1. Morse complexes and multiplicative structures
- Author
-
Francois Laudenbach, Hossein Abbaspour, Laboratoire de Mathématiques Jean Leray (LMJL), Centre National de la Recherche Scientifique (CNRS)-Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST), Université de Nantes (UN)-Université de Nantes (UN), Université de Nantes - Faculté des Sciences et des Techniques, and Université de Nantes (UN)-Université de Nantes (UN)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Pure mathematics ,Transversality ,High Energy Physics::Lattice ,General Mathematics ,Boundary (topology) ,02 engineering and technology ,Morse code ,01 natural sciences ,law.invention ,Mathematics - Geometric Topology ,law ,[MATH.MATH-GT]Mathematics [math]/Geometric Topology [math.GT] ,FOS: Mathematics ,Algebraic Topology (math.AT) ,Mathematics - Algebraic Topology ,0101 mathematics ,Mathematics::Symplectic Geometry ,Mathematics ,Condensed Matter::Quantum Gases ,010102 general mathematics ,Multiplicative function ,Geometric Topology (math.GT) ,021001 nanoscience & nanotechnology ,[MATH.MATH-AT]Mathematics [math]/Algebraic Topology [math.AT] ,0210 nano-technology ,Manifold (fluid mechanics) - Abstract
In this article we lay out the details of Fukaya's A ∞-structure of the Morse com-plexe of a manifold possibily with boundary. We show that this A ∞-structure is homotopically independent of the made choices. We emphasize the transversality arguments that some fiber product constructions make valid.
- Published
- 2021