1. Same-day consultation, simulation and lung Stereotactic Ablative Radiotherapy delivery on a Magnetic Resonance-linac
- Author
-
Miguel A. Palacios, Sonja Verheijen, Famke L. Schneiders, Omar Bohoudi, Berend J. Slotman, Frank J. Lagerwaard, and Suresh Senan
- Subjects
Lung SBRT ,Same-day treatment ,Single Fraction ,MR-guided ,Intra-fraction ,Motion Management ,Medical physics. Medical radiology. Nuclear medicine ,R895-920 ,Neoplasms. Tumors. Oncology. Including cancer and carcinogens ,RC254-282 - Abstract
Background and Purpose: Magnetic resonance-guided radiotherapy (MRgRT) with real-time intra-fraction tumor motion monitoring allows for high precision Stereotactic Ablative Radiotherapy (SABR). This study aimed to investigate the clinical feasibility, patient satisfaction and delivery accuracy of single-fraction MR-guided SABR in a single day (one-stop-shop, OSS). Methods and Materials: Ten patients with small lung tumors eligible for single fraction treatments were included. The OSS procedure consisted of consultation, treatment simulation, treatment planning and delivery. Following SABR delivery, patients completed a reported experience measure (PREM) questionnaire. Prescribed doses ranged 28–34 Gy. Median GTV was 2.2 cm3 (range 1.3–22.9 cm3). A gating boundary of 3 mm, and PTV margin of 5 mm around the GTV, were used with auto-beam delivery control. Accuracy of SABR delivery was studied by analyzing delivered MR-cines reconstructed from machine log files. Results: All 10 patients completed the OSS procedure in a single day, and all reported satisfaction with the process. Median time for the treatment planning step and the whole procedure were 2.8 h and 6.6 h, respectively. With optimization of the procedure, treatment could be completed in half a day. During beam-on, the 3 mm tracking boundary encompassed between 78.0 and 100 % of the GTV across all patients, with corresponding PTV values being 94.4–100 % (5th-95th percentiles). On average, system-latency for triggering a beam-off event comprised 5.3 % of the delivery time. Latency reduced GTV coverage by an average of −0.3 %. Duty-cycles during treatment delivery ranged from 26.1 to 64.7 %. Conclusions: An OSS procedure with MR-guided SABR for lung cancer led to good patient satisfaction. Gated treatment delivery was highly accurate with little impact of system-latency.
- Published
- 2022
- Full Text
- View/download PDF