1. Stabilizing Solution-Substrate Interaction of Perovskite Ink on PEDOT:PSS for Scalable Blade Coated Narrow Bandgap Perovskite Solar Modules by Gas Quenching
- Author
-
Siegrist, Severin, Pious, Johnpaul K., Lai, Huagui, Kothandaraman, Radha K., Luo, Jincheng, Vlnieska, Vitor, Tiwari, Ayodhya N., and Fu, Fan
- Subjects
Physics - Applied Physics ,Condensed Matter - Materials Science - Abstract
The development of scalable 1.25 eV mixed Pb-Sn perovskite solar modules by blade coating lags behind Pb-based perovskites due to limited understanding of solution-substrate interaction of the perovskite ink on PEDOT:PSS and subsequent gas quenching. To address this challenge, we systematically studied the wet film deposition and quenching process to better understand narrow bandgap perovskite film formation on PEDOT:PSS. We found, the wetting of Pb-Sn perovskite ink on PEDOT:PSS is highly unstable over relevant coating time scales, causing the contact angles to decrease rapidly from 42{\deg} to 16{\deg} within seconds. This instability leads to localized irregularities in the wet film, resulting in uneven solvent extraction and inhomogeneous nuclei density. As a result, rough perovskite films with voids at the buried interface are obtained. To overcome this problem, we developed a quasi-static wetting process by reducing the blade coating speed, thereby stabilizing the wetting behavior of Pb-Sn perovskite precursor ink on PEDOT:PSS. This optimized process facilitates the deposition of high-quality, void-free Pb-Sn perovskite films with uniform thickness over 8 cm of coating length using moderate (1.4 bar) N2 quenching. We achieved 20 % efficient narrow bandgap perovskite solar cells and mini-modules with 15.8 % active area efficiency on 15.9 cm2.
- Published
- 2024