10 results on '"Górkiewicz T"'
Search Results
2. High resolution in situ zymography reveals matrix metalloproteinase activity at glutamatergic synapses
- Author
-
Gawlak, M., Górkiewicz, T., Gorlewicz, A., Konopacki, F.A., Kaczmarek, L., and Wilczynski, G.M.
- Published
- 2009
- Full Text
- View/download PDF
3. Brain size, gut size and cognitive abilities: the energy trade-offs tested in artificial selection experiment.
- Author
-
Goncerzewicz A, Górkiewicz T, Dzik JM, Jędrzejewska-Szmek J, Knapska E, and Konarzewski M
- Subjects
- Animals, Biological Evolution, Body Temperature Regulation, Brain metabolism, Cognition, Mammals, Mice, Organ Size physiology, Basal Metabolism physiology, Energy Metabolism
- Abstract
The enlarged brains of homeotherms bring behavioural advantages, but also incur high energy expenditures. The 'expensive brain' (EB) hypothesis posits that the energetic costs of the enlarged brain and the resulting increased cognitive abilities (CA) were met by either increased energy turnover or reduced allocation to other expensive organs, such as the gut. We tested the EB hypothesis by analysing correlated responses to selection in an experimental evolution model system, which comprises line types of laboratory mice selected for high or low basal metabolic rate (BMR), maximum (VO
2max ) metabolic rates and random-bred (unselected) lines. The traits are implicated in the evolution of homeothermy, having been pre-requisites for the encephalization and exceptional CA of mammals, including humans. High-BMR mice had bigger guts, but not brains, than mice of other line types. Yet, they were superior in the cognitive tasks carried out in both reward and avoidance learning contexts and had higher neuronal plasticity (indexed as the long-term potentiation) than their counterparts. Our data indicate that the evolutionary increase of CA in mammals was initially associated with increased BMR and brain plasticity. It was also fuelled by an enlarged gut, which was not traded off for brain size.- Published
- 2022
- Full Text
- View/download PDF
4. Social Transfer of Fear in Rodents.
- Author
-
Kondrakiewicz K, Rokosz-Andraka K, Nikolaev T, Górkiewicz T, Danielewski K, Gruszczyńska A, Meyza K, and Knapska E
- Subjects
- Animals, Mice, Rats, Behavior, Animal physiology, Clinical Protocols, Disease Models, Animal, Extinction, Psychological physiology, Fear physiology, Mental Disorders physiopathology, Social Behavior, Transfer, Psychology physiology
- Abstract
Social transfer of fear is a potent tool facilitating response to danger in animals forming social groups. With many factors influencing the transfer-such as proximity of the animal receiving information to the donor, familiarity, proximity of danger, and species-specific coping strategies-it allows studies of neuronal correlates of a variety of behavioral responses. Since both the transfer of fear and social modulation of fear responses are impaired in many neuropsychological disorders, the models described in this article could be useful in disentangling the neuronal circuitry involved in the pathogenesis of these disorders. © 2019 by John Wiley & Sons, Inc. Basic Protocol 1: Imminent threat in rats Alternate Protocol 1: Imminent threat in mice Basic Protocol 2: Remote threat in rats Alternate Protocol 2: Remote threat in mice Basic Protocol 3: Social modulation of fear extinction in rats Alternate Protocol 3: Social modulation of fear extinction in mice., (© 2019 John Wiley & Sons, Inc.)
- Published
- 2019
- Full Text
- View/download PDF
5. Neuronal TDP-43 depletion affects activity-dependent plasticity.
- Author
-
Koza P, Beroun A, Konopka A, Górkiewicz T, Bijoch L, Torres JC, Bulska E, Knapska E, Kaczmarek L, and Konopka W
- Subjects
- Animals, DNA-Binding Proteins genetics, Dendritic Spines metabolism, Rats, Rats, Transgenic, Receptors, AMPA metabolism, Synaptic Transmission physiology, DNA-Binding Proteins metabolism, Hippocampus metabolism, Memory physiology, Neuronal Plasticity physiology, Neurons metabolism
- Abstract
TAR DNA-binding protein 43 (TDP-43) is a hallmark of some neurodegenerative disorders, such as frontotemporal lobar degeneration and amyotrophic lateral sclerosis. TDP-43-related pathology is characterized by its abnormally phosphorylated and ubiquitinated aggregates. It is involved in many aspects of RNA processing, including mRNA splicing, transport, and translation. However, its exact physiological function and role in mechanisms that lead to neuronal degeneration remain elusive. Transgenic rats that were characterized by TDP-43 depletion in neurons exhibited enhancement of the acquisition of fear memory. At the cellular level, TDP-43-depleted neurons exhibited a decrease in the short-term plasticity of intrinsic neuronal excitability. The induction of long-term potentiation in the CA3-CA1 areas of the hippocampus resulted in more stable synaptic enhancement. At the molecular level, the protein levels of an unedited (R) FLOP variant of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) GluR1 and GluR2/3 subunits decreased in the hippocampus. Alterations of FLOP/FLIP subunit composition affected AMPAR kinetics, reflected by cyclothiazide-dependent slowing of the decay time of AMPAR-mediated miniature excitatory postsynaptic currents. These findings suggest that TDP-43 may regulate activity-dependent neuronal plasticity, possibly by regulating the splicing of genes that are responsible for fast synaptic transmission and membrane potential., (Copyright © 2019 Elsevier Inc. All rights reserved.)
- Published
- 2019
- Full Text
- View/download PDF
6. A novel automated behavioral test battery assessing cognitive rigidity in two genetic mouse models of autism.
- Author
-
Puścian A, Lęski S, Górkiewicz T, Meyza K, Lipp HP, and Knapska E
- Abstract
Repetitive behaviors are a key feature of many pervasive developmental disorders, such as autism. As a heterogeneous group of symptoms, repetitive behaviors are conceptualized into two main subgroups: sensory/motor (lower-order) and cognitive rigidity (higher-order). Although lower-order repetitive behaviors are measured in mouse models in several paradigms, so far there have been no high-throughput tests directly measuring cognitive rigidity. We describe a novel approach for monitoring repetitive behaviors during reversal learning in mice in the automated IntelliCage system. During the reward-motivated place preference reversal learning, designed to assess cognitive abilities of mice, visits to the previously rewarded places were recorded to measure cognitive flexibility. Thereafter, emotional flexibility was assessed by measuring conditioned fear extinction. Additionally, to look for neuronal correlates of cognitive impairments, we measured CA3-CA1 hippocampal long term potentiation (LTP). To standardize the designed tests we used C57BL/6 and BALB/c mice, representing two genetic backgrounds, for induction of autism by prenatal exposure to the sodium valproate. We found impairments of place learning related to perseveration and no LTP impairments in C57BL/6 valproate-treated mice. In contrast, BALB/c valproate-treated mice displayed severe deficits of place learning not associated with perseverative behaviors and accompanied by hippocampal LTP impairments. Alterations of cognitive flexibility observed in C57BL/6 valproate-treated mice were related to neither restricted exploration pattern nor to emotional flexibility. Altogether, we showed that the designed tests of cognitive performance and perseverative behaviors are efficient and highly replicable. Moreover, the results suggest that genetic background is crucial for the behavioral effects of prenatal valproate treatment.
- Published
- 2014
- Full Text
- View/download PDF
7. Impaired rRNA synthesis triggers homeostatic responses in hippocampal neurons.
- Author
-
Kiryk A, Sowodniok K, Kreiner G, Rodriguez-Parkitna J, Sönmez A, Górkiewicz T, Bierhoff H, Wawrzyniak M, Janusz AK, Liss B, Konopka W, Schütz G, Kaczmarek L, and Parlato R
- Abstract
Decreased rRNA synthesis and nucleolar disruption, known as nucleolar stress, are primary signs of cellular stress associated with aging and neurodegenerative disorders. Silencing of rDNA occurs during early stages of Alzheimer's disease (AD) and may play a role in dementia. Moreover, aberrant regulation of the protein synthesis machinery is present in the brain of suicide victims and implicates the epigenetic modulation of rRNA. Recently, we developed unique mouse models characterized by nucleolar stress in neurons. We inhibited RNA polymerase I by genetic ablation of the basal transcription factor TIF-IA in adult hippocampal neurons. Nucleolar stress resulted in progressive neurodegeneration, although with a differential vulnerability within the CA1, CA3, and dentate gyrus (DG). Here, we investigate the consequences of nucleolar stress on learning and memory. The mutant mice show normal performance in the Morris water maze and in other behavioral tests, suggesting the activation of adaptive mechanisms. In fact, we observe a significantly enhanced learning and re-learning corresponding to the initial inhibition of rRNA transcription. This phenomenon is accompanied by aberrant synaptic plasticity. By the analysis of nucleolar function and integrity, we find that the synthesis of rRNA is later restored. Gene expression profiling shows that 36 transcripts are differentially expressed in comparison to the control group in absence of neurodegeneration. Additionally, we observe a significant enrichment of the putative serum response factor (SRF) binding sites in the promoters of the genes with changed expression, indicating potential adaptive mechanisms mediated by the mitogen-activated protein kinase pathway. In the DG a neurogenetic response might compensate the initial molecular deficits. These results underscore the role of nucleolar stress in neuronal homeostasis and open a new ground for therapeutic strategies aiming at preserving neuronal function.
- Published
- 2013
- Full Text
- View/download PDF
8. Reward learning requires activity of matrix metalloproteinase-9 in the central amygdala.
- Author
-
Knapska E, Lioudyno V, Kiryk A, Mikosz M, Górkiewicz T, Michaluk P, Gawlak M, Chaturvedi M, Mochol G, Balcerzyk M, Wojcik DK, Wilczynski GM, and Kaczmarek L
- Subjects
- Amygdala metabolism, Animals, Appetitive Behavior, Matrix Metalloproteinase 9 drug effects, Matrix Metalloproteinase 9 genetics, Mice, Mice, Inbred C57BL, Mice, Knockout, Neurons metabolism, Neurons physiology, Synapses metabolism, Synapses physiology, Tissue Inhibitor of Metalloproteinase-1 pharmacology, Amygdala physiology, Conditioning, Operant, Matrix Metalloproteinase 9 metabolism, Reward
- Abstract
Learning how to avoid danger and pursue reward depends on negative emotions motivating aversive learning and positive emotions motivating appetitive learning. The amygdala is a key component of the brain emotional system; however, an understanding of how various emotions are differentially processed in the amygdala has yet to be achieved. We report that matrix metalloproteinase-9 (MMP-9, extracellularly operating enzyme) in the central nucleus of the amygdala (CeA) is crucial for appetitive, but not for aversive, learning in mice. The knock-out of MMP-9 impairs appetitively motivated conditioning, but not an aversive one. MMP-9 is present at the excitatory synapses in the CeA with its activity greatly enhanced after the appetitive training. Finally, blocking extracellular MMP-9 activity with its inhibitor TIMP-1 provides evidence that local MMP-9 activity in the CeA is crucial for the appetitive, but not for aversive, learning.
- Published
- 2013
- Full Text
- View/download PDF
9. Matrix metalloproteinases 2 and 9 fail to influence drug-induced neuroapoptosis in developing rat brain.
- Author
-
Uckermann O, Luksch H, Stefovska V, Hoehna Y, Marzahn J, Theil M, Pesic M, Górkiewicz T, Gawlak M, Wilczynski GM, Kaczmarek L, and Ikonomidou C
- Subjects
- Animals, Animals, Newborn, Apoptosis drug effects, Brain drug effects, Brain growth & development, Matrix Metalloproteinase 2 physiology, Matrix Metalloproteinase 9 physiology, Mice, Mice, Inbred C57BL, Mice, Knockout, Neurons enzymology, Rats, Rats, Wistar, Apoptosis physiology, Brain enzymology, Dizocilpine Maleate toxicity, Matrix Metalloproteinase 2 metabolism, Matrix Metalloproteinase 9 metabolism, Neurons cytology, Neurons drug effects, Phenobarbital toxicity
- Abstract
Matrix metalloproteinases (MMPs) play an essential role in tissue repair, cell death, and morphogenesis. The aim of the present study was to investigate potential involvement of selected MMPs in the pathogenesis of neuronal apoptosis induced by the NMDA antagonist MK-801 (dizocilpine) or the GABA(A) agonist phenobarbital in infant rats, transgenic rats overexpressing MMP-9 and MMP-9 knockout mice. Seven-day-old rats or knockout mice received intraperitoneal injections of MK-801, 1 mg/kg, or phenobarbital, 50 mg/kg. At different survival intervals following administration of the compounds (1-72 h), pups were sacrificed, tissue from different brain regions was isolated, and the expression and activity of MMP-2 and MMP-9 were analyzed by real-time PCR, western blot, and zymography. In addition, brains were fixed and processed for TUNEL staining. In all the brain regions analyzed, we found an increased number of TUNEL-positive cells 24 h after administration of MK-801. After treatment, we detected no significant increase in MMP-2 or MMP-9 mRNA expression in cortical areas. No changes in the MMP-9 protein expression or gelatinolytic activity of MMP-2 were observed in conjunction with MK-801 or phenobarbital-induced neuroapoptosis in any brain region analyzed. The extent of neurodegeneration induced by MK-801 or phenobarbital was not altered in MMP-9 transgenic rats and was increased in MMP-9 knockout mice compared to wild-type rats and mice. Treatment with the panmetalloproteinase inhibitor GM6001 did not confer protection against MK-801-induced apoptotic cell death in the developing rat brain. Our results suggest that activation of MMP-9 and MMP-2 does not contribute to pathogenesis of neuronal apoptosis caused by NMDA antagonists or GABA(A) agonists in the developing rat and mouse brain.
- Published
- 2011
- Full Text
- View/download PDF
10. Microsporidia infect the Liophloeus lentus (Insecta, Colepotera) ovarioles, developing oocytes and eggs.
- Author
-
Swiatek P and Górkiewicz T
- Subjects
- Animals, Female, Ovary ultrastructure, Coleoptera microbiology, Microsporidia isolation & purification, Oocytes microbiology, Ovary microbiology, Ovum microbiology
- Abstract
In the ovarioles of Liophloeus lentus (Insecta, Coleoptera, Curculionidae) two types of bacteria and parasitic microorganisms belonging to Microsporidia have been found. This study shows that the different microsporidian life stages (meronts, sporonts, sporoblasts and spores) infect the outer ovariole sheath, trophic chambers, follicular cells, late previtellogenic and vitellogenic oocytes and eggs. In trophic chambers the parasites are very abundant and are distributed unevenly, i.e. their large mass occupies the syncytial cytoplasm between the nurse cell nuclei, whereas the neck region of the trophic chamber (which houses young oocytes, prefollicular cells and trophic cords) is almost free of parasites. The developing oocytes and eggs contain a lower number of parasites which are usually distributed in the cortical ooplasm. The gross morphology of the ovaries is similar in infected and non-infected specimens. Similarly, the presence of a parasite seems to not disturb the course of oogensis. The only difference was found in the ultrastructure of mitochondria in young previtellogenic oocytes. In the infected females they are unusual i.e. bigger and spherical with tubullar cristae, whereas in the non-infected insects they are elongated and have lamellar cristae. As oogenesis progresses the unusual mitochondria rapidly change their morphology and become similar to the mitochondria in non-infected females. Taking into account the distribution of parasites within the ovarioles, it is suggested that they infect growing oocytes via outer ovariole sheath and follicular epithelium rather than via trophic cords.
- Published
- 2006
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.