1. Exact calculations of the thermal properties of two-electron GaAs quantum dots with inverse-square interactions
- Author
-
Nammas, F.S., Hasan, Eyad Hasan, and Alnowafa, A.N.
- Subjects
Mathematical models -- Usage ,Gallium arsenide -- Thermal properties -- Models ,Functions, Inverse -- Usage ,Quantum dots -- Thermal properties -- Models ,Physics - Abstract
In this study, we theoretically scrutinize the effect of the inverse-square interaction on the thermal properties of two electrons trapped in a parabolic GaAs quantum dot. The analytical energy spectrum was used to calculate the thermal properties of the system using the canonical ensemble formalism. It was found that the thermal energy increased with the increase in temperature, while it remained almost constant for sufficiently low temperatures; it was also demonstrated that the inverse-square interaction increased the thermal mean energy. Moreover, the heat capacity increased sharply within a low-temperature window and saturated to the value of 2 [k.sub.B] in the high-temperature limit. As expected, entropy increased linearly with increasing temperature. It was also shown that both entropy and heat capacity decreased rapidly when the confinement strength increased (or the dot size decreased) in the low-temperature limit, regardless of the influence of the interaction between the electrons. We also show that the number of allowed states of the system decreased as the interaction strength increased (Z([lambda] = 0) > Z([lambda] [not equal to] 0)). Finally, the stability of the system was investigated through F-T curves. The three-dimensional surface for the temperature-dependent mean energy and heat capacity was also plotted. It should be noted that, for the thermal mean energy, partition function, and Helmholtz free energy, the normal physical behavior of the two-oscillator system with Fermi statistics is recovered for [lambda] [right arrow] 0. However, heat capacity and entropy show exact two-fermion oscillator system behavior. The most impressive result found in this work is that the inverse-square interaction does not affect the heat capacity and entropy at all despite its noticeable effects on the thermal mean energy. This, in turn, facilitates theoretical studies related to finding the distinctive parameters of quantum dots without going into the heavy calculations resulting from the effects of interactions. Key words: quantum dot, inverse-square interaction, heat capacity, Helmholtz free energy, entropy. Nous completons une etude theorique de l'effet de l'interaction en carre inverse sur les proprietes thermiques de deux electrons captifs dans un point quantique parabolique GaAs. Le spectre analytique en energie est utilise pour calculer les proprietes thermiques de ce systeme en utilisant le formalisme de l'ensemble canonique. Nous trouvons que l'energie thermique augmente avec la temperature, mais demeure pratiquement constante aux temperatures suffisamment basses. Nous demontrons aussi que l'interaction en carre inverse augmente l'energie thermique moyenne. De plus, la capacite calorifique augmente rapidement a l'interieur d'une fenetre a basse temperature et elle sature a la valeur 2[k.sub.B] dans la limite des hautes temperatures. Comme attendu, l'entropie augmente lineairement avec la temperature. Nous montrons egalement que l'entropie et la capacite calorifique diminuent rapidement lorsque la force de confinement augmente (le point quantique se contracte) dans la limite des basses temperatures et ce, sans regard a l'influence de l'interaction entre les electrons. Nous montrons aussi que le nombre des etats permis du systeme diminue lorsque la force d'interaction augmente (Z([lambda] = 0) > Z([lambda] [not equal to] 0)). Finalement, nous etudions la stabilite du systeme a l'aide des courbes F-T. Nous tracons des courbes de la surface tridimensionnelle pour la dependance en temperature de l'energie moyenne et de la capacite calorifique. Il faut souligner que, pour l'energie thermique moyenne, la fonction de partition et l'energie libre de Helmholtz, nous recouvrons le comportement physique normal d'un systeme a deux oscillateurs obeissant a la statistique de Fermi dans la limite ou [lambda] [right arrow] 0. Cependant, pour la capacite calorifique et l'entropie, le comportement est alors celui d'un oscillateur a deux fermions. Le resultat le plus impressionnant ici, c'est que l'interaction en carre inverse n'affecte en aucune facon la capacite calorifique ni l'entropie, malgre un effet tres notable sur l'energie thermique moyenne. En retour, ceci facilite les etudes theoriques reliees a la decouverte de parametres distinctifs de points quantiques, sans aller dans des calculs lourds resultant des effets de l'interaction. [Traduit par la Redaction] Mots-cles: point quantique, interaction en carre inverse, capacite calorifique, energie libre d'Helmholtz, entropie., 1. Introduction In the last decade, researchers have been extensively interested in nanotechnology in all its theoretical and experimental branches because of its ability to create a wide range of [...]
- Published
- 2022
- Full Text
- View/download PDF