32 results on '"Fuks, Francois"'
Search Results
2. Mesp1 controls the chromatin and enhancer landscapes essential for spatiotemporal patterning of early cardiovascular progenitors
- Author
-
Lin, Xionghui, Swedlund, Benjamin, Ton, Mai-Linh N., Ghazanfar, Shila, Guibentif, Carolina, Paulissen, Catherine, Baudelet, Elodie, Plaindoux, Elise, Achouri, Younes, Calonne, Emilie, Dubois, Christine, Mansfield, William, Zaffran, Stéphane, Marioni, John C., Fuks, Francois, Göttgens, Berthold, Lescroart, Fabienne, and Blanpain, Cédric
- Published
- 2022
- Full Text
- View/download PDF
3. Circulating Unmethylated CHTOP and INS DNA Fragments Provide Evidence of Possible Islet Cell Death in Youth with Obesity and Diabetes
- Author
-
Syed, Farooq, primary, Tersey, Sarah A., primary, Turatsinze, Jean-Valery, primary, Felton, Jamie L, primary, Nelson, Jennifer B, primary, Sims, Emily K, primary, Defrance, Mathieu, primary, Bizet, Martin, primary, Fuks, Francois, primary, Cnop, Miriam, primary, Bugliani, Marco, primary, Marchetti, Piero, primary, Ziegler, Anette-Gabriele, primary, Bonifacio, Ezio, primary, Webb-Robertson, Bobbie-Jo, primary, Balamurugan, Appakalai N, primary, Evans-Molina, Carmella, primary, Eizirik, Decio L, primary, Mather, Kieren J, primary, Arslanian, Silva, primary, and Mirmira, Raghavendra G, primary
- Published
- 2021
- Full Text
- View/download PDF
4. Methyltransferase Recruitment and DNA Hypermethylation of Target Promoters by an Oncogenic Transcription Factor
- Author
-
Di Croce, Luciano, Raker, Veronica A., Corsaro, Massimo, Fazi, Francesco, Fanelli, Mirco, Faretta, Mario, Fuks, Francois, Lo Coco, Francesco, Kouzarides, Tony, Nervi, Clara, Minucci, Saverio, and Pelicci, Pier Giuseppe
- Published
- 2002
5. Circulating unmethylated CHTOP and INS DNA fragments provide evidence of possible islet cell death in youth with obesity and diabetes
- Author
-
Syed, Farooq, Tersey, Sarah A., Turatsinze, Jean-Valery, Felton, Jamie L., Kang, Nicole Jiyun, Nelson, Jennifer B., Sims, Emily K., Defrance, Mathieu, Bizet, Martin, Fuks, Francois, Cnop, Miriam, Bugliani, Marco, Marchetti, Piero, Ziegler, Anette-Gabriele, Bonifacio, Ezio, Webb-Robertson, Bobbie-Jo, Balamurugan, Appakalai N., Evans-Molina, Carmella, Eizirik, Decio L., Mather, Kieren J., Arslanian, Silva, and Mirmira, Raghavendra G.
- Published
- 2020
- Full Text
- View/download PDF
6. Transcriptome-wide distribution and function of RNA hydroxymethylcytosine
- Author
-
Delatte, Benjamin, Wang, Fei, Ngoc, Long Vo, Collignon, Evelyne, Bonvin, Elise, Deplus, Rachel, Calonne, Emilie, Hassabi, Bouchra, Putmans, Pascale, Awe, Stephan, Wetzel, Collin, Kreher, Judith, Soin, Romuald, Creppe, Catherine, Limbach, Patrick A., Gueydan, Cyril, Kruys, Véronique, Brehm, Alexander, Minakhina, Svetlana, Defrance, Matthieu, Steward, Ruth, and Fuks, François
- Published
- 2016
7. DNA methylation-based immune response signature improves patient diagnosis in multiple cancers
- Author
-
Jeschke, Jana, Bizet, Martin, Desmedt, Christine, Calonne, Emilie, Dedeurwaerder, Sarah, Garaud, Soizic, Koch, Alexander, Larsimont, Denis, Salgado, Roberto, Van den Eynden, Gert, Gallo, Karen Willard, Bontempi, Gianluca, Defrance, Matthieu, Sotiriou, Christos, and Fuks, Francois
- Subjects
Methylation -- Research ,DNA -- Research ,Immune response -- Research ,Breast cancer -- Genetic aspects -- Diagnosis -- Prognosis -- Research ,Health care industry - Abstract
BACKGROUND. The tumor immune response is increasingly associated with better clinical outcomes in breast and other cancers. However, the evaluation of tumor-infiltrating lymphocytes (TILs) relies on histopathological measurements with limited accuracy and reproducibility. Here, we profiled DNA methylation markers to identify a methylation of TIL (MeTIL) signature that recapitulates TIL evaluations and their prognostic value for long-term outcomes in breast cancer (BC). METHODS. MeTIL signature scores were correlated with clinical endpoints reflecting overall or disease-free survival and a pathologic complete response to preoperative anthracycline therapy in 3 BC cohorts from the Jules Bordet Institute in Brussels and in other cancer types from The Cancer Genome Atlas. RESULTS. The MeTIL signature measured TIL distributions in a sensitive manner and predicted survival and response to chemotherapy in BC better than did histopathological assessment of TILs or gene expression-based immune markers, respectively. The MeTIL signature also improved the prediction of survival in other malignancies, including melanoma and lung cancer. Furthermore, the MeTIL signature predicted differences in survival for malignancies in which TILs were not known to have a prognostic value. Finally, we showed that MeTIL markers can be determined by bisulfite pyrosequencing of small amounts of DNA from formalin-fixed, paraffin-embedded tumor tissue, supporting clinical applications for this methodology. CONCLUSIONS. This study highlights the power of DNA methylation to evaluate tumor immune responses and the potential of this approach to improve the diagnosis and treatment of breast and other cancers. FUNDING. This work was funded by the Fonds National de la Recherche Scientifique (FNRS) and Televie, the INNOVIRIS Brussels Region BRUBREAST Project, the IUAP P7/03 program, the Belgian 'Foundation against Cancer,' the Breast Cancer Research Foundation (BCRF), and the Fonds Gaston Ithier., Introduction Breast cancer (BC) remains challenging to treat because of its vast heterogeneous nature. Even within BC subtypes, patients experience different rates of survival and responses to anticancer therapies. This [...]
- Published
- 2017
- Full Text
- View/download PDF
8. Stable knockdown of attached cells with pSUPER.retro.puro vector
- Author
-
Fuks, Francois, primary
- Published
- 2022
- Full Text
- View/download PDF
9. RNA m6A and 5hmC regulate monocyte and macrophage gene expression programs
- Author
-
Pinello, Natalia, primary, Song, Renhua, additional, Lee, Quintin, additional, Calonne, Emilie, additional, Duan, Kun-Long, additional, Wong, Emilie, additional, Tieng, Jessica, additional, Mehravar, Majid, additional, Rong, Bowen, additional, Lan, Fei, additional, Roediger, Ben, additional, Ma, Cheng-Jie, additional, Yuan, Bi-Feng, additional, Rasko, John EJ, additional, Larance, Mark, additional, Ye, Dan, additional, Fuks, Francois, additional, and Wong, Justin J-L, additional
- Published
- 2022
- Full Text
- View/download PDF
10. Editorial overview: Epitranscriptomics: Exploring a new frontier in health and disease
- Author
-
Fuks, François and Kharas, Michael
- Published
- 2024
- Full Text
- View/download PDF
11. The RNA demethylase FTO controls m6A marking on SARS-CoV-2 and classifies COVID-19 severity in patients
- Author
-
Malbec, Lionel, primary, Celerier, Margot, additional, Bizet, Martin, additional, Calonne, Emilie, additional, Hofmann-Winkler, Heike, additional, Boeckx, Bram, additional, Abdelnabi, Rana, additional, Putmans, Pascale, additional, Hassabi, Bouchra, additional, Naesens, Lieve, additional, Lambrechts, Diether, additional, Pöhlmann, Stefan, additional, Deplus, Rachel, additional, Delang, Leen, additional, Jeschke, Jana, additional, and Fuks, Francois, additional
- Published
- 2022
- Full Text
- View/download PDF
12. SOX2 controls tumour initiation and cancer stem-cell functions in squamous-cell carcinoma
- Author
-
Boumahdi, Soufiane, Driessens, Gregory, Lapouge, Gaelle, Rorive, Sandrine, Nassar, Dany, Le Mercier, Marie, Delatte, Benjamin, Caauwe, Amelie, Lenglez, Sandrine, Nkusi, Erwin, Brohee, Sylvain, Salmon, Isabelle, Dubois, Christine, del Marmol, Veronique, Fuks, Francois, Beck, Benjamin, and Blanpain, Cedric
- Subjects
Stem cells -- Genetic aspects -- Health aspects ,Squamous cell carcinoma -- Development and progression -- Genetic aspects ,Transcription factors -- Health aspects ,Environmental issues ,Science and technology ,Zoology and wildlife conservation - Abstract
Here, in a mouse model of skin squamous cell carcinoma, a key role is demonstrated for the transcription factor SOX2 in the initiation and progression of skin tumours. SOX2 involved in skin cancer In a mouse model of skin carcinogenesis, Cédric Blanpain and colleagues demonstrate a key role for the transcription factor SOX2 in initiation and progression of skin tumours. SOX2 is not expressed in normal skin, but it appears at an early stage in tumour formation. Tumour initiation can be prevented by deletion of the Sox2 gene. In addition, SOX2-expressing cells function as tumour propagating cells upon transplantation, while the removal of SOX2-postive cells from established tumours leads to regression. SOX2 appears to be able to contribute to both tumour initiation and progression by directly regulating genes involved in cancer functions such as stemness, proliferation, survival and invasion. Cancer stem cells (CSCs) have been reported in various cancers, including in skin squamous-cell carcinoma (SCC).sup.1,2,3,4. The molecular mechanisms regulating tumour initiation and stemness are still poorly characterized. Here we find that Sox2, a transcription factor expressed in various types of embryonic and adult stem cells.sup.5,6, was the most upregulated transcription factor in the CSCs of squamous skin tumours in mice. SOX2 is absent in normal epidermis but begins to be expressed in the vast majority of mouse and human pre-neoplastic skin tumours, and continues to be expressed in a heterogeneous manner in invasive mouse and human SCCs. In contrast to other SCCs, in which SOX2 is frequently genetically amplified.sup.7, the expression of SOX2 in mouse and human skin SCCs is transcriptionally regulated. Conditional deletion of Sox2 in the mouse epidermis markedly decreases skin tumour formation after chemical-induced carcinogenesis. Using green fluorescent protein (GFP) as a reporter of Sox2 transcriptional expression (SOX2-GFP knock-in mice), we showed that SOX2-expressing cells in invasive SCC are greatly enriched in tumour-propagating cells, which further increase upon serial transplantations. Lineage ablation of SOX2-expressing cells within primary benign and malignant SCCs leads to tumour regression, consistent with the critical role of SOX2-expressing cells in tumour maintenance. Conditional Sox2 deletion in pre-existing skin papilloma and SCC leads to tumour regression and decreases the ability of cancer cells to be propagated upon transplantation into immunodeficient mice, supporting the essential role of SOX2 in regulating CSC functions. Transcriptional profiling of SOX2-GFP-expressing CSCs and of tumour epithelial cells upon Sox2 deletion uncovered a gene network regulated by SOX2 in primary tumour cells in vivo. Chromatin immunoprecipitation identified several direct SOX2 target genes controlling tumour stemness, survival, proliferation, adhesion, invasion and paraneoplastic syndrome. We demonstrate that SOX2, by marking and regulating the functions of skin tumour-initiating cells and CSCs, establishes a continuum between tumour initiation and progression in primary skin tumours., Author(s): Soufiane Boumahdi [sup.1] , Gregory Driessens [sup.1] , Gaelle Lapouge [sup.1] , Sandrine Rorive [sup.2] [sup.3] , Dany Nassar [sup.1] , Marie Le Mercier [sup.2] , Benjamin Delatte [sup.4] [...]
- Published
- 2014
- Full Text
- View/download PDF
13. Role of the Polycomb Repressive Complex 2 in Acute Promyelocytic Leukemia
- Author
-
Villa, Raffaella, Pasini, Diego, Gutierrez, Arantxa, Morey, Lluis, Occhionorelli, Manuela, Viré, Emmanuelle, Nomdedeu, Josep F., Jenuwein, Thomas, Pelicci, Pier Giuseppe, Minucci, Saverio, Fuks, Francois, Helin, Kristian, and Di Croce, Luciano
- Published
- 2007
- Full Text
- View/download PDF
14. Positioning Europe for the EPITRANSCRIPTOMICS challenge
- Author
-
Jantsch, Michael F., Quattrone, Alessandro, O'Connell, Mary, Helm, Mark, Frye, Michaela, Macias-Gonzales, Manuel, Ohman, Marie, Ameres, Stefan, Willems, Luc, Fuks, Francois, Oulas, Anastasis, Vanacova, Stepanka, Nielsen, Henrik, Bousquet-Antonelli, Cecile, Motorin, Yuri, Roignant, Jean-Yves, Balatsos, Nikolaos, Dinnyes, Andras, Baranov, Pavel, Kelly, Vincent, Lamm, Ayelet, Rechavi, Gideon, Pelizzola, Mattia, Liepins, Janis, Kholodnyuk, Irina Holodnuka, Zammit, Vanessa, Ayers, Duncan, Drablos, Finn, Dahl, John Arne, Bujnicki, Janusz, Jeronimo, Carmen, Almeida, Raquel, Neagu, Monica, Costache, Marieta, Banković, Jasna, Banović Đeri, Bojana, Kyselovic, Jan, Valor, Luis Miguel, Selbert, Stefan, Pir, Pinar, Demircan, Turan, Cowling, Victoria, Schaefer, Matthias, Rossmanith, Walter, Lafontaine, Denis, David, Alexandre, Carre, Clement, Lyko, Frank, Schaffrath, Raffael, Schwartz, Schraga, Verdel, Andre, Klungland, Arne, Purta, Elzbieta, Timotijević, Gordana, Cardona, Fernando, Davalos, Alberto, Ballana, Ester, O'Carroll, Donal, Ule, Jernej, Fray, Rupert, Jantsch, Michael F., Quattrone, Alessandro, O'Connell, Mary, Helm, Mark, Frye, Michaela, Macias-Gonzales, Manuel, Ohman, Marie, Ameres, Stefan, Willems, Luc, Fuks, Francois, Oulas, Anastasis, Vanacova, Stepanka, Nielsen, Henrik, Bousquet-Antonelli, Cecile, Motorin, Yuri, Roignant, Jean-Yves, Balatsos, Nikolaos, Dinnyes, Andras, Baranov, Pavel, Kelly, Vincent, Lamm, Ayelet, Rechavi, Gideon, Pelizzola, Mattia, Liepins, Janis, Kholodnyuk, Irina Holodnuka, Zammit, Vanessa, Ayers, Duncan, Drablos, Finn, Dahl, John Arne, Bujnicki, Janusz, Jeronimo, Carmen, Almeida, Raquel, Neagu, Monica, Costache, Marieta, Banković, Jasna, Banović Đeri, Bojana, Kyselovic, Jan, Valor, Luis Miguel, Selbert, Stefan, Pir, Pinar, Demircan, Turan, Cowling, Victoria, Schaefer, Matthias, Rossmanith, Walter, Lafontaine, Denis, David, Alexandre, Carre, Clement, Lyko, Frank, Schaffrath, Raffael, Schwartz, Schraga, Verdel, Andre, Klungland, Arne, Purta, Elzbieta, Timotijević, Gordana, Cardona, Fernando, Davalos, Alberto, Ballana, Ester, O'Carroll, Donal, Ule, Jernej, and Fray, Rupert
- Abstract
The genetic alphabet consists of the four letters: C, A, G, and T in DNA and C,A,G, and U in RNA. Triplets of these four letters jointly encode 20 different amino acids out of which proteins of all organisms are built. This system is universal and is found in all kingdoms of life. However, bases in DNA and RNA can be chemically modified. In DNA, around 10 different modifications are known, and those have been studied intensively over the past 20years. Scientific studies on DNA modifications and proteins that recognize them gave rise to the large field of epigenetic and epigenomic research. The outcome of this intense research field is the discovery that development, ageing, and stem-cell dependent regeneration but also several diseases including cancer are largely controlled by the epigenetic state of cells. Consequently, this research has already led to the first FDA approved drugs that exploit the gained knowledge to combat disease. In recent years, the similar to 150 modifications found in RNA have come to the focus of intense research. Here we provide a perspective on necessary and expected developments in the fast expanding area of RNA modifications, termed epitranscriptomics.
- Published
- 2018
15. Positioning Europe for the EPITRANSCRIPTOMICS challenge
- Author
-
Jantsch, Michael F, Quattrone, Alessandro, O'Connell, Mary, Helm, Mark, Frye, Michaela, Macias-Gonzales, Manuel, Ohman, Marie, Ameres, Stefan, Willems, Luc, Fuks, Francois, Oulas, Anastasis, Vanacova, Stepanka, Nielsen, Henrik, Bousquet-Antonelli, Cecile, Motorin, Yuri, Roignant, Jean-Yves, Balatsos, Nikolaos, Dinnyes, Andras, Baranov, Pavel, Kelly, Vincent, Lamm, Ayelet, Rechavi, Gideon, Pelizzola, Mattia, Liepins, Janis, Holodnuka Kholodnyuk, Irina, Zammit, Vanessa, Ayers, Duncan, Drablos, Finn, Dahl, John Arne, Bujnicki, Janusz, Jeronimo, Carmen, Almeida, Raquel, Neagu, Monica, Costache, Marieta, Bankovic, Jasna, Banovic, Bojana, Kyselovic, Jan, Valor, Luis Miguel, Selbert, Stefan, Pir, Pinar, Demircan, Turan, Cowling, Victoria, Schäfer, Matthias, Rossmanith, Walter, Lafontaine, Denis, David, Alexandre, Carre, Clement, Lyko, Frank, Schaffrath, Raffael, Schwartz, Schraga, Verdel, Andre, Klungland, Arne, Purta, Elzbieta, Timotijevic, Gordana, Cardona, Fernando, Davalos, Alberto, Ballana, Ester, O Carroll, Donal, Ule, Jernej, Fray, Rupert, Jantsch, Michael F, Quattrone, Alessandro, O'Connell, Mary, Helm, Mark, Frye, Michaela, Macias-Gonzales, Manuel, Ohman, Marie, Ameres, Stefan, Willems, Luc, Fuks, Francois, Oulas, Anastasis, Vanacova, Stepanka, Nielsen, Henrik, Bousquet-Antonelli, Cecile, Motorin, Yuri, Roignant, Jean-Yves, Balatsos, Nikolaos, Dinnyes, Andras, Baranov, Pavel, Kelly, Vincent, Lamm, Ayelet, Rechavi, Gideon, Pelizzola, Mattia, Liepins, Janis, Holodnuka Kholodnyuk, Irina, Zammit, Vanessa, Ayers, Duncan, Drablos, Finn, Dahl, John Arne, Bujnicki, Janusz, Jeronimo, Carmen, Almeida, Raquel, Neagu, Monica, Costache, Marieta, Bankovic, Jasna, Banovic, Bojana, Kyselovic, Jan, Valor, Luis Miguel, Selbert, Stefan, Pir, Pinar, Demircan, Turan, Cowling, Victoria, Schäfer, Matthias, Rossmanith, Walter, Lafontaine, Denis, David, Alexandre, Carre, Clement, Lyko, Frank, Schaffrath, Raffael, Schwartz, Schraga, Verdel, Andre, Klungland, Arne, Purta, Elzbieta, Timotijevic, Gordana, Cardona, Fernando, Davalos, Alberto, Ballana, Ester, O Carroll, Donal, Ule, Jernej, and Fray, Rupert
- Abstract
The genetic alphabet consists of the four letters: C, A, G, and T in DNA and C,A,G, and U in RNA. Triplets of these four letters jointly encode 20 different amino acids out of which proteins of all organisms are built. This system is universal and is found in all kingdoms of life. However, bases in DNA and RNA can be chemically modified. In DNA, around 10 different modifications are known, and those have been studied intensively over the past 20 years. Scientific studies on DNA modifications and proteins that recognize them gave rise to the large field of epigenetic and epigenomic research. The outcome of this intense research field is the discovery that development, ageing, and stem-cell dependent regeneration but also several diseases including cancer are largely controlled by the epigenetic state of cells. Consequently, this research has already led to the first FDA approved drugs that exploit the gained knowledge to combat disease. In recent years, the ~150 modifications found in RNA have come to the focus of intense research. Here we provide a perspective on necessary and expected developments in the fast expanding area of RNA modifications, termed epitranscriptomics.
- Published
- 2018
16. Positioning Europe for the EPITRANSCRIPTOMICS challenge
- Author
-
Jantsch, Michael F., primary, Quattrone, Alessandro, additional, O'Connell, Mary, additional, Helm, Mark, additional, Frye, Michaela, additional, Macias-Gonzales, Manuel, additional, Ohman, Marie, additional, Ameres, Stefan, additional, Willems, Luc, additional, Fuks, Francois, additional, Oulas, Anastasis, additional, Vanacova, Stepanka, additional, Nielsen, Henrik, additional, Bousquet-Antonelli, Cecile, additional, Motorin, Yuri, additional, Roignant, Jean-Yves, additional, Balatsos, Nikolaos, additional, Dinnyes, Andras, additional, Baranov, Pavel, additional, Kelly, Vincent, additional, Lamm, Ayelet, additional, Rechavi, Gideon, additional, Pelizzola, Mattia, additional, Liepins, Janis, additional, Holodnuka Kholodnyuk, Irina, additional, Zammit, Vanessa, additional, Ayers, Duncan, additional, Drablos, Finn, additional, Dahl, John Arne, additional, Bujnicki, Janusz, additional, Jeronimo, Carmen, additional, Almeida, Raquel, additional, Neagu, Monica, additional, Costache, Marieta, additional, Bankovic, Jasna, additional, Banovic, Bojana, additional, Kyselovic, Jan, additional, Valor, Luis Miguel, additional, Selbert, Stefan, additional, Pir, Pinar, additional, Demircan, Turan, additional, Cowling, Victoria, additional, Schäfer, Matthias, additional, Rossmanith, Walter, additional, Lafontaine, Denis, additional, David, Alexandre, additional, Carre, Clement, additional, Lyko, Frank, additional, Schaffrath, Raffael, additional, Schwartz, Schraga, additional, Verdel, Andre, additional, Klungland, Arne, additional, Purta, Elzbieta, additional, Timotijevic, Gordana, additional, Cardona, Fernando, additional, Davalos, Alberto, additional, Ballana, Ester, additional, O´Carroll, Donal, additional, Ule, Jernej, additional, and Fray, Rupert, additional
- Published
- 2018
- Full Text
- View/download PDF
17. The Polycomb group protein EZH2 directly controls DNA methylation
- Author
-
Vire, Emmanuelle, Brenner, Carmen, Deplus, Rachel, Blanchon, Loic, Fraga, Mario, Didelot, Celine, Morey, Lluis, Van Eynde, Aleyde, Bernard, David, Vanderwinden, Jean-Marie, Bollen, Mathieu, Esteller, Manel, Di Croce, Luciano, de Launoit, Yvan, and Fuks, Francois
- Subjects
Environmental issues ,Science and technology ,Zoology and wildlife conservation - Abstract
Author(s): Emmanuelle Viré [1]; Carmen Brenner [1]; Rachel Deplus [1]; Loïc Blanchon [1]; Mario Fraga [2]; Céline Didelot [1]; Lluis Morey [3]; Aleyde Van Eynde [4]; David Bernard [1]; Jean-Marie [...]
- Published
- 2006
- Full Text
- View/download PDF
18. Meeting Report of the Fifth International Cancer Epigenetics Conference in Beijing, China, October 2016
- Author
-
Gao, Dan, primary, Herman, James G, additional, Cui, Hengmi, additional, Jen, Jin, additional, Fuks, Francois, additional, Brock, Malcolm V, additional, Ushijima, Toshikazu, additional, Croce, Carlo, additional, Akiyama, Yoshimitsu, additional, and Guo, Mingzhou, additional
- Published
- 2017
- Full Text
- View/download PDF
19. EMSY links the BRCA2 pathway to sporadic breast and ovarian cancer
- Author
-
Hughes-Davies, Luke, Huntsman, David, Ruas, Margarida, Fuks, Francois, Bye, Jacqueline, Chin, Suet-Feung, Milner, Jonathon, Brown, Lindsay A., Hsu, Forrest, Gilks, Blake, Nielsen, Torsten, Schulzer, Michael, Chia, Stephen, Ragaz, Joseph, Cahn, Anthony, Linger, Lori, Ozdag, Hilal, Cattaneo, Elena, Jordanova, E.S., Schuuring, Edward, Yu, David S., Venkitaraman, Ashok, Ponder, Bruce, Doherty, Aidan, Aparicio, Samuel, Bentley, David, Theillet, Charles, Ponting, Chris P., Caldas, Carlos, and Kouzarides, Tony
- Subjects
Breast cancer -- Genetic aspects ,Gene amplification -- Analysis ,Genetic regulation -- Analysis ,Ovarian cancer -- Research ,Biological sciences - Abstract
Research demonstrates that EMSY protein binds BRCA2 within exon 3 region, which is deleted in cancer. It can silence the activation potential of BRCA2 exon 3 and is localized to sites of repair, following DNA damage, on chromosome 11q13.5 involved in breast and ovarian cancer. Furthermore, EMSY gene is amplified in sporadic breast cancer and advanced ovarian cancer.
- Published
- 2003
20. Sox9 Controls Self-Renewal of Oncogene Targeted Cells and Links Tumor Initiation and Invasion
- Author
-
Larsimont, Jean-Christophe, primary, Youssef, Khalil Kass, additional, Sánchez-Danés, Adriana, additional, Sukumaran, Vijayakumar, additional, Defrance, Matthieu, additional, Delatte, Benjamin, additional, Liagre, Mélanie, additional, Baatsen, Pieter, additional, Marine, Jean-Christophe, additional, Lippens, Saskia, additional, Guerin, Christopher, additional, Del Marmol, Véronique, additional, Vanderwinden, Jean-Marie, additional, Fuks, Francois, additional, and Blanpain, Cédric, additional
- Published
- 2015
- Full Text
- View/download PDF
21. DNA Hydroxymethylation Profiling Reveals that WT1 Mutations Result in Loss of TET2 Function in Acute Myeloid Leukemia
- Author
-
Rampal, Raajit, primary, Alkalin, Altuna, additional, Madzo, Jozef, additional, Vasanthakumar, Aparna, additional, Pronier, Elodie, additional, Patel, Jay, additional, Li, Yushan, additional, Ahn, Jihae, additional, Abdel-Wahab, Omar, additional, Shih, Alan, additional, Lu, Chao, additional, Ward, Patrick S., additional, Tsai, Jennifer J., additional, Hricik, Todd, additional, Tosello, Valeria, additional, Tallman, Jacob E., additional, Zhao, Xinyang, additional, Daniels, Danette, additional, Dai, Qing, additional, Ciminio, Luisa, additional, Aifantis, Iannis, additional, He, Chuan, additional, Fuks, Francois, additional, Tallman, Martin S., additional, Ferrando, Adolfo, additional, Nimer, Stephen, additional, Paietta, Elisabeth, additional, Thompson, Craig B., additional, Licht, Jonathan D., additional, Mason, Christopher E., additional, Godley, Lucy A., additional, Melnick, Ari, additional, Figueroa, Maria E., additional, and Levine, Ross L., additional
- Published
- 2014
- Full Text
- View/download PDF
22. Dietary Flavanols Modulate the Transcription of Genes Associated with Cardiovascular Pathology without Changes in Their DNA Methylation State
- Author
-
Milenkovic, Dragan, primary, Vanden Berghe, Wim, additional, Boby, Céline, additional, Leroux, Christine, additional, Declerck, Ken, additional, Szarc vel Szic, Katarzyna, additional, Heyninck, Karen, additional, Laukens, Kris, additional, Bizet, Martin, additional, Defrance, Matthieu, additional, Dedeurwaerder, Sarah, additional, Calonne, Emilie, additional, Fuks, Francois, additional, Haegeman, Guy, additional, Haenen, Guido R. M. M., additional, Bast, Aalt, additional, and Weseler, Antje R., additional
- Published
- 2014
- Full Text
- View/download PDF
23. A cancer biologist marvels at how key gene regulators are still revealing hidden talents
- Author
-
Fuks, Francois
- Subjects
Genetic regulation -- Physiological aspects ,Animal development -- Genetic aspects ,Environmental issues ,Science and technology ,Zoology and wildlife conservation - Abstract
What a difference time makes! It does not seem long since I learned, as a university student and as if it was a closed topic, that the regulation of fruitflies' [...]
- Published
- 2010
24. Atonal homolog 1 Is a Tumor Suppressor Gene
- Author
-
Bossuyt, Wouter, primary, Kazanjian, Avedis, additional, De Geest, Natalie, additional, Kelst, Sofie Van, additional, Hertogh, Gert De, additional, Geboes, Karel, additional, Boivin, Greg P, additional, Luciani, Judith, additional, Fuks, Francois, additional, Chuah, Marinee, additional, VandenDriessche, Thierry, additional, Marynen, Peter, additional, Cools, Jan, additional, Shroyer, Noah F, additional, and Hassan, Bassem A, additional
- Published
- 2009
- Full Text
- View/download PDF
25. The Polycomb group protein EZH2 directly controls DNA methylation
- Author
-
Vire, Emmanuelle, Brenner, Carmen, Deplus, Rachel, Blanchon, Loic, Fraga, Mario, Didelot, Celine, Morey, Lluis, Van Eynde, Aleyde, Bernard, David, Vanderwinden, Jean-Marie, Bollen, Mathieu, Esteller, Manel, Croce, Luciano Di, de Launoit, Yvan, and Fuks, Francois
- Subjects
Environmental issues ,Science and technology ,Zoology and wildlife conservation - Abstract
Author(s): Emmanuelle Viré; Carmen Brenner; Rachel Deplus; Loïc Blanchon; Mario Fraga; Céline Didelot; Lluis Morey; Aleyde Van Eynde; David Bernard; Jean-Marie Vanderwinden; Mathieu Bollen; Manel Esteller; Luciano Di Croce; Yvan [...]
- Published
- 2007
- Full Text
- View/download PDF
26. MBD3, a Component of the NuRD Complex, Facilitates Chromatin Alteration and Deposition of Epigenetic Marks
- Author
-
Morey, Lluis, primary, Brenner, Carmen, additional, Fazi, Francesco, additional, Villa, Raffaella, additional, Gutierrez, Arantxa, additional, Buschbeck, Marcus, additional, Nervi, Clara, additional, Minucci, Saverio, additional, Fuks, Francois, additional, and Di Croce, Luciano, additional
- Published
- 2008
- Full Text
- View/download PDF
27. DNA Hydroxymethylation Profiling Reveals that WT1Mutations Result in Loss of TET2 Function in Acute Myeloid Leukemia
- Author
-
Rampal, Raajit, Alkalin, Altuna, Madzo, Jozef, Vasanthakumar, Aparna, Pronier, Elodie, Patel, Jay, Li, Yushan, Ahn, Jihae, Abdel-Wahab, Omar, Shih, Alan, Lu, Chao, Ward, Patrick S., Tsai, Jennifer J., Hricik, Todd, Tosello, Valeria, Tallman, Jacob E., Zhao, Xinyang, Daniels, Danette, Dai, Qing, Ciminio, Luisa, Aifantis, Iannis, He, Chuan, Fuks, Francois, Tallman, Martin S., Ferrando, Adolfo, Nimer, Stephen, Paietta, Elisabeth, Thompson, Craig B., Licht, Jonathan D., Mason, Christopher E., Godley, Lucy A., Melnick, Ari, Figueroa, Maria E., and Levine, Ross L.
- Abstract
Somatic mutations in IDH1/IDH2and TET2result in impaired TET2-mediated conversion of 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC). The observation that WT1inactivating mutations anticorrelate with TET2/IDH1/IDH2mutations in acute myeloid leukemia (AML) led us to hypothesize that WT1 mutations may impact TET2 function. WT1mutant AML patients have reduced 5hmC levels similar to TET2/IDH1/IDH2mutant AML. These mutations are characterized by convergent, site-specific alterations in DNA hydroxymethylation, which drive differential gene expression more than alterations in DNA promoter methylation. WT1 overexpression increases global levels of 5hmC, and WT1 silencing reduced 5hmC levels. WT1 physically interacts with TET2 and TET3, and WT1 loss of function results in a similar hematopoietic differentiation phenotype as observed with TET2 deficiency. These data provide a role for WT1 in regulating DNA hydroxymethylation and suggest that TET2 IDH1/IDH2and WT1mutations define an AML subtype defined by dysregulated DNA hydroxymethylation.
- Published
- 2014
- Full Text
- View/download PDF
28. MBD3, a Component of the NuRD Complex, Facilitates Chromatin Alteration and Deposition of Epigenetic Marks.
- Author
-
Buschbeck, Lluis Morey,1, Carmen Brenner,2 Francesco Fazi,3 Raffaella Villa,1 Arantxa Gutierrez,1 Marcus, Nervi, Clara, Minucci, Saverio, Fuks, Francois, and Di Croce, Luciano
- Subjects
CHROMATIN - Abstract
An abstract of the article "MBD3, a Component of the NuRD Complex, Facilitates Chromatin Alteration and Deposition of Epigenetic Marks," by Lluis Morey, Carmen Brenner, Raffaella Villa, Arantxa Gutierrez, Marcus Buschbeck, Clara Nervi, Saverio Minucci, Francois Fuks, and Francesco Fazi is presented.
- Published
- 2008
29. Mesp1 controls the chromatin and enhancer landscapes essential for spatiotemporal patterning of early cardiovascular progenitors
- Author
-
Xionghui Lin, Benjamin Swedlund, Mai-Linh N. Ton, Shila Ghazanfar, Carolina Guibentif, Catherine Paulissen, Elodie Baudelet, Elise Plaindoux, Younes Achouri, Emilie Calonne, Christine Dubois, William Mansfield, Stéphane Zaffran, John C. Marioni, Francois Fuks, Berthold Göttgens, Fabienne Lescroart, Cédric Blanpain, Swedlund, Benjamin [0000-0002-8264-9342], Ton, Mai-Linh N [0000-0001-6965-0528], Guibentif, Carolina [0000-0003-1056-9922], Zaffran, Stéphane [0000-0002-0811-418X], Marioni, John C [0000-0001-9092-0852], Fuks, Francois [0000-0003-4637-7287], Göttgens, Berthold [0000-0001-6302-5705], Lescroart, Fabienne [0000-0003-4942-7921], Blanpain, Cédric [0000-0002-4028-4322], Apollo - University of Cambridge Repository, Marseille medical genetics - Centre de génétique médicale de Marseille (MMG), and Aix Marseille Université (AMU)-Institut National de la Santé et de la Recherche Médicale (INSERM)
- Subjects
Homeodomain Proteins ,Mammals ,[SDV]Life Sciences [q-bio] ,Gene Expression Regulation, Developmental ,Cell Differentiation ,Heart ,Cell Biology ,Chromatin ,Mesoderm ,Mice ,Enhancer Elements, Genetic ,Basic Helix-Loop-Helix Transcription Factors ,Animals ,Transcription Factors - Abstract
The mammalian heart arises from various populations of Mesp1-expressing cardiovascular progenitors (CPs) that are specified during the early stages of gastrulation. Mesp1 is a transcription factor that acts as a master regulator of CP specification and differentiation. However, how Mesp1 regulates the chromatin landscape of nascent mesodermal cells to define the temporal and spatial patterning of the distinct populations of CPs remains unknown. Here, by combining ChIP-seq, RNA-seq and ATAC-seq during mouse pluripotent stem cell differentiation, we defined the dynamic remodelling of the chromatin landscape mediated by Mesp1. We identified different enhancers that are temporally regulated to erase the pluripotent state and specify the pools of CPs that mediate heart development. We identified Zic2 and Zic3 as essential cofactors that act with Mesp1 to regulate its transcription-factor activity at key mesodermal enhancers, thereby regulating the chromatin remodelling and gene expression associated with the specification of the different populations of CPs in vivo. Our study identifies the dynamics of the chromatin landscape and enhancer remodelling associated with temporal patterning of early mesodermal cells into the distinct populations of CPs that mediate heart development.
- Published
- 2022
- Full Text
- View/download PDF
30. Methyltransferase Recruitment and DNA Hypermethylation of Target Promoters by an ….
- Author
-
Croce, Luciano Di, Raker, Veronica A., Corsaro, Massimo, Fazi, Francesco, Fanelli, Mirco, Faretta, Mario, Fuks, Francois, Coco, Francesco Lo, Kouzarides, Tony, Nervi, CC[ara, Minucci, Saverio, and Pelicci, Pier Giuseppe
- Subjects
- *
METHYLTRANSFERASES , *DNA , *GENE expression , *TRETINOIN , *METHYLATION - Abstract
DNA methylation of tumor suppressor genes is a frequent mechanism of transcriptional silencing in cancer. The molecular mechanisms underlying the specificity of methylation are unknown. We report here that the leukemia-promoting PML-RAR fusion protein induces gene hypermethylation and silencing by recruiting DNA methyltransferases to target promoters and that hypermethylation contributes to its leukemogenic potential Retinoic acid treatment induces promoter demethylation, gene reexpression, and reversion of the transformed phenotype. These results establish a mechanistic link between genetic and epigenetic changes during transformation and suggest that hypermethylation contributes to the early steps of carcinogenesis. [ABSTRACT FROM AUTHOR]
- Published
- 2002
- Full Text
- View/download PDF
31. Le rôle des méthyltransférases de l'ADN dans la régulation transcriptionnelle
- Author
-
Brenner, Carmen, Fuks, Francois, de Launoit, Yvan, Vassart, Gilbert, Diederich, Marc, Georges, Michel, Willard-Gallo, Karen, Christophe, Daniel, Svoboda, Michel, Fuks, François, De Launoit, Yvan, and Svoboda, Michal
- Subjects
Epigénèse ,HKMT ,MBD ,Transcription factors ,Médecine pathologie humaine ,DNMT ,Facteurs de transcription ,Disciplines biomédicales diverses ,Methyltransferases ,Méthyltransférases ,ATP-ases ,Epigenesis - Abstract
La méthylation de l’ADN est un phénomène épigénétique qui joue un rôle important dans le développement des mammifères et qui est associé à une répression transcriptionnelle. La méthylation de loci CpG de l’ADN est médiée par les méthyltransférases de l’ADN – les Dnmts. La méthylation joue également un rôle clef dès les stades précoces de la cancérogenèse dans une grande partie des tumeurs où on observe une méthylation, notamment la répression des gènes suppresseurs de tumeurs et une déméthylation, notamment l’expression de séquences d’ADN parasites. Dans une première partie de la thèse, nous nous sommes intéressés à la méthyltransférase de l’ADN Dnmt3L et plus particulièrement à identifier les mécanismes par quels cette méthyltransférase peut réprimer l’expression génique. Dnmt3L, identifiée et clonée en 2000, est caractérisée comme une méthyltransférase dépourvue de son domaine catalytique jouant probablement un rôle dans la régulation de la méthylation de l’ADN plutôt que dans l’ajout de groupes méthyls à l’ADN. Son rôle est fondamental dans l’établissement de l’empreinte génétique maternelle. Des travaux récents, réalisés, notamment par notre équipe, ont permis de montrer que plusieurs Dnmt répriment la transcription non seulement en méthylant l’ADN mais également en interagissant avec les déacétylases d’histones, HDAC. Au regard de ces résultats, nous nous sommes intéressés à évaluer si Dnmt3L est également capable de réprimer la transcription en recrutant une activité HDAC. Des recherches menées de concert avec Rachel Deplus, étudiante en thèse au laboratoire, ont permis de montrer que Dnmt3L interagit avec les déacétylases d’histones, ce qui conduit à la répression de la transcription. Dans l’ensemble, nos résultats ont permis de montrer que Dnmt3L, bien que dépourvue d’activité méthyltransférase, peut, tout comme les autres Dnmt, également réprimer la transcription par le biais de son interaction avec les enzymes HDAC. Dans une deuxième partie majeure de la thèse, nous nous sommes intéressés à l’étude des mécanismes par lesquels la méthylation de l’ADN peut être ciblée au sein du génome. Cette thématique bien que fondamentale, est encore peu connue à l’heure actuelle. Des études très récentes, réalisées dans notre laboratoire, suggèrent que les Dnmt peuvent être recrutées au sein de loci spécifiques suite à leur association avec des facteurs de transcription. Dans le cadre de ma thèse, nous avons pu montrer que la méthyltransférase de l’ADN Dnmt3a interagit in vitro et in vivo avec l’oncoprotéine Myc. Nous avons également pu mettre en évidence que la protéine Myc endogène recrute une activité méthyltransférase de l’ADN. Bien que l’oncoprotéine Myc soit surtout connue pour être un activateur de la transcription, Myc est également décrit pour réprimer la transcription de certains gènes spécifiques. Il était donc raisonnable de proposer que Dnmt3a pourrait être recruté pour réprimer les gènes régulés négativement par Myc. En effet en testant l’activité promotrice du gène p21, un gène connu pour être réprimé par Myc, nous avons démontré que Dnmt3a agit comme un co-répresseur transcriptionnel de Myc. Par des essais d’immunoprécipitation de la chromatine (ChIP), nous avons démontré que Myc et Dnmt3a forment un complexe stable sur le promoteur du gène p21. D’autre part nous avons montré que la 5 azacytidine, un agent déméthylant, lève la répression médiée par Myc au sein du promoteur du gène p21. En collaboration avec d’autres laboratoires, nous avons également effectué du séquençage au bisulfite du promoteur proximal de ce gène à partir d’ADN provenant de cellules sauvages pour Myc (myc+/+) ou invalidées pour Myc (myc-/-), montrant que la méthylation de ce promoteur est dépendante de la présence de Myc. Ainsi il semble que l’activité méthyltransférase de l’ADN de Dnmt3a soit requise pour sa fonction de co-répresseur des gènes régulés négativement par Myc. Cette étude confirme et valide le nouveau concept du recrutement des Dnmt par des interactions protéine-protéine. Notre travail a également des implications sur la compréhension du rôle de la méthylation de l’ADN dans la tumorigenèse. De plus, cette étude a permis de montrer pour la première fois que l’oncoprotéine Myc n’est pas seulement impliquée dans une répression génique passive (séquestration de co-activateurs) mais également une répression active (recrutement du co-represseur Dnmt3a)., Doctorat en sciences biomédicales, info:eu-repo/semantics/published
- Published
- 2005
32. The methyl-CpG-binding protein MeCP2 links DNA methylation to histone methylation.
- Author
-
Fuks F, Hurd PJ, Wolf D, Nan X, Bird AP, and Kouzarides T
- Subjects
- Animals, Cell Line, Histone Deacetylases metabolism, Humans, Methyl-CpG-Binding Protein 2, Methylation, Mice, Precipitin Tests, Recombinant Proteins metabolism, Reverse Transcriptase Polymerase Chain Reaction, Chromosomal Proteins, Non-Histone, DNA Methylation, DNA-Binding Proteins metabolism, Histones metabolism, Repressor Proteins
- Abstract
DNA methylation plays an important role in mammalian development and correlates with chromatin-associated gene silencing. The recruitment of MeCP2 to methylated CpG dinucleotides represents a major mechanism by which DNA methylation can repress transcription. MeCP2 silences gene expression partly by recruiting histone deacetylase (HDAC) activity, resulting in chromatin remodeling. Here, we show that MeCP2 associates with histone methyltransferase activity in vivo and that this activity is directed against Lys(9) of histone H3. Two characterized repression domains of MeCP2 are involved in tethering the histone methyltransferase to MeCP2. We asked if MeCP2 can deliver Lys(9) H3 methylation to the H19 gene, whose activity it represses. We show that the presence of MeCP2 on nucleosomes within the repressor region of the H19 gene (the differentially methylated domain) coincides with an increase in H3 Lys(9) methylation. Our data provide evidence that MeCP2 reinforces a repressive chromatin state by acting as a bridge between two global epigenetic modifications, DNA methylation and histone methylation.
- Published
- 2003
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.