1. The factors that influence protostellar multiplicity I: Gas temperature, density, and mass in Perseus with Nobeyama
- Author
-
Murillo, N. M., Fuchs, C. M., Harsono, D., Sakai, N., Hacar, A., Johnstone, D., Mignon-Risse, R., Zeng, S., Hsieh, T. -H., Yang, Y. -L., Tobin, J. J., and Persson, M. V.
- Subjects
Astrophysics - Astrophysics of Galaxies - Abstract
Protostellar multiplicity is common at all stages and mass ranges. However, the factors that determine the multiplicity of protostellar systems have not been systematically characterized through their molecular gas. Nobeyama 45m Radio Observatory OTF maps of HCN, HNC, HCO$^+$, and N$_2$H$^+$ (J = 1--0) toward five subregions in Perseus, complemented with single pointing APEX observations of HNC (J = 4--3) are used to derive physical parameters of the dense gas. Both observations have angular resolutions of $\sim$18", equivalent to $\sim$5000 AU scales at the distance of Perseus. Kinetic gas temperature is derived from the $I$(HCN)/$I$(HNC) J = 1--0 ratio, and H$_2$ density is obtained from the HNC J=4--3/J=1--0 ratio. These parameters are used to obtain the N$_2$H$^+$ and HCO$^+$ gas masses. The inferred and derived parameters are compared to source parameters. Inferred mean kinetic gas temperature ($I$(HCN)/$I$(HNC) J=1--0 ratio; ranging between 15 and 26 K), and H$_2$ volumetric density (HNC J=4--3/J=1--0; 10$^5$ -- 10$^6$ cm$^{-3}$) do not show correlations with multiplicity in Perseus. The derived gas and dust masses, 1.3 to 16 $\times~10^{-9}$ M$_{\odot}$ for the N$_2$H$^+$ gas mass, 0.1 to 25 M$_{\odot}$ for envelope dust masses (850 $\mu$m), and 0.8 to 10 $\times~10^{-10}$ M$_{\odot}$ for the HCO$^+$ gas mass, are correlated to multiplicity and number of protostellar components. The warm gas masses are a factor of 16 lower than the cold gas masses. This work shows that gas and dust mass is correlated to multiplicity at $\sim$5000 AU scales in Perseus. Higher order multiples tend to have higher gas and dust masses in general, while close binaries (separations $\leq$7") and single protostars have similar gas and dust mass distributions. On the other hand, H$_2$ density and kinetic gas temperature do not show any correlation with multiplicity., Comment: 25 pages, 12 figures, 3 appendices. Accepted for publication in A&A. The abstract has been modified to comply with arXiv's character limit
- Published
- 2024
- Full Text
- View/download PDF