1. Towards Multilingual LLM Evaluation for European Languages
- Author
-
Thellmann, Klaudia, Stadler, Bernhard, Fromm, Michael, Buschhoff, Jasper Schulze, Jude, Alex, Barth, Fabio, Leveling, Johannes, Flores-Herr, Nicolas, Köhler, Joachim, Jäkel, René, and Ali, Mehdi
- Subjects
Computer Science - Computation and Language ,Computer Science - Artificial Intelligence ,Computer Science - Machine Learning - Abstract
The rise of Large Language Models (LLMs) has revolutionized natural language processing across numerous languages and tasks. However, evaluating LLM performance in a consistent and meaningful way across multiple European languages remains challenging, especially due to the scarcity of language-parallel multilingual benchmarks. We introduce a multilingual evaluation approach tailored for European languages. We employ translated versions of five widely-used benchmarks to assess the capabilities of 40 LLMs across 21 European languages. Our contributions include examining the effectiveness of translated benchmarks, assessing the impact of different translation services, and offering a multilingual evaluation framework for LLMs that includes newly created datasets: EU20-MMLU, EU20-HellaSwag, EU20-ARC, EU20-TruthfulQA, and EU20-GSM8K. The benchmarks and results are made publicly available to encourage further research in multilingual LLM evaluation.
- Published
- 2024