1. RG flows of integrable σ-models and the twist function
- Author
-
Konstantinos Sfetsos, Francois Delduc, Konstantinos Siampos, Sylvain Lacroix, Laboratoire de Physique de l'ENS Lyon (Phys-ENS), École normale supérieure de Lyon (ENS de Lyon)-Université de Lyon-Centre National de la Recherche Scientifique (CNRS), École normale supérieure - Lyon (ENS Lyon)-Centre National de la Recherche Scientifique (CNRS)-Université Claude Bernard Lyon 1 (UCBL), and Université de Lyon-Université de Lyon
- Subjects
High Energy Physics - Theory ,Nuclear and High Energy Physics ,Integrable system ,[PHYS.MPHY]Physics [physics]/Mathematical Physics [math-ph] ,Rational function ,01 natural sciences ,Simple (abstract algebra) ,0103 physical sciences ,Renormalization Group ,lcsh:Nuclear and particle physics. Atomic energy. Radioactivity ,Integrable Field Theories ,Twist ,010306 general physics ,Mathematical Physics ,Mathematical physics ,Physics ,Nonlinear Sciences - Exactly Solvable and Integrable Systems ,010308 nuclear & particles physics ,[PHYS.HTHE]Physics [physics]/High Energy Physics - Theory [hep-th] ,Renormalization group flow ,Function (mathematics) ,Renormalization group ,16. Peace & justice ,model: integrability ,Character (mathematics) ,Conformal Field Models in String Theory ,sigma model: nonlinear ,Wess-Zumino-Witten model ,heat kernel ,twist ,renormalization group: flow ,lcsh:QC770-798 ,model: chiral ,Sigma Models - Abstract
In the study of integrable non-linear $\sigma$-models which are assemblies and/or deformations of principal chiral models and/or WZW models, a rational function called the twist function plays a central role. For a large class of such models, we show that they are one-loop renormalizable, and that the renormalization group flow equations can be written directly in terms of the twist function in a remarkably simple way. The resulting equation appears to have a universal character when the integrable model is characterized by a twist function., Comment: v1: 1+47 pages, Latex, v2: JHEP version
- Published
- 2021
- Full Text
- View/download PDF