine Glasfritte in die Lösung steigert die Reaktivität des Katalysators 11(Cl)2 um den Faktor 21. Es handelt sich um einen bisher nicht beschriebenen Effekt. Je besser dispergiert der Sauerstoff vorliegt, desto stärker ausgeprägt ist der Effekt. Er beruht darauf, dass zusätzlich zugeführter Sauerstoff die Produkthemmung senkt. Flankierend wurden zwei literaturbekannte, vielfach zitierte Modellsysteme synthetisiert, um die Übertragbarkeit des beobachteten Effekts zu prüfen. Auch hier führt zusätzlich dargebotener Sauerstoff zu einer beträchtlichen Reaktivitätssteigerung. Im Lichte der erhobenen Befunde schlüssige mechanistische Betrachtungen sind abschließend diskutiert. Zur Bestimmung des gebildeten Produkts neben Q wurde eine quantitative Nachweismethode genutzt, die in dieser Form, im Zusammenhang mit Modellsystemen der CatOx, bisher nicht genutzt worden ist. Unter Verwendung einer Peroxidase kann H2O2 als stöchiometrisches Produkt nachgewiesen werden. Im Zuge dessen zeigt sich, dass ein weiteres Produkt, sehr wahrscheinlich H2O, gebildet werden muss. Im Unterschied zu vielen bisher beschriebenen Modellsystemen verläuft die Oxidation von C unter Verwendung von 11(Cl)2 ausschließlich in Anwesenheit von Sauerstoff. Das Redoxsystem Cu2+/Cu+ ist, im Unterschied zu den Gegebenheiten in der Natur, an der Oxidation von C zu Q unbeteiligt. Ein aus diesen Ergebnissen abgeleiteter plausibler mechanistischer Vorschlag wird präsentiert.
- Published
- 2017
6. Antiproliferative Copper(II) and Platinum(II) Complexes with Bidentate N,N‐Donor Ligands
- Author
-
Sommerfeld, Nadine S., primary, Gülzow, Jana, additional, Roller, Alexander, additional, Cseh, Klaudia, additional, Jakupec, Michael A., additional, Grohmann, Andreas, additional, Galanski, Mathea Sophia, additional, and Keppler, Bernhard K., additional
- Published
- 2017
- Full Text
- View/download PDF
7. Cover Picture: Oxygen Delivery as a Limiting Factor in Modelling Dicopper(II) Oxidase Reactivity (Chem. Eur. J. 29/2017)
- Author
-
Gülzow, Jana, primary, Hörner, Gerald, additional, Strauch, Peter, additional, Stritt, Anika, additional, Irran, Elisabeth, additional, and Grohmann, Andreas, additional
- Published
- 2017
- Full Text
- View/download PDF
8. Oxygen Delivery as a Limiting Factor in Modelling Dicopper(II) Oxidase Reactivity
- Author
-
Gülzow, Jana, primary, Hörner, Gerald, additional, Strauch, Peter, additional, Stritt, Anika, additional, Irran, Elisabeth, additional, and Grohmann, Andreas, additional
- Published
- 2017
- Full Text
- View/download PDF
9. O−O Bond Formation and Liberation of Dioxygen Mediated by N5‐Coordinate Non‐Heme Iron(IV) Complexes.
- Author
-
Kroll, Nicole, Speckmann, Ina, Schoknecht, Marc, Gülzow, Jana, Diekmann, Marek, Pfrommer, Johannes, Stritt, Anika, Schlangen, Maria, Grohmann, Andreas, and Hörner, Gerald
- Subjects
CATALASE ,DIOXYGENASES ,ABSTRACTION reactions ,BOND formation mechanism ,IRON ,METAL complexes ,OXIDATION of water - Abstract
Formation of the O−O bond is considered the critical step in oxidative water cleavage to produce dioxygen. High‐valent metal complexes with terminal oxo (oxido) ligands are commonly regarded as instrumental for oxygen evolution, but direct experimental evidence is lacking. Herein, we describe the formation of the O−O bond in solution, from non‐heme, N5‐coordinate oxoiron(IV) species. Oxygen evolution from oxoiron(IV) is instantaneous once meta‐chloroperbenzoic acid is administered in excess. Oxygen‐isotope labeling reveals two sources of dioxygen, pointing to mechanistic branching between HAT (hydrogen atom transfer)‐initiated free‐radical pathways of the peroxides, which are typical of catalase‐like reactivity, and iron‐borne O−O coupling, which is unprecedented for non‐heme/peroxide systems. Interpretation in terms of [FeIV(O)] and [FeV(O)] being the resting and active principles of the O−O coupling, respectively, concurs with fundamental mechanistic ideas of (electro‐) chemical O−O coupling in water oxidation catalysis (WOC), indicating that central mechanistic motifs of WOC can be mimicked in a catalase/peroxidase setting. [ABSTRACT FROM AUTHOR]
- Published
- 2019
- Full Text
- View/download PDF
10. O-O Bond Formation and Liberation of Dioxygen Mediated by N 5 -Coordinate Non-Heme Iron(IV) Complexes.
- Author
-
Kroll N, Speckmann I, Schoknecht M, Gülzow J, Diekmann M, Pfrommer J, Stritt A, Schlangen M, Grohmann A, and Hörner G
- Abstract
Formation of the O-O bond is considered the critical step in oxidative water cleavage to produce dioxygen. High-valent metal complexes with terminal oxo (oxido) ligands are commonly regarded as instrumental for oxygen evolution, but direct experimental evidence is lacking. Herein, we describe the formation of the O-O bond in solution, from non-heme, N
5 -coordinate oxoiron(IV) species. Oxygen evolution from oxoiron(IV) is instantaneous once meta-chloroperbenzoic acid is administered in excess. Oxygen-isotope labeling reveals two sources of dioxygen, pointing to mechanistic branching between HAT (hydrogen atom transfer)-initiated free-radical pathways of the peroxides, which are typical of catalase-like reactivity, and iron-borne O-O coupling, which is unprecedented for non-heme/peroxide systems. Interpretation in terms of [FeIV (O)] and [FeV (O)] being the resting and active principles of the O-O coupling, respectively, concurs with fundamental mechanistic ideas of (electro-) chemical O-O coupling in water oxidation catalysis (WOC), indicating that central mechanistic motifs of WOC can be mimicked in a catalase/peroxidase setting., (© 2019 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.)- Published
- 2019
- Full Text
- View/download PDF
11. Oxygen Delivery as a Limiting Factor in Modelling Dicopper(II) Oxidase Reactivity.
- Author
-
Gülzow J, Hörner G, Strauch P, Stritt A, Irran E, and Grohmann A
- Subjects
- Biocompatible Materials metabolism, Catalysis, Catechol Oxidase metabolism, Coordination Complexes metabolism, Crystallography, X-Ray, Electron Spin Resonance Spectroscopy, Kinetics, Magnetic Resonance Spectroscopy, Molecular Conformation, Oxygen chemistry, Oxygen metabolism, Spectrophotometry, Biocompatible Materials chemistry, Catechol Oxidase chemistry, Coordination Complexes chemistry, Copper chemistry
- Abstract
Deprotonation of ligand-appended alkoxyl groups in mononuclear copper(II) complexes of N,O ligands L
1 and L2 , gave dinuclear complexes sharing symmetrical Cu2 O2 cores. Molecular structures of these mono- and binuclear complexes have been characterized by XRD, and their electronic structures by UV/Vis,1 H NMR, EPR and DFT; moreover, catalytic performance as models of catechol oxidase was studied. The binuclear complexes with anti-ferromagnetically coupled copper(II) centers are moderately active in quinone formation from 3,5-di-tert-butyl-catechol under the established conditions of oxygen saturation, but are strongly activated when additional dioxygen is administered during catalytic turnover. This unforeseen and unprecedented effect is attributed to increased maximum reaction rates vmax , whereas the substrate affinity KM remains unaffected. Oxygen administration is capable of (partially) removing limitations to turnover caused by product inhibition. Because product inhibition is generally accepted to be a major limitation of catechol oxidase models, we think that our observations will be applicable more widely., (© 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.)- Published
- 2017
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.