1. Properties of an interplanetary shock observed at 0.07 and 0.7 Astronomical Units by Parker Solar Probe and Solar Orbiter
- Author
-
Trotta, D., Larosa, A., Nicolaou, G., Horbury, T. S., Matteini, L., Hietala, H., Blanco-Cano, X., Franci, L., Chen, C. H. K., Zhao, L., Zank, G. P., Cohen, C. M. S., Bale, S. D., Laker, R., Fargette, N., Valentini, F., Khotyaintsev, Y., Kieokaew, R., Raouafi, N., Davies, E., Vainio, R., Dresing, N., Kilpua, E., Karlsson, T., Owen, C. J., and Wimmer-Schweingruber, R.
- Subjects
Astrophysics - Solar and Stellar Astrophysics ,Physics - Space Physics - Abstract
The Parker Solar Probe (PSP) and Solar Orbiter (SolO) missions opened a new observational window in the inner heliosphere, which is finally accessible to direct measurements. On September 05, 2022, a coronal mass ejection (CME)-driven interplanetary (IP) shock has been observed as close as 0.07 au by PSP. The CME then reached SolO, which was well radially-aligned at 0.7 au, thus providing us with the opportunity to study the shock properties at so different heliocentric distances. We characterize the shock, investigate its typical parameters and compare its small-scale features at both locations. Using the PSP observations, we investigate how magnetic switchbacks and ion cyclotron waves are processed upon shock crossing. We find that switchbacks preserve their V--B correlation while compressed upon the shock passage, and that the signature of ion cyclotron waves disappears downstream of the shock. By contrast, the SolO observations reveal a very structured shock transition, with a population of shock-accelerated protons of up to about 2 MeV, showing irregularities in the shock downstream, which we correlate with solar wind structures propagating across the shock. At SolO, we also report the presence of low-energy ($\sim$ 100 eV) electrons scattering due to upstream shocklets. This study elucidates how the local features of IP shocks and their environments can be very different as they propagate through the heliosphere., Comment: In review in ApJ
- Published
- 2023