1. Grain orientation, angle of Incidence, and beam polarization effects on ultraviolet 300 ps-laser-induced nanostructures on 316L stainless steel
- Author
-
Ministerio de Ciencia, Innovación y Universidades (España), Agencia Estatal de Investigación (España), Gobierno de Aragón, Ministerio de Ciencia e Innovación (España), Porta-Velilla, Luis, Martínez, Elena, Frechilla, Alejandro, Castro, Miguel, Fuente, Germán F. de la, Bonse, Jörn, Angurel, Luis A., Ministerio de Ciencia, Innovación y Universidades (España), Agencia Estatal de Investigación (España), Gobierno de Aragón, Ministerio de Ciencia e Innovación (España), Porta-Velilla, Luis, Martínez, Elena, Frechilla, Alejandro, Castro, Miguel, Fuente, Germán F. de la, Bonse, Jörn, and Angurel, Luis A.
- Abstract
Laser-induced periodic surface structures (LIPSS) represent a unique route for functionalizing materials through the fabrication of surface nanostructures. Commercial AISI 316L stainless steel (SS316L) surfaces are laser treated by ultraviolet 300 ps laser pulses in a laser line scanning (LLS) approach. Processing parameters are optimized (pulse energy of 2.08 µJ, pulse repetition frequency of 300 kHz, and suitable laser scan and sample displacement rates) for the generation of low spatial frequency LIPSS over a large 25 × 25 mm2 area. Different angles of incidence of the laser radiation (0°, 30°, and 45°) and different linear laser beam polarizations (s and p) produce a plethora of rippled surface morphologies at distinct grains. Scanning electron microscopy and 2D Fourier transforms, together with calculations of the optical energy deposited at the treated surfaces using Sipe's first-principles electromagnetic scattering theory, are used to study and analyze in detail these surface morphologies. Combined with electron backscattering diffraction, analyses allow associating site-selectively various laser-induced-surface morphologies with the underlying crystalline grain orientation. Resulting grain orientation maps reveal a strong impact of the grain crystallographic orientation on LIPSS formation and point toward possible strategies, like multi-step processes, for improving the manufacturing of LIPSS and their areal coverage of polycrystalline technical materials.
- Published
- 2024