28 results on '"Frusque, Gaëtan"'
Search Results
2. Informed Graph Learning By Domain Knowledge Injection and Smooth Graph Signal Representation
- Author
-
Niresi, Keivan Faghih, Kuhn, Lucas, Frusque, Gaëtan, and Fink, Olga
- Subjects
Electrical Engineering and Systems Science - Signal Processing - Abstract
Graph signal processing represents an important advancement in the field of data analysis, extending conventional signal processing methodologies to complex networks and thereby facilitating the exploration of informative patterns and structures across various domains. However, acquiring the underlying graphs for specific applications remains a challenging task. While graph inference based on smooth graph signal representation has become one of the state-of-the-art methods, these approaches usually overlook the unique properties of networks, which are generally derived from domain-specific knowledge. Overlooking this information could make the approaches less interpretable and less effective overall. In this study, we propose a new graph inference method that leverages available domain knowledge. The proposed methodology is evaluated on the task of denoising and imputing missing sensor data, utilizing graph signal reconstruction techniques. The results demonstrate that incorporating domain knowledge into the graph inference process can improve graph signal reconstruction in district heating networks. Our code is available at \href{https://github.com/Keiv4n/IGL}{github.com/Keiv4n/IGL}., Comment: Accepted to EUSIPCO 2024
- Published
- 2024
3. Uncertainty-Guided Alignment for Unsupervised Domain Adaptation in Regression
- Author
-
Nejjar, Ismail, Frusque, Gaetan, Forest, Florent, and Fink, Olga
- Subjects
Computer Science - Computer Vision and Pattern Recognition ,Computer Science - Machine Learning - Abstract
Unsupervised Domain Adaptation for Regression (UDAR) aims to adapt models from a labeled source domain to an unlabeled target domain for regression tasks. Traditional feature alignment methods, successful in classification, often prove ineffective for regression due to the correlated nature of regression features. To address this challenge, we propose Uncertainty-Guided Alignment (UGA), a novel method that integrates predictive uncertainty into the feature alignment process. UGA employs Evidential Deep Learning to predict both target values and their associated uncertainties. This uncertainty information guides the alignment process and fuses information within the embedding space, effectively mitigating issues such as feature collapse in out-of-distribution scenarios. We evaluate UGA on two computer vision benchmarks and a real-world battery state-of-charge prediction across different manufacturers and operating temperatures. Across 52 transfer tasks, UGA on average outperforms existing state-of-the-art methods. Our approach not only improves adaptation performance but also provides well-calibrated uncertainty estimates.
- Published
- 2024
4. Semi-Supervised Health Index Monitoring with Feature Generation and Fusion
- Author
-
Frusque, Gaëtan, Nejjar, Ismail, Nabavi, Majid, and Fink, Olga
- Subjects
Computer Science - Machine Learning ,Statistics - Methodology - Abstract
The Health Index (HI) is crucial for evaluating system health and is important for tasks like anomaly detection and Remaining Useful Life (RUL) prediction of safety-critical systems. Real-time, meticulous monitoring of system conditions is essential, especially in manufacturing high-quality and safety-critical components such as spray coatings. However, acquiring accurate health status information (HI labels) in real scenarios can be difficult or costly because it requires continuous, precise measurements that fully capture the system's health. As a result, using datasets from systems run-to-failure, which provide limited HI labels only at the healthy and end-of-life phases, becomes a practical approach. We employ Deep Semi-supervised Anomaly Detection (DeepSAD) embeddings to tackle the challenge of extracting features associated with the system's health state. Additionally, we introduce a diversity loss to further enrich the DeepSAD embeddings. We also propose applying an alternating projection algorithm with isotonic constraints to transform the embedding into a normalized HI with an increasing trend. Validation on the PHME2010 milling dataset, a recognized benchmark with ground truth HIs, confirms the efficacy of our proposed HI estimations. Our methodology is further applied to monitor the wear states of thermal spray coatings using high-frequency voltage. These contributions facilitate more accessible and reliable HI estimation, particularly in scenarios where obtaining ground truth HI labels is impossible., Comment: 13 pages, 8 figures
- Published
- 2023
5. NNG-Mix: Improving Semi-supervised Anomaly Detection with Pseudo-anomaly Generation
- Author
-
Dong, Hao, Frusque, Gaëtan, Zhao, Yue, Chatzi, Eleni, and Fink, Olga
- Subjects
Computer Science - Machine Learning ,Computer Science - Artificial Intelligence ,Computer Science - Computer Vision and Pattern Recognition - Abstract
Anomaly detection (AD) is essential in identifying rare and often critical events in complex systems, finding applications in fields such as network intrusion detection, financial fraud detection, and fault detection in infrastructure and industrial systems. While AD is typically treated as an unsupervised learning task due to the high cost of label annotation, it is more practical to assume access to a small set of labeled anomaly samples from domain experts, as is the case for semi-supervised anomaly detection. Semi-supervised and supervised approaches can leverage such labeled data, resulting in improved performance. In this paper, rather than proposing a new semi-supervised or supervised approach for AD, we introduce a novel algorithm for generating additional pseudo-anomalies on the basis of the limited labeled anomalies and a large volume of unlabeled data. This serves as an augmentation to facilitate the detection of new anomalies. Our proposed algorithm, named Nearest Neighbor Gaussian Mixup (NNG-Mix), efficiently integrates information from both labeled and unlabeled data to generate pseudo-anomalies. We compare the performance of this novel algorithm with commonly applied augmentation techniques, such as Mixup and Cutout. We evaluate NNG-Mix by training various existing semi-supervised and supervised anomaly detection algorithms on the original training data along with the generated pseudo-anomalies. Through extensive experiments on 57 benchmark datasets in ADBench, reflecting different data types, we demonstrate that NNG-Mix outperforms other data augmentation methods. It yields significant performance improvements compared to the baselines trained exclusively on the original training data. Notably, NNG-Mix yields up to 16.4%, 8.8%, and 8.0% improvements on Classical, CV, and NLP datasets in ADBench. Our source code is available at https://github.com/donghao51/NNG-Mix.
- Published
- 2023
6. A Comparison of Residual-based Methods on Fault Detection
- Author
-
Hsu, Chi-Ching, Frusque, Gaetan, and Fink, Olga
- Subjects
Electrical Engineering and Systems Science - Systems and Control ,Computer Science - Machine Learning - Abstract
An important initial step in fault detection for complex industrial systems is gaining an understanding of their health condition. Subsequently, continuous monitoring of this health condition becomes crucial to observe its evolution, track changes over time, and isolate faults. As faults are typically rare occurrences, it is essential to perform this monitoring in an unsupervised manner. Various approaches have been proposed not only to detect faults in an unsupervised manner but also to distinguish between different potential fault types. In this study, we perform a comprehensive comparison between two residual-based approaches: autoencoders, and the input-output models that establish a mapping between operating conditions and sensor readings. We explore the sensor-wise residuals and aggregated residuals for the entire system in both methods. The performance evaluation focuses on three tasks: health indicator construction, fault detection, and health indicator interpretation. To perform the comparison, we utilize the Commercial Modular Aero-Propulsion System Simulation (C-MAPSS) dynamical model, specifically a subset of the turbofan engine dataset containing three different fault types. All models are trained exclusively on healthy data. Fault detection is achieved by applying a threshold that is determined based on the healthy condition. The detection results reveal that both models are capable of detecting faults with an average delay of around 20 cycles and maintain a low false positive rate. While the fault detection performance is similar for both models, the input-output model provides better interpretability regarding potential fault types and the possible faulty components., Comment: 10 pages, submitted to the 15th Annual Conference of the Prognostics and Health Management Society
- Published
- 2023
- Full Text
- View/download PDF
7. Smart filter aided domain adversarial neural network for fault diagnosis in noisy industrial scenarios
- Author
-
Dai, Baorui, Frusque, Gaëtan, Li, Tianfu, Li, Qi, and Fink, Olga
- Subjects
Electrical Engineering and Systems Science - Signal Processing ,Computer Science - Machine Learning - Abstract
The application of unsupervised domain adaptation (UDA)-based fault diagnosis methods has shown significant efficacy in industrial settings, facilitating the transfer of operational experience and fault signatures between different operating conditions, different units of a fleet or between simulated and real data. However, in real industrial scenarios, unknown levels and types of noise can amplify the difficulty of domain alignment, thus severely affecting the diagnostic performance of deep learning models. To address this issue, we propose an UDA method called Smart Filter-Aided Domain Adversarial Neural Network (SFDANN) for fault diagnosis in noisy industrial scenarios. The proposed methodology comprises two steps. In the first step, we develop a smart filter that dynamically enforces similarity between the source and target domain data in the time-frequency domain. This is achieved by combining a learnable wavelet packet transform network (LWPT) and a traditional wavelet packet transform module. In the second step, we input the data reconstructed by the smart filter into a domain adversarial neural network (DANN). To learn domain-invariant and discriminative features, the learnable modules of SFDANN are trained in a unified manner with three objectives: time-frequency feature proximity, domain alignment, and fault classification. We validate the effectiveness of the proposed SFDANN method based on two fault diagnosis cases: one involving fault diagnosis of bearings in noisy environments and another involving fault diagnosis of slab tracks in a train-track-bridge coupling vibration system, where the transfer task involves transferring from numerical simulations to field measurements. Results show that compared to other representative state of the art UDA methods, SFDANN exhibits superior performance and remarkable stability.
- Published
- 2023
8. Non-contact Sensing for Anomaly Detection in Wind Turbine Blades: A focus-SVDD with Complex-Valued Auto-Encoder Approach
- Author
-
Frusque, Gaëtan, Mitchell, Daniel, Blanche, Jamie, Flynn, David, and Fink, Olga
- Subjects
Electrical Engineering and Systems Science - Signal Processing ,Computer Science - Machine Learning ,Computer Science - Robotics - Abstract
The occurrence of manufacturing defects in wind turbine blade (WTB) production can result in significant increases in operation and maintenance costs and lead to severe and disastrous consequences. Therefore, inspection during the manufacturing process is crucial to ensure consistent fabrication of composite materials. Non-contact sensing techniques, such as Frequency Modulated Continuous Wave (FMCW) radar, are becoming increasingly popular as they offer a full view of these complex structures during curing. In this paper, we enhance the quality assurance of manufacturing utilizing FMCW radar as a non-destructive sensing modality. Additionally, a novel anomaly detection pipeline is developed that offers the following advantages: (1) We use the analytic representation of the Intermediate Frequency signal of the FMCW radar as a feature to disentangle material-specific and round-trip delay information from the received wave. (2) We propose a novel anomaly detection methodology called focus Support Vector Data Description (focus-SVDD). This methodology involves defining the limit boundaries of the dataset after removing healthy data features, thereby focusing on the attributes of anomalies. (3) The proposed method employs a complex-valued autoencoder to remove healthy features and we introduces a new activation function called Exponential Amplitude Decay (EAD). EAD takes advantage of the Rayleigh distribution, which characterizes an instantaneous amplitude signal. The effectiveness of the proposed method is demonstrated through its application to collected data, where it shows superior performance compared to other state-of-the-art unsupervised anomaly detection methods. This method is expected to make a significant contribution not only to structural health monitoring but also to the field of deep complex-valued data processing and SVDD application., Comment: 17 pages, 5 figures, 3 Tables
- Published
- 2023
9. Vacuum Circuit Breaker Closing Time Key Moments Detection via Vibration Monitoring: A Run-to-Failure Study
- Author
-
Hsu, Chi-Ching, Frusque, Gaetan, Muratovic, Mahir, Franck, Christian M., and Fink, Olga
- Subjects
Electrical Engineering and Systems Science - Signal Processing - Abstract
Circuit breakers (CBs) play an important role in modern society because they make the power transmission and distribution systems reliable and resilient. Therefore, it is important to maintain their reliability and to monitor their operation. A key to ensure a reliable operation of CBs is to monitor their condition. In this work, we performed an accelerated life testing for mechanical failures of a vacuum circuit breaker (VCB) by performing close-open operations continuously until failure. We recorded data for each operation and made the collected run-to-failure dataset publicly available. In our experiments, the VCB operated more than 26000 close-open operations without current load with the time span of five months. The run-to-failure long-term monitoring enables us to monitor the evolution of the VCB condition and the degradation over time. To monitor CB condition, closing time is one of the indicators, which is usually measured when the CB is taken out of operation and is completely disconnected from the network. We propose an algorithm that enables to infer the same information on the closing time from a non-intrusive sensor. By utilizing the short-time energy (STE) of the vibration signal, it is possible to identify the key moments when specific events happen including the time when the latch starts to move, and the closing time. The effectiveness of the proposed algorithm is evaluated on the VCB dataset and is also compared to the binary segmentation (BS) change point detection algorithm. This research highlights the potential for continuous online condition monitoring, which is the basis for applying future predictive maintenance strategies., Comment: 7 pages
- Published
- 2022
- Full Text
- View/download PDF
10. Robust Time Series Denoising with Learnable Wavelet Packet Transform
- Author
-
Frusque, Gaetan and Fink, Olga
- Subjects
Computer Science - Sound ,Computer Science - Machine Learning ,Electrical Engineering and Systems Science - Audio and Speech Processing - Abstract
Signal denoising is a key preprocessing step for many applications, as the performance of a learning task is closely related to the quality of the input data. In this paper, we apply a signal processing based deep neural network architecture, a learnable extension of the wavelet packet transform. As main advantages, this model has few parameters, an intuitive initialization and strong learning capabilities. Moreover, we show that it is possible to easily modify the parameters of the model after the training step to tailor to different noise intensities. Two case studies are conducted to compare this model with the state of the art and commonly used denoising procedures. The first experiment uses standard signals to study denoising properties of the algorithms. The second experiment is a real application with the objective to remove audio background noises. We show that the learnable wavelet packet transform has the learning capabilities of deep learning methods while maintaining the robustness of standard signal processing approaches. More specifically, we demonstrate that our approach maintains excellent denoising performances on signal classes separate from those used during the training step. Moreover, the learnable wavelet packet transform was found to be robust when different noise intensities, noise varieties and artifacts are considered., Comment: 15 pages, 13 figures, 8 tables
- Published
- 2022
11. Acceleration-guided Acoustic Signal Denoising Framework Based on Learnable Wavelet Transform Applied to Slab Track Condition Monitoring
- Author
-
Dai, Baorui, Frusque, Gaëtan, Li, Qi, and Fink, Olga
- Subjects
Electrical Engineering and Systems Science - Signal Processing - Abstract
Acoustic monitoring has recently shown great potential in the diagnosis of infrastructure condition. However, due to the severe noise interference in acoustic signals, meaningful features tend to be difficult to infer. It creates a considerable obstacle for an extensive application of acoustic monitoring. To tackle this problem, we propose an acceleration-guided acoustic signal denoising framework (AG-ASDF) based on learnable wavelet transform to automatically denoise the acoustic signal and extract the relevant features based on the acceleration signal. This denoising framework requires the acceleration signal only for the training stage. Therefore, only acoustic sensors (non-intrusive) need to be installed during the application phase, which is convenient and crucial for the condition monitoring of safety-critical infrastructure. A comparative study is conducted among the proposed AG-ASDF and other feature learning / extraction methods, by using a multi-class support vector machine to evaluate the detection effectiveness of slab track condition based on acoustic signals. Different healthy and unhealthy states of slab tracks are imitated with three types of slab track supporting conditions in a railway test line. The classification based on the proposed AG-ASDF features outperforms other feature extraction and learning methods with a significant accuracy improvement.
- Published
- 2022
- Full Text
- View/download PDF
12. Robust time series denoising with learnable wavelet packet transform
- Author
-
Frusque, Gaëtan and Fink, Olga
- Published
- 2024
- Full Text
- View/download PDF
13. Learnable Wavelet Packet Transform for Data-Adapted Spectrograms
- Author
-
Frusque, Gaetan and Fink, Olga
- Subjects
Computer Science - Sound ,Electrical Engineering and Systems Science - Audio and Speech Processing ,Electrical Engineering and Systems Science - Signal Processing ,Statistics - Machine Learning - Abstract
Capturing high-frequency data concerning the condition of complex systems, e.g. by acoustic monitoring, has become increasingly prevalent. Such high-frequency signals typically contain time dependencies ranging over different time scales and different types of cyclic behaviors. Processing such signals requires careful feature engineering, particularly the extraction of meaningful time-frequency features. This can be time-consuming and the performance is often dependent on the choice of parameters. To address these limitations, we propose a deep learning framework for learnable wavelet packet transforms, enabling to learn features automatically from data and optimise them with respect to the defined objective function. The learned features can be represented as a spectrogram, containing the important time-frequency information of the dataset. We evaluate the properties and performance of the proposed approach by evaluating its improved spectral leakage and by applying it to an anomaly detection task for acoustic monitoring., Comment: 4 pages, 3 figures, accepted to ICASSP 2022 conference
- Published
- 2022
- Full Text
- View/download PDF
14. Canonical Polyadic Decomposition and Deep Learning for Machine Fault Detection
- Author
-
Frusque, Gaetan, Michau, Gabriel, and Fink, Olga
- Subjects
Statistics - Machine Learning ,Computer Science - Machine Learning ,Electrical Engineering and Systems Science - Audio and Speech Processing - Abstract
Acoustic monitoring for machine fault detection is a recent and expanding research path that has already provided promising results for industries. However, it is impossible to collect enough data to learn all types of faults from a machine. Thus, new algorithms, trained using data from healthy conditions only, were developed to perform unsupervised anomaly detection. A key issue in the development of these algorithms is the noise in the signals, as it impacts the anomaly detection performance. In this work, we propose a powerful data-driven and quasi non-parametric denoising strategy for spectral data based on a tensor decomposition: the Non-negative Canonical Polyadic (CP) decomposition. This method is particularly adapted for machine emitting stationary sound. We demonstrate in a case study, the Malfunctioning Industrial Machine Investigation and Inspection (MIMII) baseline, how the use of our denoising strategy leads to a sensible improvement of the unsupervised anomaly detection. Such approaches are capable to make sound-based monitoring of industrial processes more reliable., Comment: 9 pages, 5 figures, conference paper from PHM Society European Conference 2021 (Vol. 6, No. 1)
- Published
- 2021
15. Fully Learnable Deep Wavelet Transform for Unsupervised Monitoring of High-Frequency Time Series
- Author
-
Michau, Gabriel, Frusque, Gaetan, and Fink, Olga
- Subjects
Computer Science - Machine Learning ,Computer Science - Sound ,Electrical Engineering and Systems Science - Audio and Speech Processing - Abstract
High-Frequency (HF) signals are ubiquitous in the industrial world and are of great use for monitoring of industrial assets. Most deep learning tools are designed for inputs of fixed and/or very limited size and many successful applications of deep learning to the industrial context use as inputs extracted features, which is a manually and often arduously obtained compact representation of the original signal. In this paper, we propose a fully unsupervised deep learning framework that is able to extract a meaningful and sparse representation of raw HF signals. We embed in our architecture important properties of the fast discrete wavelet transformation (FDWT) such as (1) the cascade algorithm, (2) the conjugate quadrature filter property that links together the wavelet, the scaling and transposed filter functions, and (3) the coefficient denoising. Using deep learning, we make this architecture fully learnable: both the wavelet bases and the wavelet coefficient denoising are learnable. To achieve this objective, we propose a new activation function that performs a learnable hard-thresholding of the wavelet coefficients. With our framework, the denoising FDWT becomes a fully learnable unsupervised tool that does neither require any type of pre- nor post-processing, nor any prior knowledge on wavelet transform. We demonstrate the benefits of embedding all these properties on three machine-learning tasks performed on open source sound datasets. We perform an ablation study of the impact of each property on the performance of the architecture, achieve results well above baseline and outperform other state-of-the-art methods., Comment: 16 pages, 7 figures, 3 tables
- Published
- 2021
- Full Text
- View/download PDF
16. Non-contact sensing for anomaly detection in wind turbine blades: A focus-SVDD with complex-valued auto-encoder approach
- Author
-
Frusque, Gaëtan, Mitchell, Daniel, Blanche, Jamie, Flynn, David, and Fink, Olga
- Published
- 2024
- Full Text
- View/download PDF
17. Smart filter aided domain adversarial neural network for fault diagnosis in noisy industrial scenarios
- Author
-
Dai, Baorui, primary, Frusque, Gaëtan, additional, Li, Tianfu, additional, Li, Qi, additional, and Fink, Olga, additional
- Published
- 2023
- Full Text
- View/download PDF
18. Smart filter aided domain adversarial neural network: An unsupervised domain adaptation method for fault diagnosis in noisy industrial scenarios
- Author
-
Dai, Baorui, Frusque, Gaëtan, Li, Tianfu, Li, Qi, and Fink, Olga
- Subjects
Signal Processing (eess.SP) ,FOS: Computer and information sciences ,Computer Science - Machine Learning ,FOS: Electrical engineering, electronic engineering, information engineering ,Electrical Engineering and Systems Science - Signal Processing ,Machine Learning (cs.LG) - Abstract
The application of unsupervised domain adaptation (UDA)-based fault diagnosis methods has shown significant efficacy in industrial settings, facilitating the transfer of operational experience and fault signatures between different operating conditions, different units of a fleet or between simulated and real data. However, in real industrial scenarios, unknown levels and types of noise can amplify the difficulty of domain alignment, thus severely affecting the diagnostic performance of deep learning models. To address this issue, we propose an UDA method called Smart Filter-Aided Domain Adversarial Neural Network (SFDANN) for fault diagnosis in noisy industrial scenarios. The proposed methodology comprises two steps. In the first step, we develop a smart filter that dynamically enforces similarity between the source and target domain data in the time-frequency domain. This is achieved by combining a learnable wavelet packet transform network (LWPT) and a traditional wavelet packet transform module. In the second step, we input the data reconstructed by the smart filter into a domain adversarial neural network (DANN). To learn domain-invariant and discriminative features, the learnable modules of SFDANN are trained in a unified manner with three objectives: time-frequency feature proximity, domain alignment, and fault classification. We validate the effectiveness of the proposed SFDANN method based on two fault diagnosis cases: one involving fault diagnosis of bearings in noisy environments and another involving fault diagnosis of slab tracks in a train-track-bridge coupling vibration system, where the transfer task involves transferring from numerical simulations to field measurements. Results show that compared to other representative state of the art UDA methods, SFDANN exhibits superior performance and remarkable stability.
- Published
- 2023
19. Canonical polyadic decomposition and deep learning for machine fault detection
- Author
-
Frusque, Gaëtan, primary, Gabriel, Michau, additional, and Olga, Fink, additional
- Published
- 2021
- Full Text
- View/download PDF
20. Extraction of functional dynamic networks describing patient's epileptic seizures
- Author
-
Frusque, Gaëtan, Borgnat, Pierre, Gonçalves, Paulo, Jung, Julien, Dynamic Networks : Temporal and Structural Capture Approach (DANTE), Inria Grenoble - Rhône-Alpes, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire de l'Informatique du Parallélisme (LIP), École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique (CNRS)-Institut Rhône-Alpin des systèmes complexes (IXXI), École normale supérieure de Lyon (ENS de Lyon)-Université Lumière - Lyon 2 (UL2)-Université Jean Moulin - Lyon 3 (UJML), Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Université Lumière - Lyon 2 (UL2)-Université Jean Moulin - Lyon 3 (UJML), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA), Laboratoire de Physique de l'ENS Lyon (Phys-ENS), Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique (CNRS), Hospices Civils de Lyon, Departement de Neurologie (HCL), École normale supérieure - Lyon (ENS Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Lyon (ENS Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université Grenoble Alpes (UGA)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Université de Lyon-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche en Informatique et en Automatique (Inria)-Université Lumière - Lyon 2 (UL2)-Université Jean Moulin - Lyon 3 (UJML), Université de Lyon-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-École normale supérieure - Lyon (ENS Lyon)-Université Grenoble Alpes (UGA)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Université Lumière - Lyon 2 (UL2)-Université Jean Moulin - Lyon 3 (UJML), Université de Lyon, École normale supérieure - Lyon (ENS Lyon)-Centre National de la Recherche Scientifique (CNRS)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon, Centre de recherche en neurosciences de Lyon (CRNL), Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Université Jean Monnet [Saint-Étienne] (UJM)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), École normale supérieure - Lyon (ENS Lyon)-Université Lumière - Lyon 2 (UL2)-Université Jean Moulin - Lyon 3 (UJML), and Gonçalves, Paulo
- Subjects
[INFO.INFO-TS]Computer Science [cs]/Signal and Image Processing ,[INFO.INFO-LG]Computer Science [cs]/Machine Learning [cs.LG] ,[INFO.INFO-TS] Computer Science [cs]/Signal and Image Processing ,[INFO.INFO-LG] Computer Science [cs]/Machine Learning [cs.LG] ,[SPI.SIGNAL]Engineering Sciences [physics]/Signal and Image processing ,ComputingMilieux_MISCELLANEOUS - Abstract
International audience; Intracranial EEG studies using stereotactic EEG (SEEG) have shown that during seizures, epileptic activity spreads across several anatomical regions from the seizure onset zone towards remote brain areas. This appears like patient-specific time-varying networks that has to be extracted and characterised. Functional Connectivity (FC) analysis of SEEG signals recorded during seizures enables to describe the statistical relations between all pairs of recorded signals. However, extracting meaningful information from those large datasets is time-consuming and requires high expertise. In the present study [1], we propose a novel method named Brain-wide Time-varying Network Decomposition (BTND) to characterise the dynamic epileptogenic networks activated during seizures in individual patients recorded with SEEG electrodes. The method provides a number of pathological FC subgraphs with their temporal course of activation. The method can be applied to several seizures of the patient to extract reproducible subgraphs. To validate the extraction, we compare the activated subgraphs obtained by BTND to interpretation of SEEG signals recorded in 27 seizures from 9 different patients. We a found a good agreement about the activated subgraphs and the corresponding brain regions involved during the seizures and their activation dynamics.
- Published
- 2020
21. Inference and Modal Decomposition of Dynamic Networks in Neuroscience
- Author
-
FRUSQUE, Gaëtan, Laboratoire de l'Informatique du Parallélisme (LIP), École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS), Dynamic Networks : Temporal and Structural Capture Approach (DANTE), Inria Grenoble - Rhône-Alpes, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire de l'Informatique du Parallélisme (LIP), Université de Lyon-Université de Lyon-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique (CNRS)-Institut Rhône-Alpin des systèmes complexes (IXXI), École normale supérieure de Lyon (ENS de Lyon)-Université Lumière - Lyon 2 (UL2)-Université Jean Moulin - Lyon 3 (UJML), Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Université Lumière - Lyon 2 (UL2)-Université Jean Moulin - Lyon 3 (UJML), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA), Université de Lyon, Paulo Gonçalvès, École normale supérieure - Lyon (ENS Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Lyon (ENS Lyon)-Université Claude Bernard Lyon 1 (UCBL), École normale supérieure - Lyon (ENS Lyon)-Université Lumière - Lyon 2 (UL2)-Université Jean Moulin - Lyon 3 (UJML), STAR, ABES, Université Jean Moulin - Lyon 3 (UJML), Université de Lyon-Université de Lyon-Université Lumière - Lyon 2 (UL2)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université Joseph Fourier - Grenoble 1 (UJF)-École normale supérieure - Lyon (ENS Lyon)-Université Jean Moulin - Lyon 3 (UJML), Université de Lyon-Université Lumière - Lyon 2 (UL2)-Centre National de la Recherche Scientifique (CNRS)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Joseph Fourier - Grenoble 1 (UJF), ENS Lyon, Paulo Gonçalves(paulo.goncalves@ens-lyon.fr), Pierre Borgnat (Co-encadrant), and Julien Jung (Co-encadrant)
- Subjects
Matrix factorisation ,Dynamical graph ,Time series ,Décomposition tensorielle ,[INFO.INFO-TS] Computer Science [cs]/Signal and Image Processing ,SEEG ,Tensor decompositions ,Séries temporelles ,Connectivité fonctionnelle ,Graphes dynamiques ,Optimisation parcimonieuse ,Multivariate signal processing ,Functional connectivity ,[INFO.INFO-TS]Computer Science [cs]/Signal and Image Processing ,PLV ,Signaux neurophysiologiques ,Neurophysiological signals ,Parcimonie ,Série temporelle ,Traitement des signaux multivariés ,Functional conneitivity ,Sparse optimisation ,IEEG ,Décomposition matricielle ,Tensor factorisation ,Sparsity - Abstract
Dynamic graphs make it possible to understand the evolution of complex systems evolving over time. This type of graph has recently received considerable attention. However, there is no consensus on how to infer and study these graphs. In this thesis, we propose specific methods for dynamical graph analysis. A dynamical graph can be seen as a succession of complete graphs sharing the same nodes, but with the weights associated with each link changing over time. The proposed methods can have applications in neuroscience or in the study of social networks such as Twitter and Facebook for example. The issue of this thesis is epilepsy, one of the most common neurological diseases in the world affecting around 1% of the population.The first part concerns the inference of dynamical graph from neurophysiological signals. To assess the similarity between each pairs of signals, in order to make the graph, we use measures of functional connectivity. The comparison of these measurements is therefore of great interest to understand the characteristics of the resulting graphs. We then compare functional connectivity measurements involving the instantaneous phase and amplitude of the signals. We are particularly interested in a measure called Phase-Locking-Value (PLV) which quantifies the phase synchrony between two signals. We then propose, in order to infer robust and interpretable dynamic graphs, two new indexes that are conditioned and regularized PLV. The second part concerns tools for dynamical graphs decompositions. The objective is to propose a semi-automatic method in order to characterize the most important patterns in the pathological network from several seizures of the same patient. First, we consider seizures that have similar durations and temporal evolutions. In this case the data can be conveniently represented as a tensor. A specific tensor decomposition is then applied. Secondly, we consider seizures that have heterogeneous durations. Several strategies are proposed and compared. These are methods which, in addition to extracting the characteristic subgraphs common to all the seizures, make it possible to observe their temporal activation profiles specific to each seizures. Finally, the selected method is used for a clinical application. The obtained decompositions are compared to the visual interpretation of the clinician. As a whole, we found that activated subgraphs corresponded to brain regions involved during the course of the seizures and their time course were highly consistent with classical visual interpretation., Les graphes dynamiques permettent de comprendre l'évolution de systèmes complexes qui évoluent dans le temps. Ce type de graphe a récemment fait l'objet d'une attention considérable. Cependant, il n'existe pas de consensus sur les manières d'inférer et d'étudier ces graphes. Dans cette thèse, on propose des méthodes d'analyse de graphes dynamiques spécifiques. Ceux-ci peuvent être vues comme une succession de graphes complets partageant les mêmes nœuds, mais dont les poids associés à chaque lien évoluent dans le temps. Les méthodes proposées peuvent avoir des applications en neurosciences ou dans l'étude des réseaux sociaux comme Twitter et Facebook par exemple. L'enjeu applicatif de cette thèse est l'épilepsie, l'une des maladies neurologiques les plus rependues dans le monde affectant environ 1% de la population.La première partie concerne l'inférence de graphe dynamique à partir de signaux neurophysiologiques. Cette inférence est généralement réalisée à l'aide de mesures de connectivité fonctionnelle permettant d'évaluer la similarité entre deux signaux. La comparaison de ces mesures est donc d'un grand intérêt pour comprendre les caractéristiques des graphes obtenus. On compare alors des mesures de connectivité fonctionnelle impliquant la phase et l'amplitude instantanée des signaux. On s'intéresse en particulier à une mesure nommée Phase-Locking-Value (PLV) qui quantifie la synchronie des phases entre deux signaux. On propose ensuite, afin d'inférer des graphes dynamiques robustes et interprétables, deux nouvelles mesures de PLV conditionnées et régulariséesLa seconde partie présente des méthodes de décomposition de graphes dynamiques. L'objectif est de proposer une méthode semi-automatique afin de caractériser les informations les plus importantes du réseau pathologique de plusieurs crises d'un même patient. Dans un premier temps on considère des crises qui ont des durées et des évolutions temporelles similaires. Une décomposition tensorielle spécifique est alors appliquée. Dans un second temps, on considère des crises qui ont des durées hétérogènes. Plusieurs stratégies sont proposées et comparées. Ce sont des méthodes qui en plus d'extraire les sous-graphes caractéristiques communs à toutes les crises, permettent d'observer leurs profils d'activation temporelle spécifiques à chaque crise. Finalement, on utilise la méthode retenue pour une application clinique. Les décompositions obtenues sont comparées à l'interprétation visuelle du clinicien. Dans l'ensemble, on constate que les sous-graphes extraits correspondent aux régions du cerveau impliquées dans la crise d'épilepsie. De plus l'évolution de l'activation de ces sous-graphes est cohérente avec l'interprétation visuelle.
- Published
- 2020
22. Semi-automatic extraction of functional dynamic networks describing patient's epileptic seizures
- Author
-
Frusque, Gaëtan, Borgnat, Pierre, Gonçalves, Paulo, Jung, Julien, Dynamic Networks : Temporal and Structural Capture Approach (DANTE), Inria Grenoble - Rhône-Alpes, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire de l'Informatique du Parallélisme (LIP), Centre National de la Recherche Scientifique (CNRS)-Université de Lyon-Institut National de Recherche en Informatique et en Automatique (Inria)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-École normale supérieure - Lyon (ENS Lyon)-Centre National de la Recherche Scientifique (CNRS)-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-École normale supérieure - Lyon (ENS Lyon)-Institut Rhône-Alpin des systèmes complexes (IXXI), École normale supérieure - Lyon (ENS Lyon)-Université Lumière - Lyon 2 (UL2)-Université Jean Moulin - Lyon 3 (UJML), Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Université Lumière - Lyon 2 (UL2)-Université Jean Moulin - Lyon 3 (UJML), Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA), Laboratoire de Physique de l'ENS Lyon (Phys-ENS), École normale supérieure - Lyon (ENS Lyon)-Centre National de la Recherche Scientifique (CNRS)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon, Hospices Civils de Lyon, Departement de Neurologie (HCL), This work was supported by the ACADEMICS grant of the IDEXLYON, project of the Universite de Lyon, 433 PIA operated by ANR-16-IDEX-0005., École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique (CNRS)-Institut Rhône-Alpin des systèmes complexes (IXXI), École normale supérieure de Lyon (ENS de Lyon)-Université Lumière - Lyon 2 (UL2)-Université Jean Moulin - Lyon 3 (UJML), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Université Lumière - Lyon 2 (UL2)-Université Jean Moulin - Lyon 3 (UJML), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA), Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique (CNRS), ANR-14-CE27-0001,GRAPHSIP,Traitement de signaux sur graphes(2014), ANR-16-IDEX-0005,IDEXLYON,IDEXLYON(2016), École normale supérieure - Lyon (ENS Lyon)-Université Lumière - Lyon 2 (UL2)-Université Joseph Fourier - Grenoble 1 (UJF)-Université Jean Moulin - Lyon 3 (UJML), Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-Université Lumière - Lyon 2 (UL2)-Université Joseph Fourier - Grenoble 1 (UJF)-Université Jean Moulin - Lyon 3 (UJML), Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS), École normale supérieure - Lyon (ENS Lyon)-Université Claude Bernard Lyon 1 (UCBL), Réseaux dynamiques : approche structurelle et temporelle (DANTE), Laboratoire de l'Informatique du Parallélisme (LIP), Université de Lyon-Université de Lyon-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-Institut Rhône-Alpin des systèmes complexes (IXXI), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Inria Lyon, and Institut National de Recherche en Informatique et en Automatique (Inria)
- Subjects
subgraphs extraction ,Neurology ,[INFO.INFO-TS]Computer Science [cs]/Signal and Image Processing ,dynamical graph ,SEEG ,[SDV.NEU.NB]Life Sciences [q-bio]/Neurons and Cognition [q-bio.NC]/Neurobiology ,functional connectivity ,epileptogenic networks ,epilepsy ,Original Research - Abstract
International audience; Intracranial EEG studies using stereotactic EEG (SEEG) have shown that during seizures, epileptic activity spreads across several anatomical regions from the seizure onset zone towards remote brain areas. A full and objective characterisation of this patient-specific time-varying network is crucial for optimal surgical treatment. Functional Connectivity (FC) analysis of SEEG signals recorded during seizures enables to describe the statistical relations between all pairs of recorded signals. However, extracting meaningful information from those large datasets is time-consuming and requires high expertise. In the present study, we first propose a novel method named Brain-wide Time-varying Network Decomposition (BTND) to characterise the dynamic epileptogenic networks activated during seizures in individual patients recorded with SEEG electrodes. The method provides a number of pathological FC subgraphs with their temporal course of activation. The method can be applied to several seizures of the patient to extract reproducible subgraphs. Secondly, we compare the activated subgraphs obtained by the BTND method with visual interpretation of SEEG signals recorded in 27 seizures from 9 different patients. As a whole, we found that activated subgraphs corresponded to brain regions involved during the course of the seizures and their time course were highly consistent with classical visual interpretation. We believe that the proposed method can complement the visual analysis of SEEG signals recorded during seizures by highlighting and characterising the most significant parts of epileptic networks with their activation dynamics.
- Published
- 2020
- Full Text
- View/download PDF
23. Réduction de dimension tensorielle parcimonieuse: Application au clustering de connectivité fonctionnelle
- Author
-
Frusque, Gaëtan, Jung, Julien, Borgnat, Pierre, Gonçalves, Paulo, Dynamic Networks : Temporal and Structural Capture Approach (DANTE), Inria Grenoble - Rhône-Alpes, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire de l'Informatique du Parallélisme (LIP), École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique (CNRS)-Institut Rhône-Alpin des systèmes complexes (IXXI), École normale supérieure de Lyon (ENS de Lyon)-Université Lumière - Lyon 2 (UL2)-Université Jean Moulin - Lyon 3 (UJML), Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Université Lumière - Lyon 2 (UL2)-Université Jean Moulin - Lyon 3 (UJML), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Centre de recherche en neurosciences de Lyon - Lyon Neuroscience Research Center (CRNL), Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Université Jean Monnet - Saint-Étienne (UJM)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Physique de l'ENS Lyon (Phys-ENS), Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique (CNRS), ANR-16-IDEX-0005,IDEXLYON,IDEXLYON(2016), École normale supérieure - Lyon (ENS Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Lyon (ENS Lyon)-Université Claude Bernard Lyon 1 (UCBL), École normale supérieure - Lyon (ENS Lyon)-Université Lumière - Lyon 2 (UL2)-Université Jean Moulin - Lyon 3 (UJML), Centre de recherche en neurosciences de Lyon (CRNL), Université de Lyon-Université de Lyon-Université Jean Monnet [Saint-Étienne] (UJM)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), École normale supérieure - Lyon (ENS Lyon)-Centre National de la Recherche Scientifique (CNRS)-Université Claude Bernard Lyon 1 (UCBL), and Université de Lyon-Université de Lyon
- Subjects
[INFO.INFO-TS]Computer Science [cs]/Signal and Image Processing ,[INFO.INFO-LG]Computer Science [cs]/Machine Learning [cs.LG] ,[INFO.INFO-BI]Computer Science [cs]/Bioinformatics [q-bio.QM] - Abstract
National audience; k-means est un algorithme célèbre pour le clustering de données, mais ses performances se dégradent sur des données de grandes dimensions. Nous proposons des décompositions tensorielles parcimonieuses pour réduire la dimension des données avant d'appliquer k-means. Nous illustrons notre méthode sur des mesures de connectivité fonctionnelle d'EEG de crises épileptiques. Abstract-k-means is famous to cluster a dataset, however it is known to perform badly on high dimensional data. To apply it on EEG functional connectivity measures, as function of the time and for different seizures of a same patient, we develop a new sparse tensorial decomposition to reduce the dimensions of the data before applying k-means.
- Published
- 2019
24. Sparse tensor dimensionality reduction with application to clustering of functional connectivity
- Author
-
Frusque, Gaëtan, primary, Jung, Julien, additional, Borgnat, Pierre, additional, and Gonçalves, Paulo, additional
- Published
- 2019
- Full Text
- View/download PDF
25. Sparse tensor dimensionality reduction with application to clustering of functional connectivity.
- Author
-
Frusque, Gaëtan, Jung, Julien, Borgnat, Pierre, and Gonçalves, Paulo
- Published
- 2019
- Full Text
- View/download PDF
26. Sparse tensor dimensionality reduction with application to clustering of functional connectivity
- Author
-
Van De Ville, Dimitri, Papadakis, Manos, Lu, Yue M., Frusque, Gaëtan, Jung, Julien, Borgnat, Pierre, and Gonçalves, Paulo
- Published
- 2019
- Full Text
- View/download PDF
27. Learnable Wavelet Packet Transform for Data-Adapted Spectrograms
- Author
-
Frusque, Gaëtan Michel and Fink, Olga
- Subjects
Time-frequency analysis ,Linear programming ,Task analysis ,Feature extraction ,Deep learning ,Acoustics Wavelet packets - Abstract
Capturing high-frequency data concerning the condition of complex systems, e.g. by acoustic monitoring, has become increasingly prevalent. Such high-frequency signals typically contain time dependencies ranging over different time scales and different types of cyclic behaviors. Processing such signals requires careful feature engineering, particularly the extraction of meaningful time-frequency features. This can be time-consuming and the performance is often dependent on the choice of parameters. To address these limitations, we propose a deep learning framework for learnable wavelet packet transforms, enabling to learn features automatically from data and optimise them with respect to the defined objective function. The learned features can be represented as a spectrogram, containing the important time-frequency information of the dataset. We evaluate the properties and performance of the proposed approach by evaluating its improved spectral leakage and by applying it to an anomaly detection task for acoustic monitoring.
28. Semi-automatic Extraction of Functional Dynamic Networks Describing Patient's Epileptic Seizures.
- Author
-
Frusque G, Borgnat P, Gonçalves P, and Jung J
- Abstract
Intracranial electroencephalography (EEG) studies using stereotactic EEG (SEEG) have shown that during seizures, epileptic activity spreads across several anatomical regions from the seizure onset zone toward remote brain areas. A full and objective characterization of this patient-specific time-varying network is crucial for optimal surgical treatment. Functional connectivity (FC) analysis of SEEG signals recorded during seizures enables to describe the statistical relations between all pairs of recorded signals. However, extracting meaningful information from those large datasets is time consuming and requires high expertise. In the present study, we first propose a novel method named Brain-wide Time-varying Network Decomposition (BTND) to characterize the dynamic epileptogenic networks activated during seizures in individual patients recorded with SEEG electrodes. The method provides a number of pathological FC subgraphs with their temporal course of activation. The method can be applied to several seizures of the patient to extract reproducible subgraphs. Second, we compare the activated subgraphs obtained by the BTND method with visual interpretation of SEEG signals recorded in 27 seizures from nine different patients. As a whole, we found that activated subgraphs corresponded to brain regions involved during the course of the seizures and their time course was highly consistent with classical visual interpretation. We believe that the proposed method can complement the visual analysis of SEEG signals recorded during seizures by highlighting and characterizing the most significant parts of epileptic networks with their activation dynamics., Competing Interests: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest., (Copyright © 2020 Frusque, Borgnat, Gonçalves and Jung.)
- Published
- 2020
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.