Haiqing Wu, Víctor Vilarrasa, Maarten W. Saaltink, Francesco Parisio, Silvia De Simone, Universitat Politècnica de Catalunya [Barcelona] (UPC), Institute of Environmental Assessment and Water Research (IDAEA), Consejo Superior de Investigaciones Científicas [Madrid] (CSIC), Mediterranean Institute for Advanced Studies, Géosciences Rennes (GR), Université de Rennes (UR)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire des Sciences de l'Univers de Rennes (OSUR), Université de Rennes (UR)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Rennes 2 (UR2)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Rennes 2 (UR2)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Centre National de la Recherche Scientifique (CNRS), Technishe Universität Bergakademie Freiberg (TU Bergakademie Freiberg), 2019FI_B 00516, Agència de Gestió d'Ajuts Universitaris i de Recerca, 801809, H2020 European Research Council, PA 3451/1‐1, Deutsche Forschungsgemeinschaft, SAD2018, Région Bretagne, ANR‐17‐LCV2‐0012, Agence Nationale de la Recherche, Universitat Politècnica de Catalunya. Doctorat en Enginyeria Civil, Universitat Politècnica de Catalunya. Departament d'Enginyeria Civil i Ambiental, Universitat Politècnica de Catalunya. GHS - Grup d'Hidrologia Subterrània, European Research Council, Ministerio de Ciencia e Innovación (España), Ministerio de Ciencia, Innovación y Universidades (España), Vilarrasa, Víctor, Vilarrasa, Víctor [0000-0003-1169-4469], Centre National de la Recherche Scientifique (CNRS)-Observatoire des Sciences de l'Univers de Rennes (OSUR)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Rennes 1 (UR1), and Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)
Displaced faults crossing the reservoir could significantly increase the induced earthquake frequency in geo‐energy projects. Understanding and predicting the stress variation in such cases is essential to minimize the risk of induced seismicity. Here, we adopt the inclusion theory to develop an analytical solution for the stress response to pore pressure variations within the reservoir for both permeable and impermeable faults with offset ranging from zero to the reservoir thickness. By analyzing fault stability changes due to reservoir pressurization/depletion under different scenarios, we find that (1) the induced seismicity potential of impermeable faults is always larger than that of permeable faults under any initial and injection conditions—the maximum size of the fault undergoing failure is 3–5 times larger for impermeable than for permeable faults; (2) stress concentration at the corners results in the occurrence of reversed slip in normal faults with a normal faulting stress regime; (3) while fault offset has no impact on the slip potential for impermeable faults, the slip potential increases with the offset for permeable faults, which indicates that non‐displaced permeable faults constitute a safer choice for site selection; (4) an impermeable fault would rupture at a lower deviatoric stress, and at a smaller pressure buildup than a permeable one; and (5) the induced seismicity potential is overestimated and the injectivity underestimated if the stress arching (i.e., the poromechanical coupling) is neglected. This analytical solution is a useful tool for site selection and for supporting decision making during the lifetime of geo‐energy projects., H. Wu acknowledges the financial support received from the AGAUR (Generalitat de Catalunya) through the ‘‘grant for universities and research centers for the recruitment of new research personnel (FI‐2019)''. V. Vilarrasa acknowledges funding from the European Research Council (ERC) under the European Union's Horizon 2020 Research and Innovation Programme through the Starting Grant GEoREST (www.georest.eu), Grant agreement no. 801809. V. Vilarrasa also acknowledges support by the Spanish Ministry of Science and Innovation (Project CEX2018‐000794‐S). S.D. Simone acknowledges financial support from the SAD2018 project funded by the Brittany Region and from ANR LabCom Project eLabo ANR‐17‐LCV2‐0012. M. Saaltink acknowledges financial support from the “HEATSTORE” project (170153–44011), which has been subsidized through the ERANET Cofund GEOTHERMICA (Grant agreement no. 731117), from the European Commission and the Spanish Ministry of Science, Innovation and Universities (PCI2018‐092933). F. Parisio acknowledges funding from the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)—project number PA 3451/1‐1. The authors thank Tomas Aquino for his advice on the integral solutions.