11 results on '"Franca CM"'
Search Results
2. Guidance for evaluating biomaterials' properties and biological potential for dental pulp tissue engineering and regeneration research.
- Author
-
Rosa V, Cavalcanti BN, Nör JE, Tezvergil-Mutluay A, Silikas N, Bottino MC, Kishen A, Soares DG, Franca CM, Cooper PR, Duncan HF, Ferracane JL, and Watts DC
- Abstract
Background: Dental pulp regeneration is a complex and advancing field that requires biomaterials capable of supporting the pulp's diverse functions, including immune defense, sensory perception, vascularization, and reparative dentinogenesis. Regeneration involves orchestrating the formation of soft connective tissues, neurons, blood vessels, and mineralized structures, necessitating materials with tailored biological and mechanical properties. Numerous biomaterials have entered clinical practice, while others are being developed for tissue engineering applications. The composition and a broad range of material properties, such as surface characteristics, degradation rate, and mechanical strength, significantly influence cellular behavior and tissue outcomes. This underscores the importance of employing robust evaluation methods and ensuring precise and comprehensive reporting of findings to advance research and clinical translation., Aims: This article aims to present the biological foundations of dental pulp tissue engineering alongside potential testing methodologies and their advantages and limitations. It provides guidance for developing research protocols to evaluate the properties of biomaterials and their influences on cell and tissue behavior, supporting progress toward effective dental pulp regeneration strategies., Competing Interests: Declaration of Competing Interest This research received no funding and there is no conflict of interest., (Copyright © 2024 The Authors. Published by Elsevier Inc. All rights reserved.)
- Published
- 2024
- Full Text
- View/download PDF
3. Remote-Controlled Gene Delivery in Coaxial 3D-Bioprinted Constructs using Ultrasound-Responsive Bioinks.
- Author
-
Lowrey MK, Day H, Schilling KJ, Huynh KT, Franca CM, and Schutt CE
- Abstract
Introduction: Coaxial 3D bioprinting has advanced the formation of tissue constructs that recapitulate key architectures and biophysical parameters for in-vitro disease modeling and tissue-engineered therapies. Controlling gene expression within these structures is critical for modulating cell signaling and probing cell behavior. However, current transfection strategies are limited in spatiotemporal control because dense 3D scaffolds hinder diffusion of traditional vectors. To address this, we developed a coaxial extrusion 3D bioprinting technique using ultrasound-responsive gene delivery bioinks. These bioink materials incorporate echogenic microbubble gene delivery particles that upon ultrasound exposure can sonoporate cells within the construct, facilitating controllable transfection., Methods: Phospholipid-coated gas-core microbubbles were electrostatically coupled to reporter transgene plasmid payloads and incorporated into cell-laden alginate bioinks at varying particle concentrations. These bioinks were loaded into the coaxial nozzle core for extrusion bioprinting with CaCl
2 crosslinker in the outer sheath. Resulting bioprints were exposed to 2.25 MHz focused ultrasound and evaluated for microbubble activation and subsequent DNA delivery and transgene expression., Results: Coaxial printing parameters were established that preserved the stability of ultrasound-responsive gene delivery particles for at least 48 h in bioprinted alginate filaments while maintaining high cell viability. Successful sonoporation of embedded cells resulted in DNA delivery and robust ultrasound-controlled transgene expression. The number of transfected cells was modulated by varying the number of focused ultrasound pulses applied. The size region over which DNA was delivered was modulated by varying the concentration of microbubbles in the printed filaments., Conclusions: Our results present a successful coaxial 3D bioprinting technique designed to facilitate ultrasound-controlled gene delivery. This platform enables remote, spatiotemporally-defined genetic manipulation in coaxially bioprinted tissue constructs with important applications for disease modeling and regenerative medicine., Supplementary Information: The online version contains supplementary material available at 10.1007/s12195-024-00818-x., Competing Interests: Conflict of interestThe authors MKL, HD, KJS, KTH, CMF and CES declare no conflicts of interest., (© The Author(s) 2024.)- Published
- 2024
- Full Text
- View/download PDF
4. Engineering models of head and neck and oral cancers on-a-chip.
- Author
-
da Costa Sousa MG, Vignolo SM, Franca CM, Mereness J, Alves Fraga MA, Silva-Sousa AC, Benoit DSW, and Bertassoni LE
- Abstract
Head and neck cancers (HNCs) rank as the sixth most common cancer globally and result in over 450 000 deaths annually. Despite considerable advancements in diagnostics and treatment, the 5-year survival rate for most types of HNCs remains below 50%. Poor prognoses are often attributed to tumor heterogeneity, drug resistance, and immunosuppression. These characteristics are difficult to replicate using in vitro or in vivo models, culminating in few effective approaches for early detection and therapeutic drug development. Organs-on-a-chip offer a promising avenue for studying HNCs, serving as microphysiological models that closely recapitulate the complexities of biological tissues within highly controllable microfluidic platforms. Such systems have gained interest as advanced experimental tools to investigate human pathophysiology and assess therapeutic efficacy, providing a deeper understanding of cancer pathophysiology. This review outlines current challenges and opportunities in replicating HNCs within microphysiological systems, focusing on mimicking the soft, glandular, and hard tissues of the head and neck. We further delve into the major applications of organ-on-a-chip models for HNCs, including fundamental research, drug discovery, translational approaches, and personalized medicine. This review emphasizes the integration of organs-on-a-chip into the repertoire of biological model systems available to researchers. This integration enables the exploration of unique aspects of HNCs, thereby accelerating discoveries with the potential to improve outcomes for HNC patients., Competing Interests: The authors have no conflicts to disclose., (© 2024 Author(s).)
- Published
- 2024
- Full Text
- View/download PDF
5. High-Throughput Bioprinting of Geometrically-Controlled Pre-Vascularized Injectable Microgels for Accelerated Tissue Regeneration.
- Author
-
Franca CM, Athirasala A, Subbiah R, Tahayeri A, Selvakumar P, Mansoorifar A, Horsophonphong S, Sercia A, Nih L, and Bertassoni LE
- Subjects
- Mice, Humans, Animals, Tissue Engineering methods, Biocompatible Materials, Hydrogels, Tissue Scaffolds, Printing, Three-Dimensional, Microgels, Bioprinting methods
- Abstract
Successful integration of cell-laden tissue constructs with host vasculature depends on the presence of functional capillaries to provide oxygen and nutrients to the embedded cells. However, diffusion limitations of cell-laden biomaterials challenge regeneration of large tissue defects that require bulk-delivery of hydrogels and cells. Herein, a strategy to bioprint geometrically controlled, endothelial and stem-cell laden microgels in high-throughput is introduced, allowing these cells to form mature and functional pericyte-supported vascular capillaries in vitro, and then injecting these pre-vascularized constructs minimally invasively in-vivo. It is demonstrated that this approach offers both desired scalability for translational applications as well as unprecedented levels of control over multiple microgel parameters to design spatially-tailored microenvironments for better scaffold functionality and vasculature formation. As a proof-of-concept, the regenerative capacity of the bioprinted pre-vascularized microgels is compared with that of cell-laden monolithic hydrogels of the same cellular and matrix composition in hard-to-heal defects in vivo. The results demonstrate that the bioprinted microgels have faster and higher connective tissue formation, more vessels per area, and widespread presence of functional chimeric (human and murine) vascular capillaries across regenerated sites. The proposed strategy, therefore, addresses a significant issue in regenerative medicine, demonstrating a superior potential to facilitate translational regenerative efforts., (© 2023 Wiley-VCH GmbH.)
- Published
- 2023
- Full Text
- View/download PDF
6. In-vitro models of biocompatibility testing for restorative dental materials: From 2D cultures to organs on-a-chip.
- Author
-
Franca CM, Balbinot GS, Cunha D, Saboia VPA, Ferracane J, and Bertassoni LE
- Subjects
- Adult, Composite Resins, Dental Materials pharmacology, Dental Restoration, Permanent, Humans, Lab-On-A-Chip Devices, Materials Testing, Dental Caries, Dentin
- Abstract
Dental caries is a biofilm-mediated, diet-modulated, multifactorial and dynamic disease that affects more than 90% of adults in Western countries. The current treatment for decayed tissue is based on using materials to replace the lost enamel or dentin. More than 500 million dental restorations are placed annually worldwide, and materials used for these purposes either directly or indirectly interact with dentin and pulp tissues. The development and understanding of the effects of restorative dental materials are based on different in-vitro and in-vivo tests, which have been evolving with time. In this review, we first discuss the characteristics of the tooth and the dentin-pulp interface that are unique for materials testing. Subsequently, we discuss frequently used in-vitro tests to evaluate the biocompatibility of dental materials commonly used for restorative procedures. Finally, we present our perspective on the future directions for biological research on dental materials using tissue engineering and organs on-a-chip approaches. STATEMENT OF SIGNIFICANCE: Dental caries is still the most prevalent infectious disease globally, requiring more than 500 million restorations to be placed every year. Regrettably, the failure rates of such restorations are still high. Those rates are partially based on the fact that current platforms to test dental materials are somewhat inaccurate in reproducing critical components of the complex oral microenvironment. Thus, there is a collective effort to develop new materials while evolving the platforms to test them. In this context, the present review critically discusses in-vitro models used to evaluate the biocompatibility of restorative dental materials and brings a perspective on future directions for tissue-engineered and organs-on-a-chip platforms for testing new dental materials., Competing Interests: Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2022 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.)
- Published
- 2022
- Full Text
- View/download PDF
7. Vascular inflammation exposes perivascular cells to SARS-CoV-2 infection.
- Author
-
Franca CM, Mansoorifar A, Athirasala A, Subbiah R, Tahayeri A, and Bertassoni L
- Abstract
Pericytes stabilize blood vessels and promote vascular barrier function. However, vessels subjected to pro-inflammatory conditions have impaired barrier function, which has been suggested to potentially expose perivascular cells to SARS-CoV-2. To test this hypothesis, we engineered pericyte-supported vascular capillaries on-a-chip, and determined that the extravasation and binding of spike protein (S1) on perivascular cells of inflamed vessels to be significantly higher that in healthy controls, indicating a potential target to understand COVID-19 vascular complications.
- Published
- 2022
- Full Text
- View/download PDF
8. Vascular Photobiomodulation.
- Author
-
Fernandes KPS, Ferrari RM, Bussadori SK, and Franca CM
- Subjects
- Low-Level Light Therapy
- Published
- 2021
- Full Text
- View/download PDF
9. Antibacterial, ester-free monomers: Polymerization kinetics, mechanical properties, biocompatibility and anti-biofilm activity.
- Author
-
Fugolin AP, Dobson A, Huynh V, Mbiya W, Navarro O, Franca CM, Logan M, Merritt JL, Ferracane JL, and Pfeifer CS
- Subjects
- Acrylamide chemistry, Composite Resins chemistry, Humans, Kinetics, Luminescence, Methacrylates chemistry, Proton Magnetic Resonance Spectroscopy, Quaternary Ammonium Compounds chemistry, Streptococcus mutans drug effects, Streptococcus mutans physiology, Anti-Bacterial Agents pharmacology, Biofilms drug effects, Esters chemistry, Materials Testing, Mechanical Phenomena, Polymerization
- Abstract
Objectives: Quaternary ammonium (QA) methacrylate monomers have been extensively investigated and demonstrate excellent antibacterial properties. However, the presence of ester bonds makes them prone to degradation in the oral cavity. In this study, ester-free QA monomers based on meth-acrylamides were synthesized and screened for polymerization kinetics, mechanical properties and antibacterial effects., Materials and Methods: Tertiary quaternary ammonium acrylamides (AM) and methacrylamides (MAM) with alkyl side chain lengths of 9 and 14 carbons (C9 and C14) were synthesized and incorporated at 10 wt% into experimental composites based on BisGMA:TEGDMA (1:1), camphorquinone/ethyl-4-dimethylaminobenzoate (0.2/0.8 wt%) and 70 wt% barium glass fillers. Analogous methacrylate versions (MA) were used as controls. Degree of conversion (DC) and rate of polymerization (RP) during photoactivation (800 mW/cm
2 ) were followed in real-time with near-IR. Flexural Strength (FS) and Modulus (E) were measured on 2 × 2 × 25 mm bars in 3-point bending after 24 h dry storage and 7-day storage in water at 37 °C. Antimicrobial properties and biofilm adhesion (fouling) were evaluated by bioluminescence (Luciferase Assay) and biofilm removal by water spray microjet impingement test, respectively. Cytotoxicity was assessed by MTT assay on dental pulp stem cells (DPSC). Data were analyzed with one-way ANOVA/Tukey's test (α = 0.05)., Results: DC was similar for all groups tested (∼70%). Both MAMs and C14-AM presented significantly lower RP. Under dry conditions, FS (110-120 MPa) and E (8-9 GPa) were similar for all groups. After water storage, all materials presented FS/E similar to the control, except for C14-AM (for FS) and C14-MAM (for E), which were lower. All C14 versions were strongly antibacterial, decreasing the titer counts of biofilm by more than two orders of magnitude in comparison to the control. C9 monomers did not present significant antibacterial nor antifouling properties. And biofilms had approximately equivalent adhesion on the C9 composites as on the control. Cytotoxicity did not show significant differences between the MA and AM versions and the control group., Conclusions: C14-QA monomers based on methacrylates and meth-acrylamides present strong antibacterial properties, and in general, similar conversion/mechanical properties compared to the methacrylate control., Statement of Significance: This work demonstrates the viability of methacrylamides and acrylamides as potential components in dental restorative materials with antimicrobial properties. The use of ester-free polymerizable functionalities has the potential of improving the degradation resistance of these materials long-term. The use of (meth)acrylamides did not interfere with the antimicrobial potential of quaternary ammonium-based materials., (Copyright © 2019. Published by Elsevier Ltd.)- Published
- 2019
- Full Text
- View/download PDF
10. Engineering Microvascular Networks in LED Light-Cured Cell-Laden Hydrogels.
- Author
-
Monteiro N, He W, Franca CM, Athirasala A, and Bertassoni LE
- Abstract
The success of tissue engineering inevitably depends on the fabrication of tissue constructs that can be vascularized and that anastomose with the host vasculature. In this report, we studied the effects of light-emitting diode (LED) photopolymerized gelatin methacryloyl hydrogels (GelMA), encapsulated with stem cells from the apical papilla (SCAP) and human umbilical vein endothelial cells (HUVECs), in promoting vasculature network formation as a function of hydrogel physical and mechanical properties, as well as total cell density. Lithium acylphosphinate (LAP) was used as the photoinitiator in concentrations of 0.05, 0.075, 0.1% (w/v). GelMA hydrogel precursors of 5% (w/v) were encapsulated with cocultures of SCAPs and HUVECs at different cell densities (1×, 5×, and 10 × 10
6 cells/mL) and photo-cross-linked for 5 s. Results suggested that the compressive modulus of GelMA hydrogels increased as a function of LAP concentration, and had a maximum stiffness of 3.2 kPa. GelMA hydrogels photopolymerized using 0.05 or 0.075% LAP, which had an average of 1.5 and 1.6 kPa of elastic modulus respectively, had the most efficient vasculature formation after 5 days, and these results were further enhanced when the highest cell density (10 × 106 cells/mL) was used. Immunofluorescence images showed that SCAP cells spread in close contact with endothelial networks and expressed alpha smooth muscle actin (αSMA), which is suggestive of their differentiation into pericyte-like cells. αSMA expression was also apparently higher in hydrogels polymerized with 0.05% LAP and 10 × 106 cells/mLl. In conclusion, photopolymerization of GelMA hydrogels using an LED-light source can be an effective method for potential chair-side/in situ procedures for engineering of vascularized tissue constructs in regenerative medicine.- Published
- 2018
- Full Text
- View/download PDF
11. Anopheles Midgut FREP1 Mediates Plasmodium Invasion.
- Author
-
Zhang G, Niu G, Franca CM, Dong Y, Wang X, Butler NS, Dimopoulos G, and Li J
- Subjects
- Animals, Anopheles genetics, Anopheles growth & development, Digestive System metabolism, Digestive System parasitology, Female, Fibrinogen genetics, Host-Parasite Interactions, Insect Proteins genetics, Insect Vectors genetics, Insect Vectors growth & development, Male, Anopheles metabolism, Anopheles parasitology, Fibrinogen metabolism, Insect Proteins metabolism, Insect Vectors metabolism, Insect Vectors parasitology, Plasmodium falciparum physiology
- Abstract
Malaria transmission depends on sexual stage Plasmodium parasites successfully invading Anopheline mosquito midguts following a blood meal. However, the molecular mechanisms of Plasmodium invasion of mosquito midguts have not been fully elucidated. Previously, we showed that genetic polymorphisms in the fibrinogen-related protein 1 (FREP1) gene are significantly associated with Plasmodium falciparum infection in Anopheles gambiae, and FREP1 is important for Plasmodium berghei infection of mosquitoes. Here we identify that the FREP1 protein is secreted from the mosquito midgut epithelium and integrated as tetramers into the peritrophic matrix, a chitinous matrix formed inside the midgut lumen after a blood meal feeding. Moreover, we show that the FREP1 can directly bind Plasmodia sexual stage gametocytes and ookinetes. Notably, ablating FREP1 expression or targeting FREP1 with antibodies significantly decreases P. falciparum infection in mosquito midguts. Our data support that the mosquito-expressed FREP1 mediates mosquito midgut invasion by multiple species of Plasmodium parasites via anchoring ookinetes to the peritrophic matrix and enabling parasites to penetrate the peritrophic matrix and the epithelium. Thus, targeting FREP1 can limit malaria transmission., (© 2015 by The American Society for Biochemistry and Molecular Biology, Inc.)
- Published
- 2015
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.