61 results on '"François Bonnetblanc"'
Search Results
2. Electrophysiological Activity Evoked by Direct Electrical Stimulation of the Human Brain: Interest of the P0 Component.
- Author
-
Anthony Boyer, Hugues Duffau, Marion A. Vincent, Sofiane Ramdani, Emmanuel Mandonnet, David Guiraud, and François Bonnetblanc
- Published
- 2018
- Full Text
- View/download PDF
3. A measure of cortico-cortical potentials evoked by 10Hz direct electrical stimulation of the brain and by means of a differential recording mode of electrocorticographic signals.
- Author
-
Marion A. Vincent, Olivier Rossel, Hugues Duffau, François Bonnetblanc, and David Guiraud
- Published
- 2016
- Full Text
- View/download PDF
4. Crossed cerebellar diaschisis after awake brain surgery: Can we measure pre/post operative changes on resting state fMRI data?
- Author
-
Anthony Boyer, Jérémy Deverdun, Hugues Duffau, Emmanuelle Le Bars, Nicolas Menjot de Champfleur, and François Bonnetblanc
- Published
- 2015
- Full Text
- View/download PDF
5. Axono-cortical evoked potentials as a new method of IONM for preserving the motor control network: a first study in three cases
- Author
-
Antoni Valero-Cabré, Demian Wasserman, Mélissa Dali, Chloé Stengel, Emmanuel Mandonnet, François Rheault, Anthony Boyer, and François Bonnetblanc
- Subjects
Supplementary motor area ,business.industry ,Motor control ,Precentral gyrus ,Frontal gyrus ,030218 nuclear medicine & medical imaging ,White matter ,Premotor cortex ,03 medical and health sciences ,Electrophysiology ,0302 clinical medicine ,medicine.anatomical_structure ,Premovement neuronal activity ,Medicine ,Surgery ,Neurology (clinical) ,business ,Neuroscience ,030217 neurology & neurosurgery - Abstract
White matter stimulation in an awake patient is currently the gold standard for identification of functional pathways. Despite the robustness and reproducibility of this method, very little is known about the electrophysiological mechanisms underlying the functional disruption. Axono-cortical evoked potentials (ACEPs) provide a reliable technique to explore these mechanisms. To describe the shape and spatial patterns of ACEPs recorded when stimulating the white matter of the caudal part of the right superior frontal gyrus while recording in the precentral gyrus. We report on three patients operated on under awake condition for a right superior frontal diffuse low-grade glioma. Functional sites were identified in the posterior wall of the cavity, whose 2–3-mA stimulation generated an arrest of movement. Once the resection was done, axono-cortical potentials were evoked: recording electrodes were put over the precentral gyrus, while stimulating at 1 Hz the white matter functional sites during 30–60 s. Unitary evoked potentials were averaged off-line. Waveform was visually analyzed, defining peaks and troughs, with quantitative measurements of their amplitudes and latencies. Spatial patterns of ACEPs were compared with patients’ own and HCP-derived structural connectomics. Axono-cortical evoked potentials (ACEPs) were obtained and exhibited complex shapes and spatial patterns that correlated only partially with structural connectivity patterns. ACEPs is a new IONM methodology that could both contribute to elucidate the propagation of neuronal activity within a distributed network when stimulating white matter and provide a new technique for preserving motor control abilities during brain tumor resections.
- Published
- 2020
6. Patterns of axono-cortical evoked potentials: an electrophysiological signature unique to each white matter functional site?
- Author
-
Chloé Stengel, Antoni Valero-Cabré, Maxime Descoteaux, Emmanuel Mandonnet, Anthony Boyer, François Bonnetblanc, Mélissa Dali, François Rheault, Hugues Duffau, David Guiraud, Institut National de la Santé et de la Recherche Médicale (INSERM), Hôpital Lariboisière-Fernand-Widal [APHP], Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP), Contrôle Artificiel de Mouvements et de Neuroprothèses Intuitives (CAMIN), Inria Sophia Antipolis - Méditerranée (CRISAM), Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria), FRONTLAB: Fonctions et dysfonctions de systèmes frontaux [ICM Paris] (FRONTlab), Institut du Cerveau = Paris Brain Institute (ICM), Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Institut National de la Santé et de la Recherche Médicale (INSERM)-CHU Pitié-Salpêtrière [AP-HP], Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Sorbonne Université (SU)-Sorbonne Université (SU)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Institut National de la Santé et de la Recherche Médicale (INSERM)-CHU Pitié-Salpêtrière [AP-HP], Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Sorbonne Université (SU)-Sorbonne Université (SU)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Hôpital Gui de Chauliac [CHU Montpellier], Centre Hospitalier Régional Universitaire [Montpellier] (CHRU Montpellier), Sherbrooke Connectivity Imaging Lab [Sherbrooke] (SCIL), Département d'informatique [Sherbrooke] (UdeS), Faculté des sciences [Sherbrooke] (UdeS), Université de Sherbrooke (UdeS)-Université de Sherbrooke (UdeS)-Faculté des sciences [Sherbrooke] (UdeS), Université de Sherbrooke (UdeS)-Université de Sherbrooke (UdeS), FRONTlab - Systèmes frontaux : fonctions et dysfonctions (FRONTlab), Institut du Cerveau et de la Moëlle Epinière = Brain and Spine Institute (ICM), Institut National de la Santé et de la Recherche Médicale (INSERM)-CHU Pitié-Salpêtrière [AP-HP], Sorbonne Université (SU)-Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Sorbonne Université (SU)-Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM)-CHU Pitié-Salpêtrière [AP-HP], Sorbonne Université (SU)-Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Sorbonne Université (SU)-Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Hôpital Gui de Chauliac, and Université Montpellier 1 (UM1)-Centre Hospitalier Régional Universitaire [Montpellier] (CHRU Montpellier)
- Subjects
medicine.medical_specialty ,Neurology ,business.industry ,[SDV.NEU.NB]Life Sciences [q-bio]/Neurons and Cognition [q-bio.NC]/Neurobiology ,Tumor resection ,Precentral gyrus ,Inferior frontal gyrus ,Stimulation ,Brain mapping ,030218 nuclear medicine & medical imaging ,[SPI.AUTO]Engineering Sciences [physics]/Automatic ,White matter ,03 medical and health sciences ,Electrophysiology ,[SCCO]Cognitive science ,0302 clinical medicine ,medicine.anatomical_structure ,medicine ,[SDV.MHEP.PHY]Life Sciences [q-bio]/Human health and pathology/Tissues and Organs [q-bio.TO] ,Surgery ,Neurology (clinical) ,business ,Neuroscience ,030217 neurology & neurosurgery ,ComputingMilieux_MISCELLANEOUS - Abstract
International audience; BackgroundBrain-to-brain evoked potentials constitute a new methodology that could help to understand the network-level correlates of electrical stimulation applied for brain mapping during tumor resection. In this paper, we aimed to describe the characteristics of axono-cortical evoked potentials recorded from distinct, but in the same patient, behaviorally eloquent white matter sites.MethodsWe report the intraoperative white matter mapping and axono-cortical evoked potentials recordings observed in a patient operated on under awake condition of a diffuse low-grade glioma in the left middle frontal gyrus. Out of the eight behaviorally eloquent sites identified with 60-Hz electrical stimulation, five were probed with single electrical pulses (delivered at 1 Hz), while recording evoked potentials on two electrodes, covering the inferior frontal gyrus and the precentral gyrus, respectively. Postoperative diffusion-weighted MRI was used to reconstruct the tractograms passing through each of the five stimulated sites.ResultsEach stimulated site generated an ACEP on at least one of the recorded electrode contacts. The whole pattern—i.e., the specific contacts with ACEPs and their waveform—was distinct for each of the five stimulated sites.ConclusionsWe found that the patterns of ACEPs provided unique electrophysiological signatures for each of the five white matter functional sites. Our results could ultimately provide neurosurgeons with a new tool of intraoperative electrophysiologically based functional guidance.
- Published
- 2021
7. Electrophysiological Mapping During Brain Tumor Surgery: Recording Cortical Potentials Evoked Locally, Subcortically and Remotely by Electrical Stimulation to Assess the Brain Connectivity On-line
- Author
-
David Guiraud, Anthony Boyer, Sofiane Ramdani, Emmanuel Mandonnet, Marion Vincent, Mélissa Dali, François Bonnetblanc, Hugues Duffau, Contrôle Artificiel de Mouvements et de Neuroprothèses Intuitives (CAMIN), Inria Sophia Antipolis - Méditerranée (CRISAM), Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria), Interactive Digital Humans (IDH), Laboratoire d'Informatique de Robotique et de Microélectronique de Montpellier (LIRMM), Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM), Institut des Neurosciences de Montpellier - Déficits sensoriels et moteurs (INM), Institut National de la Santé et de la Recherche Médicale (INSERM)-Université de Montpellier (UM), Hôpital Lariboisière-Fernand-Widal [APHP], Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP), Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), Institut des Neurosciences de Montpellier (INM), and Centre Hospitalier Régional Universitaire [Montpellier] (CHRU Montpellier)
- Subjects
medicine.medical_specialty ,Neurology ,[SDV]Life Sciences [q-bio] ,Stimulation ,050105 experimental psychology ,Temporal lobe ,Premotor cortex ,White matter ,03 medical and health sciences ,0302 clinical medicine ,medicine ,0501 psychology and cognitive sciences ,Radiology, Nuclear Medicine and imaging ,Electrocorticography ,Radiological and Ultrasound Technology ,medicine.diagnostic_test ,business.industry ,05 social sciences ,Line (electrical engineering) ,Electrophysiology ,medicine.anatomical_structure ,Neurology (clinical) ,Anatomy ,business ,Neuroscience ,030217 neurology & neurosurgery - Abstract
International audience; Direct electrical stimulation (DES) is used to perform functional brain mapping during awake surgery and in epileptic patients. DES may be coupled with the measurement of Evoked Potentials (EP) to study the conductive and integrative properties of activated neural ensembles and probe the spatiotemporal dynamics of short- and long-range networks. However, its electrophysiological effects remain by far unknown. We recorded ECoG signals on two patients undergoing awake brain surgery and measured EP on functional sites after cortical stimulations and were the firsts to record three different types of EP on the same patients. Using low-intensity (1–3 mA) to evoke electrogenesis we observed that: (i) “true” remote EPs are attenuated in amplitude and delayed in time due to the divergence of white matter pathways; (ii) “false” remote EPs are attenuated but not delayed: as they originate from the same electrical source; (iii) Singular but reproducible positive components in the EP can be generated when the DES is applied in the temporal lobe or the premotor cortex; and (iv) rare EP can be triggered when the DES is applied subcortically: these can be either negative, or surprisingly, positive. We proposed different activation and electrophysiological propagation mechanisms following DES, based on the nature of activated neural elements and discussed important methodological pitfalls when measuring EP in the brain. Altogether, these results pave the way to map the connectivity in real-time between the DES and the recording sites; to characterize the local electrophysiological states and to link electrophysiology and function. In the future, and in practice, this technique could be used to perform electrophysiological mapping in order to link (non)-functional to electrophysiological responses with DES and could be used to guide the surgical act itself.
- Published
- 2021
8. Parametric recurrence quantification analysis of autoregressive processes for pattern recognition in multichannel electroencephalographic data
- Author
-
Stéphane Caron, Anthony Boyer, Frédéric Bouchara, François Bonnetblanc, Hugues Duffau, Annick Lesne, Sofiane Ramdani, Interactive Digital Humans (IDH), Laboratoire d'Informatique de Robotique et de Microélectronique de Montpellier (LIRMM), Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), Contrôle Artificiel de Mouvements et de Neuroprothèses Intuitives (CAMIN), Inria Sophia Antipolis - Méditerranée (CRISAM), Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria), Cognition, Action, et Plasticité Sensorimotrice [Dijon - U1093] (CAPS), Université de Bourgogne (UB)-Institut National de la Santé et de la Recherche Médicale (INSERM), Laboratoire d'Informatique et Systèmes (LIS), Aix Marseille Université (AMU)-Université de Toulon (UTLN)-Centre National de la Recherche Scientifique (CNRS), Institut des Neurosciences de Montpellier (INM), Institut National de la Santé et de la Recherche Médicale (INSERM)-Université de Montpellier (UM), Laboratoire de Physique Théorique de la Matière Condensée (LPTMC), Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Institut de Génétique Moléculaire de Montpellier (IGMM), Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), This research was supported by the LabEx NUMEV project (ANR-10-LABX-20) funded by the French government’s 'Investisse- ments d’Avenir' program managed by the French National Re- search Agency (ANR), grants from the Institut Universitaire de France, and INSERM laboratory (U1093)., ANR-10-LABX-0020,NUMEV,Digital and Hardware Solutions and Modeling for the Environement and Life Sciences(2010), Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM), Institut des Neurosciences de Montpellier - Déficits sensoriels et moteurs (INM), Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU), and Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)
- Subjects
[INFO.INFO-CC]Computer Science [cs]/Computational Complexity [cs.CC] ,Computer science ,Recurrence quantification analysis ,Physics::Medical Physics ,[MATH.MATH-DS]Mathematics [math]/Dynamical Systems [math.DS] ,02 engineering and technology ,01 natural sciences ,[INFO.INFO-TS]Computer Science [cs]/Signal and Image Processing ,Artificial Intelligence ,0103 physical sciences ,Recurrence plots ,0202 electrical engineering, electronic engineering, information engineering ,EEG Data ,Asymptotic recurrence measures ,[NLIN]Nonlinear Sciences [physics] ,[PHYS.COND.CM-SM]Physics [physics]/Condensed Matter [cond-mat]/Statistical Mechanics [cond-mat.stat-mech] ,010306 general physics ,Recurrence plot ,Autoregressive stochastic processes ,Parametric statistics ,Series (mathematics) ,business.industry ,Stochastic process ,[SCCO.NEUR]Cognitive science/Neuroscience ,Pattern recognition ,Function (mathematics) ,Autoregressive model ,Signal Processing ,Pattern recognition (psychology) ,020201 artificial intelligence & image processing ,Computer Vision and Pattern Recognition ,Artificial intelligence ,business ,Multichannel data ,Software - Abstract
accepted 2020-08-04; International audience; Recurrence quantification analysis (RQA) is an acknowledged method for the characterization of experimental time series. We propose a parametric version of RQA, pRQA, allowing a fast processing of spatial arrays of time series, once each is modeled by an autoregressive stochastic process. This method relies on the analytical derivation of asymptotic expressions for five current RQA measures as a function of the model parameters. By avoiding the construction of the recurrence plot of the time series, pRQA is computationally efficient. As a proof of principle, we apply pRQA to pattern recognition in multichannel electroencephalographic (EEG) data from a patient with a brain tumor.
- Published
- 2021
9. Patterns of axono-cortical evoked potentials: an electrophysiological signature unique to each white matter functional site?
- Author
-
Anthony, Boyer, Chloé, Stengel, François, Bonnetblanc, Mélissa, Dali, Hugues, Duffau, François, Rheault, Maxime, Descoteaux, David, Guiraud, Antoni, Valero-Cabre, and Emmanuel, Mandonnet
- Subjects
Brain Mapping ,Brain Neoplasms ,Humans ,Glioma ,Evoked Potentials ,White Matter ,Electric Stimulation - Abstract
Brain-to-brain evoked potentials constitute a new methodology that could help to understand the network-level correlates of electrical stimulation applied for brain mapping during tumor resection. In this paper, we aimed to describe the characteristics of axono-cortical evoked potentials recorded from distinct, but in the same patient, behaviorally eloquent white matter sites.We report the intraoperative white matter mapping and axono-cortical evoked potentials recordings observed in a patient operated on under awake condition of a diffuse low-grade glioma in the left middle frontal gyrus. Out of the eight behaviorally eloquent sites identified with 60-Hz electrical stimulation, five were probed with single electrical pulses (delivered at 1 Hz), while recording evoked potentials on two electrodes, covering the inferior frontal gyrus and the precentral gyrus, respectively. Postoperative diffusion-weighted MRI was used to reconstruct the tractograms passing through each of the five stimulated sites.Each stimulated site generated an ACEP on at least one of the recorded electrode contacts. The whole pattern-i.e., the specific contacts with ACEPs and their waveform-was distinct for each of the five stimulated sites.We found that the patterns of ACEPs provided unique electrophysiological signatures for each of the five white matter functional sites. Our results could ultimately provide neurosurgeons with a new tool of intraoperative electrophysiologically based functional guidance.
- Published
- 2020
10. Axono-cortical evoked potentials as a new method of IONM for preserving the motor control network: a first study in three cases
- Author
-
Demian, Wasserman, Antoni, Valero-Cabré, Mélissa, Dali, Chloé, Stengel, Anthony, Boyer, François, Rheault, François, Bonnetblanc, and Emmanuel, Mandonnet
- Subjects
Adult ,Male ,Intraoperative Neurophysiological Monitoring ,Brain Neoplasms ,Humans ,Female ,Glioma ,Middle Aged ,Wakefulness ,Evoked Potentials, Motor ,White Matter ,Neurosurgical Procedures ,Frontal Lobe - Abstract
White matter stimulation in an awake patient is currently the gold standard for identification of functional pathways. Despite the robustness and reproducibility of this method, very little is known about the electrophysiological mechanisms underlying the functional disruption. Axono-cortical evoked potentials (ACEPs) provide a reliable technique to explore these mechanisms.To describe the shape and spatial patterns of ACEPs recorded when stimulating the white matter of the caudal part of the right superior frontal gyrus while recording in the precentral gyrus.We report on three patients operated on under awake condition for a right superior frontal diffuse low-grade glioma. Functional sites were identified in the posterior wall of the cavity, whose 2-3-mA stimulation generated an arrest of movement. Once the resection was done, axono-cortical potentials were evoked: recording electrodes were put over the precentral gyrus, while stimulating at 1 Hz the white matter functional sites during 30-60 s. Unitary evoked potentials were averaged off-line. Waveform was visually analyzed, defining peaks and troughs, with quantitative measurements of their amplitudes and latencies. Spatial patterns of ACEPs were compared with patients' own and HCP-derived structural connectomics.Axono-cortical evoked potentials (ACEPs) were obtained and exhibited complex shapes and spatial patterns that correlated only partially with structural connectivity patterns.ACEPs is a new IONM methodology that could both contribute to elucidate the propagation of neuronal activity within a distributed network when stimulating white matter and provide a new technique for preserving motor control abilities during brain tumor resections.
- Published
- 2020
11. 'I do not feel my hand where I see it': causal mapping of visuo-proprioceptive integration network in a surgical glioma patient
- Author
-
François Rheault, Chloé Stengel, Melissa Dali, Emmanuel Mandonnet, François Bonnetblanc, Antoni Valero-Cabre, Daniel S. Margulies, Monica N. Toba, Hôpital Lariboisière-Fernand-Widal [APHP], Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP), FRONTLAB: Fonctions et dysfonctions de systèmes frontaux [ICM Paris] (FRONTlab), Institut du Cerveau = Paris Brain Institute (ICM), Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Institut National de la Santé et de la Recherche Médicale (INSERM)-CHU Pitié-Salpêtrière [AP-HP], Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Sorbonne Université (SU)-Sorbonne Université (SU)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Institut National de la Santé et de la Recherche Médicale (INSERM)-CHU Pitié-Salpêtrière [AP-HP], Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Sorbonne Université (SU)-Sorbonne Université (SU)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Contrôle Artificiel de Mouvements et de Neuroprothèses Intuitives (CAMIN), Inria Sophia Antipolis - Méditerranée (CRISAM), Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria), Sherbrooke Connectivity Imaging Lab [Sherbrooke] (SCIL), Département d'informatique [Sherbrooke] (UdeS), Faculté des sciences [Sherbrooke] (UdeS), Université de Sherbrooke (UdeS)-Université de Sherbrooke (UdeS)-Faculté des sciences [Sherbrooke] (UdeS), Université de Sherbrooke (UdeS)-Université de Sherbrooke (UdeS), Laboratoire de Neurosciences Fonctionnelles et Pathologies - UR UPJV 4559 (LNFP), Université de Picardie Jules Verne (UPJV), Cognition, Action, et Plasticité Sensorimotrice [Dijon - U1093] (CAPS), Université de Bourgogne (UB)-Institut National de la Santé et de la Recherche Médicale (INSERM), FRONTlab - Systèmes frontaux : fonctions et dysfonctions (FRONTlab), Institut du Cerveau et de la Moëlle Epinière = Brain and Spine Institute (ICM), Institut National de la Santé et de la Recherche Médicale (INSERM)-CHU Pitié-Salpêtrière [AP-HP], Sorbonne Université (SU)-Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Sorbonne Université (SU)-Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM)-CHU Pitié-Salpêtrière [AP-HP], and Sorbonne Université (SU)-Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Sorbonne Université (SU)-Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
medicine.medical_specialty ,Neurology ,genetic structures ,media_common.quotation_subject ,behavioral disciplines and activities ,030218 nuclear medicine & medical imaging ,White matter ,03 medical and health sciences ,0302 clinical medicine ,Perception ,Glioma ,Parietal Lobe ,Medicine ,Humans ,Evoked Potentials ,media_common ,Proprioception ,business.industry ,Brain Neoplasms ,Functional connectivity ,[SCCO.NEUR]Cognitive science/Neuroscience ,medicine.disease ,Hand ,Magnetic Resonance Imaging ,White Matter ,3. Good health ,medicine.anatomical_structure ,Causal mapping ,Visual Perception ,Surgery ,Neurology (clinical) ,business ,Neuroscience ,030217 neurology & neurosurgery ,Tractography - Abstract
International audience; A recent tasked-based fMRI study unveiled a network of areas implicated in the process of visuo-proprioceptive integration of the right hand. In this study, we report a case of a patient operated on in awake conditions for a glioblastoma of the left superior parietal lobule. When stimulating a white matter site in the anterior wall of the cavity, the patient spontaneously reported a discrepancy between the visual and proprioceptive perceptions of her right hand. Using several multimodal approaches (axono-cortical evoked potentials, tractography, resting-state functional connectivity), we demonstrated converging support for the hypothesis that tumor-induced plasticity redistributed the left-lateralized network of right-hand visuo-proprioceptive integration towards its right-lateralized homolog.
- Published
- 2020
12. Attenuation and delay of remote potentials evoked by direct electrical stimulation during brain surgery
- Author
-
David Guiraud, Sofiane Ramdani, Marion Vincent, Anthony Boyer, Hugues Duffau, Emmanuel Mandonnet, François Bonnetblanc, Contrôle Artificiel de Mouvements et de Neuroprothèses Intuitives (CAMIN), Inria Sophia Antipolis - Méditerranée (CRISAM), Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria), Institut des Neurosciences de Montpellier - Déficits sensoriels et moteurs (INM), Institut National de la Santé et de la Recherche Médicale (INSERM)-Université de Montpellier (UM), Hôpital Lariboisière-Fernand-Widal [APHP], Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP), Sciences Cognitives et Sciences Affectives (SCALab) - UMR 9193 (SCALab), Université de Lille-Centre National de la Recherche Scientifique (CNRS), Interactive Digital Humans (IDH), Laboratoire d'Informatique de Robotique et de Microélectronique de Montpellier (LIRMM), Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM), Institut des Neurosciences de Montpellier (INM), Laboratoire Sciences Cognitives et Sciences Affectives - UMR 9193 (SCALab), and Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Male ,medicine.medical_specialty ,Low-grade glioma ,Stimulation ,[SDV.MHEP.CHI]Life Sciences [q-bio]/Human health and pathology/Surgery ,050105 experimental psychology ,03 medical and health sciences ,Functional brain ,0302 clinical medicine ,Gyrus ,Awake brain surgery ,medicine ,Humans ,0501 psychology and cognitive sciences ,Radiology, Nuclear Medicine and imaging ,Direct electrical stimulation DES ,Wakefulness ,Awake surgery ,Electrocorticography ,Brain Mapping ,Radiological and Ultrasound Technology ,medicine.diagnostic_test ,Brain Neoplasms ,Chemistry ,Attenuation ,05 social sciences ,Brain ,Evoked potentials ,Electric Stimulation ,Surgery ,Electrophysiology ,medicine.anatomical_structure ,Neurology ,Female ,Low-Grade Glioma ,[SDV.NEU]Life Sciences [q-bio]/Neurons and Cognition [q-bio.NC] ,Neurology (clinical) ,Anatomy ,030217 neurology & neurosurgery - Abstract
International audience; Background: Direct electrical stimulation (DES) is used to perform functional brain mapping during awake surgery but its electrophysiological effects remain by far unknown.Hypothesis: DES may be coupled with the measurement of Evoked Potentials (EPs) to study the conductive and integrative properties of activated neural ensembles and probe the spatiotemporal dynamics of short- and long- range networks.Methods: We recorded ECoG signals on two patients undergoing awake brain surgery and measured EPs on functional sites after cortical stimulations, using combinations of stimulation parameters.Results: EPs were similar in shape but delayed in time and attenuated in amplitude when elicited from a different gyrus or remotely from the recording site. We were able to trigger remote EPs using low stimulation intensities.Conclusion: We propose different activation and electrophysiological propagation mechanisms following DES based on activated neural elements.
- Published
- 2020
13. Electrophysiological brain mapping: Basics of recording evoked potentials induced by electrical stimulation and its physiological spreading in the human brain
- Author
-
Hugues Duffau, Emmanuel Mandonnet, David Guiraud, François Bonnetblanc, Marion Vincent, Control of Artificial Movement and Intuitive Neuroprosthesis (CAMIN), Laboratoire d'Informatique de Robotique et de Microélectronique de Montpellier (LIRMM), Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Inria Sophia Antipolis - Méditerranée (CRISAM), Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria), Service de Neurochirurgie [CHU Pitié-Salpêtrière], CHU Pitié-Salpêtrière [AP-HP], Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP), Imagerie et Modélisation en Neurobiologie et Cancérologie (IMNC (UMR_8165)), Université Paris-Sud - Paris 11 (UP11)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Cognition, Action, et Plasticité Sensorimotrice [Dijon - U1093] (CAPS), Université de Bourgogne (UB)-Institut National de la Santé et de la Recherche Médicale (INSERM), Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Inria Sophia Antipolis - Méditerranée (CRISAM), Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Sorbonne Université (SU)-Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Sorbonne Université (SU), Control of Artificial Movement and Intuitive Neuroprosthesis ( CAMIN ), Laboratoire d'Informatique de Robotique et de Microélectronique de Montpellier ( LIRMM ), Université de Montpellier ( UM ) -Centre National de la Recherche Scientifique ( CNRS ) -Université de Montpellier ( UM ) -Centre National de la Recherche Scientifique ( CNRS ) -Inria Sophia Antipolis - Méditerranée ( CRISAM ), Institut National de Recherche en Informatique et en Automatique ( Inria ) -Institut National de Recherche en Informatique et en Automatique ( Inria ), Assistance publique - Hôpitaux de Paris (AP-HP)-CHU Pitié-Salpêtrière [APHP], Imagerie et Modélisation en Neurobiologie et Cancérologie ( IMNC ), Université Paris-Sud - Paris 11 ( UP11 ) -Institut National de Physique Nucléaire et de Physique des Particules du CNRS ( IN2P3 ) -Université Paris Diderot - Paris 7 ( UPD7 ) -Centre National de la Recherche Scientifique ( CNRS ), Cognition, Action, et Plasticité Sensorimotrice [Dijon - U1093] ( CAPS ), Université de Bourgogne ( UB ) -Institut National de la Santé et de la Recherche Médicale ( INSERM ), and Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Sorbonne Université (SU)
- Subjects
0301 basic medicine ,Stimulation ,[ SPI.SIGNAL ] Engineering Sciences [physics]/Signal and Image processing ,Brain mapping ,03 medical and health sciences ,0302 clinical medicine ,Physiology (medical) ,medicine ,Humans ,[ SDV.IB ] Life Sciences [q-bio]/Bioengineering ,Evoked Potentials ,ComputingMilieux_MISCELLANEOUS ,Brain Mapping ,business.industry ,Brain ,Electroencephalography ,Human brain ,Electric Stimulation ,Sensory Systems ,Electrophysiology ,030104 developmental biology ,medicine.anatomical_structure ,Neurology ,[ SDV.NEU ] Life Sciences [q-bio]/Neurons and Cognition [q-bio.NC] ,[SDV.IB]Life Sciences [q-bio]/Bioengineering ,[SDV.NEU]Life Sciences [q-bio]/Neurons and Cognition [q-bio.NC] ,Neurology (clinical) ,business ,[SPI.SIGNAL]Engineering Sciences [physics]/Signal and Image processing ,Neuroscience ,030217 neurology & neurosurgery - Abstract
International audience
- Published
- 2017
14. Measuring the electrophysiological effects of direct electrical stimulation after awake brain surgery
- Author
-
Hugues Duffau, David Guiraud, Emmanuel Mandonnet, Anthony Boyer, Marion Vincent, François Bonnetblanc, Control of Artificial Movement and Intuitive Neuroprosthesis (CAMIN), Laboratoire d'Informatique de Robotique et de Microélectronique de Montpellier (LIRMM), Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Inria Sophia Antipolis - Méditerranée (CRISAM), Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria), Hôpital Lariboisière, Assistance publique - Hôpitaux de Paris (AP-HP) (APHP)-Hôpital Lariboisière-Université Paris Diderot - Paris 7 (UPD7), Hôpital Gui de Chauliac, Université Montpellier 1 (UM1)-Centre Hospitalier Régional Universitaire [Montpellier] (CHRU Montpellier), Contrôle Artificiel de Mouvements et de Neuroprothèses Intuitives (CAMIN), Inria Sophia Antipolis - Méditerranée (CRISAM), Hôpital Lariboisière-Fernand-Widal [APHP], Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP), Hôpital Gui de Chauliac [CHU Montpellier], and Centre Hospitalier Régional Universitaire [Montpellier] (CHRU Montpellier)
- Subjects
[SDV.NEU.NB]Life Sciences [q-bio]/Neurons and Cognition [q-bio.NC]/Neurobiology ,0206 medical engineering ,Tumor resection ,Biomedical Engineering ,Action Potentials ,Stimulation ,02 engineering and technology ,Brain mapping ,Neurosurgical Procedures ,[SPI.AUTO]Engineering Sciences [physics]/Automatic ,White matter ,Stereotaxic Techniques ,03 medical and health sciences ,Cellular and Molecular Neuroscience ,0302 clinical medicine ,Cortex (anatomy) ,medicine ,[SDV.MHEP.PHY]Life Sciences [q-bio]/Human health and pathology/Tissues and Organs [q-bio.TO] ,Humans ,Evoked potential ,Wakefulness ,Electrocorticography ,ComputingMilieux_MISCELLANEOUS ,Brain Mapping ,medicine.diagnostic_test ,business.industry ,Brain ,020601 biomedical engineering ,Electrophysiology ,medicine.anatomical_structure ,business ,Neuroscience ,030217 neurology & neurosurgery - Abstract
International audience; Objective: Direct electrical stimulation (DES) at 60 Hz is used to perform real-time functional mapping of the brain, and guide tumour resection during awake neurosurgery. Nonetheless, the electrophysiological effects of DES remain largely unknown, both locally and remotely.Approach: In this study, we lowered the DES frequency to 1-10 Hz and we used a differential recording mode of electro-corticographic (ECoG) signals to improve the focality with a simple algorithm to remove the artefacts due to the response of the acquisition chain.Main results: Doing so, we were able to observe different components in the evoked potentials triggered by simulating the cortex or the subcortical white matter pathways near the recording electrodes and by stimulating the cortex remotely from the recording site. More particularly, P0 and N1 components were repeatedly observed on raw ECoG signals without the need to average the data.Significance: This new methodology is important to probe the electrophysiological states and the connectivity of the brain in vivo and in real time, namely to perform electrophysiological brain mapping on human patients operated in the neurosurgical room and to better understand the electrophysiological spreading of DES.
- Published
- 2019
15. Alterations of EEG rhythms during motor preparation following awake brain surgery
- Author
-
Bénédicte Poulin-Charronnat, Anthony Boyer, Sofiane Ramdani, David Guiraud, Hugues Duffau, François Bonnetblanc, Control of Artificial Movement and Intuitive Neuroprosthesis ( CAMIN ), Laboratoire d'Informatique de Robotique et de Microélectronique de Montpellier ( LIRMM ), Université de Montpellier ( UM ) -Centre National de la Recherche Scientifique ( CNRS ) -Université de Montpellier ( UM ) -Centre National de la Recherche Scientifique ( CNRS ) -Inria Sophia Antipolis - Méditerranée ( CRISAM ), Institut National de Recherche en Informatique et en Automatique ( Inria ) -Institut National de Recherche en Informatique et en Automatique ( Inria ), Efficience Déficience Motrice [Montpellier] ( EDM ), Université Montpellier 1 ( UM1 ), Hôpital Gui de Chauliac, Université Montpellier 1 ( UM1 ) -Centre Hospitalier Régional Universitaire [Montpellier] ( CHRU Montpellier ), Equipe Perception et cognition musicales, Sciences et Technologies de la Musique et du Son ( STMS ), Université Pierre et Marie Curie - Paris 6 ( UPMC ) -IRCAM-Centre National de la Recherche Scientifique ( CNRS ) -Université Pierre et Marie Curie - Paris 6 ( UPMC ) -IRCAM-Centre National de la Recherche Scientifique ( CNRS ), Cognition, Action, et Plasticité Sensorimotrice [Dijon - U1093] ( CAPS ), Université de Bourgogne ( UB ) -Institut National de la Santé et de la Recherche Médicale ( INSERM ), ANR-10-LABX-0020/10-LABX-0020,NUMEV,Digital and Hardware Solutions and Modeling for the Environement and Life Sciences ( 2010 ), Control of Artificial Movement and Intuitive Neuroprosthesis (CAMIN), Laboratoire d'Informatique de Robotique et de Microélectronique de Montpellier (LIRMM), Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Inria Sophia Antipolis - Méditerranée (CRISAM), Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria), Interactive Digital Humans (IDH), Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), Hôpital Gui de Chauliac [CHU Montpellier], Centre Hospitalier Régional Universitaire [Montpellier] (CHRU Montpellier), Institut des Neurosciences de Montpellier (INM), Institut National de la Santé et de la Recherche Médicale (INSERM)-Université de Montpellier (UM), Laboratoire d'Etude de l'Apprentissage et du Développement [Dijon] (LEAD), Université de Bourgogne (UB)-Centre National de la Recherche Scientifique (CNRS), Cognition, Action, et Plasticité Sensorimotrice [Dijon - U1093] (CAPS), Université de Bourgogne (UB)-Institut National de la Santé et de la Recherche Médicale (INSERM), Institut Universitaire de France (IUF), Ministère de l'Education nationale, de l’Enseignement supérieur et de la Recherche (M.E.N.E.S.R.), LabEx NUMEV project by the French government's 'Investissements d'Avenir' program ANR-10-LABX-20 Institut Universitaire de France INSERM laboratory U1093, ANR-10-LABX-0020,NUMEV,Digital and Hardware Solutions and Modeling for the Environement and Life Sciences(2010), Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Inria Sophia Antipolis - Méditerranée (CRISAM), Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM), Université Montpellier 1 (UM1)-Centre Hospitalier Régional Universitaire [Montpellier] (CHRU Montpellier), Institut des Neurosciences de Montpellier - Déficits sensoriels et moteurs (INM), and Centre National de la Recherche Scientifique (CNRS)-Université de Bourgogne (UB)
- Subjects
Adult ,Male ,medicine.medical_specialty ,Cognitive Neuroscience ,[SDV.CAN]Life Sciences [q-bio]/Cancer ,Experimental and Cognitive Psychology ,Spectral analysis ,050105 experimental psychology ,[ SDV.CAN ] Life Sciences [q-bio]/Cancer ,Lesion ,03 medical and health sciences ,Cognition ,0302 clinical medicine ,Arts and Humanities (miscellaneous) ,Awake brain surgery ,Reaction Time ,Developmental and Educational Psychology ,medicine ,Humans ,0501 psychology and cognitive sciences ,Brainwaves ,Wakefulness ,Balance (ability) ,Brain Neoplasms ,[SCCO.NEUR]Cognitive science/Neuroscience ,05 social sciences ,Healthy subjects ,Brain ,Electroencephalography ,Middle Aged ,Surgery ,Electrophysiology ,Neuropsychology and Physiological Psychology ,Behavioral data ,Diffuse low-grade glioma ,[ SCCO.NEUR ] Cognitive science/Neuroscience ,Eeg rhythms ,Female ,medicine.symptom ,Psychology ,Eeg monitoring ,030217 neurology & neurosurgery - Abstract
International audience; Slow-growing, infiltrative brain tumours may modify the electrophysiological balance between the two hemispheres. To determine whether and how asymmetry of EEG rhythms during motor preparation might occur following " awake brain surgery " for this type of tumour, we recorded electroencephalograms during a simple visuo-manual reaction time paradigm performed by the patients between 3 and 12 months after surgery and compared them to a control group of 8 healthy subjects. Frequency analyses revealed imbalances between the injured and healthy hemispheres. More particularly, we observed a power increase in the δ frequency band near the lesion site and a power increase in the α and β frequency bands. Interestingly, these alterations seem to decrease for the two patients whose surgery were anterior to 9 months, independently of the size of the lesion. Reaction times did not reflect this pattern as they were clearly not inversely related to the anteriority of the surgery. Electrophysiology suggests here different processes of recovery compared to behavioral data and brings further insights for the understanding of EEG rhythms that should not be systematically confounded or assimilated with cognitive performances. EEG monitoring is rare for these patients, especially after awake brain surgery, however it is important.
- Published
- 2018
16. Case report: Remote neuromodulation with direct electrical stimulation of the brain, as evidenced by intra-operative EEG recordings during wide-awake neurosurgery
- Author
-
David Guiraud, Bénédicte Poulin-Charronnat, Mitsuhiro Hayashibe, Marion Vincent, Hugues Duffau, Olivier Rossel, François Bonnetblanc, Guillaume Herbet, Control of Artificial Movement and Intuitive Neuroprosthesis (CAMIN), Laboratoire d'Informatique de Robotique et de Microélectronique de Montpellier (LIRMM), Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Inria Sophia Antipolis - Méditerranée (CRISAM), Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria), Laboratoire d'Etude de l'Apprentissage et du Développement [Dijon] (LEAD), Centre National de la Recherche Scientifique (CNRS)-Université de Bourgogne (UB), Neurochirurgie [Hôpital Gui de Chauliac], Centre Hospitalier Régional Universitaire [Montpellier] (CHRU Montpellier)-Hôpital Gui de Chauliac [Montpellier], Institut des Neurosciences de Montpellier - Déficits sensoriels et moteurs (INM), Institut National de la Santé et de la Recherche Médicale (INSERM)-Université de Montpellier (UM), Cognition, Action, et Plasticité Sensorimotrice [Dijon - U1093] (CAPS), Université de Bourgogne (UB)-Institut National de la Santé et de la Recherche Médicale (INSERM), Institut Universitaire de France (IUF), Ministère de l'Education nationale, de l’Enseignement supérieur et de la Recherche (M.E.N.E.S.R.), Control of Artificial Movement and Intuitive Neuroprosthesis ( CAMIN ), Laboratoire d'Informatique de Robotique et de Microélectronique de Montpellier ( LIRMM ), Université de Montpellier ( UM ) -Centre National de la Recherche Scientifique ( CNRS ) -Université de Montpellier ( UM ) -Centre National de la Recherche Scientifique ( CNRS ) -Inria Sophia Antipolis - Méditerranée ( CRISAM ), Institut National de Recherche en Informatique et en Automatique ( Inria ) -Institut National de Recherche en Informatique et en Automatique ( Inria ), Laboratoire d'Etude de l'Apprentissage et du Développement [Dijon] ( LEAD ), Université de Bourgogne ( UB ) -Centre National de la Recherche Scientifique ( CNRS ), Centre Hospitalier Régional Universitaire [Montpellier] ( CHRU Montpellier ) -Hôpital Gui de Chauliac, Institut des Neurosciences de Montpellier - Déficits sensoriels et moteurs ( INM ), Institut National de la Santé et de la Recherche Médicale ( INSERM ) -Université de Montpellier ( UM ), Cognition, Action, et Plasticité Sensorimotrice [Dijon - U1093] ( CAPS ), Université de Bourgogne ( UB ) -Institut National de la Santé et de la Recherche Médicale ( INSERM ), Institut Universitaire de France ( IUF ), Ministère de l'Éducation nationale, de l’Enseignement supérieur et de la Recherche ( M.E.N.E.S.R. ), Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Inria Sophia Antipolis - Méditerranée (CRISAM), Université de Bourgogne (UB)-Centre National de la Recherche Scientifique (CNRS), Centre Hospitalier Régional Universitaire [Montpellier] (CHRU Montpellier)-Hôpital Gui de Chauliac [CHU Montpellier], Centre Hospitalier Régional Universitaire [Montpellier] (CHRU Montpellier), and Institut des Neurosciences de Montpellier (INM)
- Subjects
System ,medicine.medical_specialty ,Intra operative ,Deep brain stimulation ,medicine.medical_treatment ,[ SPI.SIGNAL ] Engineering Sciences [physics]/Signal and Image processing ,Electroencephalography ,030218 nuclear medicine & medical imaging ,Functional connectivity ,03 medical and health sciences ,0302 clinical medicine ,Physiology (medical) ,medicine ,ComputingMilieux_MISCELLANEOUS ,medicine.diagnostic_test ,Sensory Systems ,Neuromodulation (medicine) ,Neurology ,Anesthesia ,ComputingMethodologies_DOCUMENTANDTEXTPROCESSING ,Wakefulness ,Neurology (clinical) ,Neurosurgery ,Psychology ,[SPI.SIGNAL]Engineering Sciences [physics]/Signal and Image processing ,Neuroscience ,030217 neurology & neurosurgery ,Electrical brain stimulation - Abstract
Letter to the editor; International audience
- Published
- 2016
17. Recovery of functional connectivity of the sensorimotor network after surgery for diffuse low-grade gliomas involving the supplementary motor area
- Author
-
Jeremy Deverdun, Alain Bonafe, Hugues Duffau, Matthieu Vassal, Sylvie Moritz-Gasser, François Molino, Nicolas Menjot de Champfleur, Anirban Dutta, Céline Charroud, François Bonnetblanc, Guillaume Herbet, Emmanuelle Le Bars, Anthony Boyer, Institut des Neurosciences de Montpellier - Déficits sensoriels et moteurs (INM), Institut National de la Santé et de la Recherche Médicale (INSERM)-Université de Montpellier (UM), Laboratoire Charles Coulomb (L2C), Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), Control of Artificial Movement and Intuitive Neuroprosthesis (CAMIN), Laboratoire d'Informatique de Robotique et de Microélectronique de Montpellier (LIRMM), Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Inria Sophia Antipolis - Méditerranée (CRISAM), Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria), Centre Hospitalier Régional Universitaire [Montpellier] (CHRU Montpellier), Institut des Neurosciences de Montpellier (INM), and Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Inria Sophia Antipolis - Méditerranée (CRISAM)
- Subjects
Adult ,Male ,medicine.medical_specialty ,Rest ,Brain mapping ,030218 nuclear medicine & medical imaging ,03 medical and health sciences ,0302 clinical medicine ,Magnetic resonance imaging ,Functional neuroimaging ,Glioma ,Neural Pathways ,Neuroplasticity ,medicine ,Humans ,Paralysis ,medicine.diagnostic_test ,Resting state fMRI ,Supplementary motor area ,Brain Neoplasms ,business.industry ,Motor Cortex ,Recovery of Function ,General Medicine ,medicine.disease ,SMA ,[SDV.BIBS]Life Sciences [q-bio]/Quantitative Methods [q-bio.QM] ,Surgery ,medicine.anatomical_structure ,Oncology ,Neuronal plasticity ,Female ,[INFO.INFO-BI]Computer Science [cs]/Bioinformatics [q-bio.QM] ,business ,030217 neurology & neurosurgery ,Follow-Up Studies - Abstract
OBJECTIVE The supplementary motor area (SMA) syndrome is a well-studied lesional model of brain plasticity involving the sensorimotor network. Patients with diffuse low-grade gliomas in the SMA may exhibit this syndrome after resective surgery. They experience a temporary loss of motor function, which completely resolves within 3 months. The authors used functional MRI (fMRI) resting state analysis of the sensorimotor network to investigate large-scale brain plasticity between the immediate postoperative period and 3 months' follow-up. METHODS Resting state fMRI was performed preoperatively, during the immediate postoperative period, and 3 months postoperatively in 6 patients with diffuse low-grade gliomas who underwent partial surgical excision of the SMA. Correlation analysis within the sensorimotor network was carried out on those 3 time points to study modifications of its functional connectivity. RESULTS The results showed a large-scale reorganization of the sensorimotor network. Interhemispheric connectivity was decreased in the postoperative period, and increased again during the recovery process. Connectivity between the lesion side motor area and the contralateral SMA rose to higher values than in the preoperative period. Intrahemispheric connectivity was decreased during the immediate postoperative period and had returned to preoperative values at 3 months after surgery. CONCLUSIONS These results confirm the findings reported in the existing literature on the plasticity of the SMA, showing large-scale modifications of the sensorimotor network, at both inter- and intrahemispheric levels. They suggest that interhemispheric connectivity might be a correlate of SMA syndrome recovery.
- Published
- 2017
18. The difference between electrical microstimulation and direct electrical stimulation – towards new opportunities for innovative functional brain mapping?
- Author
-
David Guiraud, Mitsuhiro Hayashibe, Hugues Duffau, François Bonnetblanc, Guillaume Herbet, Marion Vincent, Olivier Rossel, Control of Artificial Movement and Intuitive Neuroprosthesis ( CAMIN ), Laboratoire d'Informatique de Robotique et de Microélectronique de Montpellier ( LIRMM ), Université de Montpellier ( UM ) -Centre National de la Recherche Scientifique ( CNRS ) -Université de Montpellier ( UM ) -Centre National de la Recherche Scientifique ( CNRS ) -Inria Sophia Antipolis - Méditerranée ( CRISAM ), Institut National de Recherche en Informatique et en Automatique ( Inria ) -Institut National de Recherche en Informatique et en Automatique ( Inria ), Neurochirurgie [Hôpital Gui de Chauliac], Centre Hospitalier Régional Universitaire [Montpellier] ( CHRU Montpellier ) -Hôpital Gui de Chauliac, Institut des Neurosciences de Montpellier - Déficits sensoriels et moteurs ( INM ), Institut National de la Santé et de la Recherche Médicale ( INSERM ) -Université de Montpellier ( UM ), Cognition, Action, et Plasticité Sensorimotrice [Dijon - U1093] ( CAPS ), Université de Bourgogne ( UB ) -Institut National de la Santé et de la Recherche Médicale ( INSERM ), Institut Universitaire de France ( IUF ), Ministère de l'Éducation nationale, de l’Enseignement supérieur et de la Recherche ( M.E.N.E.S.R. ), Control of Artificial Movement and Intuitive Neuroprosthesis (CAMIN), Laboratoire d'Informatique de Robotique et de Microélectronique de Montpellier (LIRMM), Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Inria Sophia Antipolis - Méditerranée (CRISAM), Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria), Centre Hospitalier Régional Universitaire [Montpellier] (CHRU Montpellier)-Hôpital Gui de Chauliac [Montpellier], Institut des Neurosciences de Montpellier - Déficits sensoriels et moteurs (INM), Institut National de la Santé et de la Recherche Médicale (INSERM)-Université de Montpellier (UM), Cognition, Action, et Plasticité Sensorimotrice [Dijon - U1093] (CAPS), Université de Bourgogne (UB)-Institut National de la Santé et de la Recherche Médicale (INSERM), Institut Universitaire de France (IUF), Ministère de l'Education nationale, de l’Enseignement supérieur et de la Recherche (M.E.N.E.S.R.), Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Inria Sophia Antipolis - Méditerranée (CRISAM), Centre Hospitalier Régional Universitaire [Montpellier] (CHRU Montpellier)-Hôpital Gui de Chauliac [CHU Montpellier], Centre Hospitalier Régional Universitaire [Montpellier] (CHRU Montpellier), and Institut des Neurosciences de Montpellier (INM)
- Subjects
[SPI.OTHER]Engineering Sciences [physics]/Other ,0301 basic medicine ,[ SPI.OTHER ] Engineering Sciences [physics]/Other ,Computer science ,Stimulation ,Brain mapping ,[SPI]Engineering Sciences [physics] ,03 medical and health sciences ,Functional brain ,0302 clinical medicine ,[ SPI ] Engineering Sciences [physics] ,Animals ,Humans ,Microstimulation ,Wakefulness ,[INFO.INFO-BT]Computer Science [cs]/Biotechnology ,Electric stimulation ,Brain function ,Brain Mapping ,Brain Neoplasms ,functional brain mapping ,General Neuroscience ,Brain ,electrophysiology ,electrical microstimulation ,direct electrical stimulation ,Electric Stimulation ,behaviour ,030104 developmental biology ,Neuroscience ,030217 neurology & neurosurgery ,[ INFO.INFO-BT ] Computer Science [cs]/Biotechnology - Abstract
Both electrical microstimulation (EMS) and direct electrical stimulation (DES) of the brain are used to perform functional brain mapping. EMS is applied to animal fundamental neuroscience experiments, whereas DES is performed in the operating theatre on neurosurgery patients. The objective of the present review was to shed new light on electrical stimulation techniques in brain mapping by comparing EMS and DES. There is much controversy as to whether the use of DES during wide-awake surgery is the ‘gold standard’ for studying the brain function. As part of this debate, it is sometimes wrongly assumed that EMS and DES induce similar effects in the nervous tissues and have comparable behavioural consequences. In fact, the respective stimulation parameters in EMS and DES are clearly different. More surprisingly, there is no solid biophysical rationale for setting the stimulation parameters in EMS and DES; this may be due to historical, methodological and technical constraints that have limited the experimental protocols and prompted the use of empirical methods. In contrast, the gap between EMS and DES highlights the potential for new experimental paradigms in electrical stimulation for functional brain mapping. In view of this gap and recent technical developments in stimulator design, it may now be time to move towards alternative, innovative protocols based on the functional stimulation of peripheral nerves (for which a more solid theoretical grounding exists).
- Published
- 2016
19. Balance control in aging: improvements in anticipatory postural adjustments and updating of internal models
- Author
-
François Bonnetblanc, Alexandre Kubicki, Cognition, Action, et Plasticité Sensorimotrice [Dijon - U1093] (CAPS), Université de Bourgogne (UB)-Institut National de la Santé et de la Recherche Médicale (INSERM), Artificial movement and gait restoration (DEMAR), Inria Sophia Antipolis - Méditerranée (CRISAM), Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire d'Informatique de Robotique et de Microélectronique de Montpellier (LIRMM), Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM), Institut Universitaire de France (IUF), Ministère de l'Education nationale, de l’Enseignement supérieur et de la Recherche (M.E.N.E.S.R.), Laboratoire d'Informatique de Robotique et de Microélectronique de Montpellier (LIRMM), Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Inria Sophia Antipolis - Méditerranée (CRISAM), Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria), Cognition, Action, et Plasticité Sensorimotrice [Dijon - U1093] ( CAPS ), Université de Bourgogne ( UB ) -Institut National de la Santé et de la Recherche Médicale ( INSERM ), Artificial movement and gait restoration ( DEMAR ), Laboratoire d'Informatique de Robotique et de Microélectronique de Montpellier ( LIRMM ), Université de Montpellier ( UM ) -Centre National de la Recherche Scientifique ( CNRS ) -Université de Montpellier ( UM ) -Centre National de la Recherche Scientifique ( CNRS ) -Inria Sophia Antipolis - Méditerranée ( CRISAM ), Institut National de Recherche en Informatique et en Automatique ( Inria ) -Institut National de Recherche en Informatique et en Automatique ( Inria ), Institut Universitaire de France ( IUF ), Ministère de l'Éducation nationale, de l’Enseignement supérieur et de la Recherche ( M.E.N.E.S.R. ), Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Inria Sophia Antipolis - Méditerranée (CRISAM), and Gouat, Isabelle
- Subjects
Aging ,medicine.medical_specialty ,[ INFO ] Computer Science [cs] ,Movement ,Posture ,Geriatric rehabilitation ,Orthostatic intolerance ,Anticipatory postural adjustments ,[INFO] Computer Science [cs] ,Orthostatic vital signs ,Center of pressure (terrestrial locomotion) ,Control theory ,Correspondence ,Postural Balance ,Humans ,Medicine ,[INFO]Computer Science [cs] ,Force platform ,Geriatric Assessment ,Dynamic equilibrium ,Aged ,business.industry ,Feed forward ,medicine.disease ,Balance function ,Orthostatic Intolerance ,Physical therapy ,Accidental Falls ,Geriatrics and Gerontology ,Dependant ,business - Abstract
International audience; Postural stability of older subjects can be estimated during orthostatic equilibrium. However, dynamic equilibrium is also important to investigate risks of fall. It implies different interpretations of measures given by force plates. Same dependant variables (e.g. center of pressure displacement) cannot be interpreted the same ways depending of the type of equilibrium that is investigated. In particular, sways increases during dynamic equilibrium and before movement execution may reflect an improvement of feedforward control.
- Published
- 2015
20. Disrupting the right pars opercularis with electrical stimulation frees the song: case report
- Author
-
Sylvie Moritz-Gasser, Fabien Almairac, Gilles Lafargue, Hugues Duffau, François Bonnetblanc, Guillaume Herbet, Neurochirurgie [Hôpital Gui de Chauliac], Centre Hospitalier Régional Universitaire [Montpellier] ( CHRU Montpellier ) -Hôpital Gui de Chauliac, Institut des Neurosciences de Montpellier - Déficits sensoriels et moteurs ( INM ), Institut National de la Santé et de la Recherche Médicale ( INSERM ) -Université de Montpellier ( UM ), Laboratoire de Neurosciences Fonctionnelles et Pathologies ( LNFP ), Université de Lille, Droit et Santé-Centre National de la Recherche Scientifique ( CNRS ), Département de neurochirurgie (Hôpital Pasteur de Nice), Hôpital Pasteur [Nice] ( CHU ), Artificial movement and gait restoration ( DEMAR ), Laboratoire d'Informatique de Robotique et de Microélectronique de Montpellier ( LIRMM ), Université de Montpellier ( UM ) -Centre National de la Recherche Scientifique ( CNRS ) -Université de Montpellier ( UM ) -Centre National de la Recherche Scientifique ( CNRS ) -Inria Sophia Antipolis - Méditerranée ( CRISAM ), Institut National de Recherche en Informatique et en Automatique ( Inria ) -Institut National de Recherche en Informatique et en Automatique ( Inria ), Institut Universitaire de France ( IUF ), Ministère de l'Éducation nationale, de l’Enseignement supérieur et de la Recherche ( M.E.N.E.S.R. ), Cognition, Action, et Plasticité Sensorimotrice [Dijon - U1093] ( CAPS ), Université de Bourgogne ( UB ) -Institut National de la Santé et de la Recherche Médicale ( INSERM ), Centre Hospitalier Régional Universitaire [Montpellier] (CHRU Montpellier)-Hôpital Gui de Chauliac [Montpellier], Institut des Neurosciences de Montpellier - Déficits sensoriels et moteurs (INM), Institut National de la Santé et de la Recherche Médicale (INSERM)-Université de Montpellier (UM), Laboratoire de Neurosciences Fonctionnelles et Pathologies (LNFP), Université de Lille, Droit et Santé-Centre National de la Recherche Scientifique (CNRS), Département de Neurochirurgie [Hôpital Pasteur de Nice], Hôpital Pasteur [Nice] (CHU), Artificial movement and gait restoration (DEMAR), Laboratoire d'Informatique de Robotique et de Microélectronique de Montpellier (LIRMM), Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Inria Sophia Antipolis - Méditerranée (CRISAM), Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria), Institut Universitaire de France (IUF), Ministère de l'Education nationale, de l’Enseignement supérieur et de la Recherche (M.E.N.E.S.R.), Cognition, Action, et Plasticité Sensorimotrice [Dijon - U1093] (CAPS), Université de Bourgogne (UB)-Institut National de la Santé et de la Recherche Médicale (INSERM), Centre Hospitalier Régional Universitaire [Montpellier] (CHRU Montpellier)-Hôpital Gui de Chauliac [CHU Montpellier], Centre Hospitalier Régional Universitaire [Montpellier] (CHRU Montpellier), Institut des Neurosciences de Montpellier (INM), and Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Inria Sophia Antipolis - Méditerranée (CRISAM)
- Subjects
Adult ,Male ,medicine.medical_specialty ,Intraoperative Neurophysiological Monitoring ,brain ,Singing ,Stimulation ,Aphasia ,right pars opercularis ,medicine ,Humans ,Speech ,electrical stimulation ,functional neurosurgery ,speech inhibition ,Brain Mapping ,language ,model ,Language production ,Brain Neoplasms ,business.industry ,Perspective (graphical) ,Glioma ,speaking ,Broca Area ,Electric Stimulation ,inhibition ,aphasia ,inhibitory control ,awake surgery ,cortex ,[ SDV.NEU ] Life Sciences [q-bio]/Neurons and Cognition [q-bio.NC] ,singing neural system ,[SDV.NEU]Life Sciences [q-bio]/Neurons and Cognition [q-bio.NC] ,Neurosurgery ,medicine.symptom ,business ,Articulation (phonetics) ,Neurocognitive ,Neuroscience - Abstract
International audience; The authors report the first case of a strikingly unusual speech impairment evoked by intraoperative electrostimulation in a 36-year-old right-handed patient, a well-trained singer, who underwent awake surgery for a right fronto-temporoinsular low-grade glioma. Functionally disrupting the pars opercularis of the right inferior frontal gyrus led the patient to automatically switch from a speaking to a singing mode of language production. Given the central role of the right pars opercularis in the inhibitory control network, the authors propose that this finding may be interpreted as possible evidence for a competitive and independent neurocognitive subnetwork devoted to the melodically intoned articulation of words (normal language-based vs singing-based) in subjects with high expertise. From a more clinical perspective, such data may have implications for awake neurosurgery, especially to preserve the quality of life for singers.
- Published
- 2015
21. Cognitive demands impair postural control in developmental dyslexia: A negative effect that can be compensated
- Author
-
Thierry Pozzo, Carine Michel, François Bonnetblanc, Patrick Quercia, and Stéphanie Vieira
- Subjects
medicine.medical_specialty ,Adolescent ,Proprioception ,General Neuroscience ,Dyslexia ,Cognition ,Mean age ,Audiology ,medicine.disease ,Developmental psychology ,Postural control ,Eyeglasses ,Reading ,Center of pressure (terrestrial locomotion) ,Somatosensory Disorders ,Developmental dyslexia ,medicine ,Humans ,Child ,Psychology ,Postural Balance - Abstract
Children with developmental dyslexia exhibit delayed reading abilities and various sensori-motor deficits. The way these various symptoms interact remain poorly understood. The objective of this study was twofold. First, we aimed to investigate whether postural control was impaired in dyslexic children when cognitive demands are increased. Second, we checked whether this effect could be reduced significantly by a treatment aiming to recalibrate ocular proprioception. Twelve dyslexic and fifteen treated dyslexic children (>3 months of treatment) were compared with twelve non-dyslexic children in two conditions (mean age: 11.6 ± 2.1, 12.5 ± 1.5 and 10.6 ± 1.7 years respectively). In a first condition they maintained balance while fixating a point in front of them. In the second condition the postural task was combined with a silently reading one. Balance was assessed by means of a force plate. Results demonstrated that the mean velocity (i.e. the total length) of the center of pressure (CoP) displacement was increased in the reading task only for the dyslexic group. Interestingly, for the treated children, an inverse tendency was observed: the mean velocity (i.e. the total length) and the surface of the 90% confidence ellipse of the CoP displacement decreased for 13/15 patients and for 12/15 patients respectively, while performing the reading task. Values remained similar to those observed for the control children. Altogether, these results strongly suggest that cognitive demands can impair postural control in developmental dyslexia but this interaction could be normalized. These results sustain the hypothesis of a cerebellar origin for dyslexia.
- Published
- 2009
22. Modular Control of Pointing beyond Arm's Length
- Author
-
Thierry Pozzo, Bastien Berret, François Bonnetblanc, and Charalambos Papaxanthis
- Subjects
Adult ,Male ,Kinematic chain ,Knee Joint ,Computer science ,Movement ,Posture ,Statistics as Topic ,Displacement (vector) ,Task (project management) ,Fingers ,Motion ,Young Adult ,Control theory ,Humans ,Postural Balance ,Analysis of Variance ,Principal Component Analysis ,business.industry ,General Neuroscience ,Articles ,Modular design ,Trunk ,Biomechanical Phenomena ,Coupling (computer programming) ,Space Perception ,Path (graph theory) ,Arm ,Trajectory ,business ,Psychomotor Performance - Abstract
Hand reaching and bipedal equilibrium are two important functions of the human motor behavior. However, how the brain plans goal-oriented actions combining target reaching with equilibrium regulation is not yet clearly understood. An important question is whether postural control and reaching are integrated in one single module or controlled separately. Here, we show that postural control and reaching motor commands are processed by means of a modular and flexible organization. Principal component and correlation analyses between pairs of angles were used to extract global and local coupling during a whole-body pointing beyond arm's length. A low-dimensional organization of the redundant kinematic chain allowing simultaneous target reaching and regulation of the center of mass (CoM) displacement in extrinsic space emerged from the first analysis. In follow-up experiments, both the CoM and finger trajectories were constrained by asking participants to reach from a reduced base of support with or without knee flexion, or by moving the endpoint along a predefined trajectory (straight or semicircular trajectories). Whereas joint covaried during free conditions and under equilibrium restrictions, it was decomposed in two task-dependent and task-independent modules, corresponding to a dissociation of arm versus legs, trunk, and head coordination, respectively, under imposed finger path conditions. A numerical simulation supported the idea that both postural and focal subtasks are basically integrated into the same motor command and that the CNS is able to combine or to separate the movement into autonomous functional synergies according to the task requirements.
- Published
- 2009
23. Interfering with the neural activity of mirror-related frontal areas impairs mentalistic inferences
- Author
-
Hugues Duffau, François Bonnetblanc, Guillaume Herbet, Sylvie Moritz-Gasser, Gilles Lafargue, Institut des Neurosciences de Montpellier (INM), Institut National de la Santé et de la Recherche Médicale (INSERM)-Université de Montpellier (UM), Neurochirurgie [Hôpital Gui de Chauliac], Centre Hospitalier Régional Universitaire [Montpellier] (CHRU Montpellier)-Hôpital Gui de Chauliac [CHU Montpellier], Centre Hospitalier Régional Universitaire [Montpellier] (CHRU Montpellier), Laboratoire de Neurosciences Fonctionnelles et Pathologies (LNFP), Université de Lille, Droit et Santé-Centre National de la Recherche Scientifique (CNRS), Université Montpellier 1 (UM1), Institut Universitaire de France (IUF), Ministère de l'Education nationale, de l’Enseignement supérieur et de la Recherche (M.E.N.E.S.R.), Artificial movement and gait restoration (DEMAR), Laboratoire d'Informatique de Robotique et de Microélectronique de Montpellier (LIRMM), Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Inria Sophia Antipolis - Méditerranée (CRISAM), Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria), Cognition, Action, et Plasticité Sensorimotrice [Dijon - U1093] (CAPS), Université de Bourgogne (UB)-Institut National de la Santé et de la Recherche Médicale (INSERM), Association pour la Recherche sur le Cancer (Grant number DOC20120605069), Institut des Neurosciences de Montpellier - Déficits sensoriels et moteurs (INM), Centre Hospitalier Régional Universitaire [Montpellier] (CHRU Montpellier)-Hôpital Gui de Chauliac [Montpellier], Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Inria Sophia Antipolis - Méditerranée (CRISAM), Institut des Neurosciences de Montpellier - Déficits sensoriels et moteurs ( INM ), Institut National de la Santé et de la Recherche Médicale ( INSERM ) -Université de Montpellier ( UM ), Centre Hospitalier Régional Universitaire [Montpellier] ( CHRU Montpellier ) -Hôpital Gui de Chauliac, Laboratoire de Neurosciences Fonctionnelles et Pathologies ( LNFP ), Université de Lille, Droit et Santé-Centre National de la Recherche Scientifique ( CNRS ), Université Montpellier 1 ( UM1 ), Institut Universitaire de France ( IUF ), Ministère de l'Éducation nationale, de l’Enseignement supérieur et de la Recherche ( M.E.N.E.S.R. ), Artificial movement and gait restoration ( DEMAR ), Laboratoire d'Informatique de Robotique et de Microélectronique de Montpellier ( LIRMM ), Université de Montpellier ( UM ) -Centre National de la Recherche Scientifique ( CNRS ) -Université de Montpellier ( UM ) -Centre National de la Recherche Scientifique ( CNRS ) -Inria Sophia Antipolis - Méditerranée ( CRISAM ), Institut National de Recherche en Informatique et en Automatique ( Inria ) -Institut National de Recherche en Informatique et en Automatique ( Inria ), Cognition, Action, et Plasticité Sensorimotrice [Dijon - U1093] ( CAPS ), and Université de Bourgogne ( UB ) -Institut National de la Santé et de la Recherche Médicale ( INSERM )
- Subjects
Adult ,Male ,Mirror system ,Pars opercularis ,Histology ,brain ,Theory of Mind ,normal adults ,autism ,Direct electrical stimulation ,social cognition ,system ,Brain mapping ,Functional Laterality ,Neurosurgical Procedures ,Young Adult ,default mode network ,[SPI]Engineering Sciences [physics] ,self ,Social cognition ,Neural Pathways ,[ SPI ] Engineering Sciences [physics] ,medicine ,Humans ,Default mode network ,Mirror neuron ,mind ,Aged ,ale metaanalysis ,Brain Neoplasms ,General Neuroscience ,Glioma ,Middle Aged ,Electric Stimulation ,Frontal Lobe ,medicine.anatomical_structure ,Mentalization ,asperger-syndrome ,Cerebral cortex ,Embodied cognition ,Mentalizing system ,Female ,Anatomy ,Psychology ,Neuroscience ,Photic Stimulation ,Electrical brain stimulation - Abstract
International audience; According to recently proposed interactive dual-process theories, mentalizing abilities emerge from the coherent interaction between two physically distinct neural systems: (1) the mirror network, coding for the low-level embodied representations involved in pre-reflective sociocognitive processes and (2) the mentalizing network per se, which codes for higher level representations subtending the reflective attribution of psychological states. However, although the latest studies have shown that the core areas forming these two neurocognitive systems do indeed maintain effective connectivity during mentalizing, it is unclear whether an intact mirror system (and, more specifically, its anterior node, namely the posterior inferior frontal cortex) is a prerequisite for accurate mentalistic inferences. Intraoperative brain mapping via direct electrical stimulation offers a unique opportunity to address this issue. Electrical stimulation of the brain creates a "virtual" lesion, which provides functional information on well-defined parts of the cerebral cortex. In the present study, five patients were mapped in real time while they performed a mentalizing task. We found six responsive sites: four in the lateral part of the right pars opercularis and two in the dorsal part of the right pars triangularis. On the subcortical level, two additional sites were located within the white matter connectivity of the pars opercularis. Taken as a whole, our results suggest that the right inferior frontal cortex and its underlying axonal connectivity have a key role in mentalizing. Specifically, our findings support the hypothesis whereby transient, functional disruption of the mirror network influences higher order mentalistic inferences.
- Published
- 2015
24. Crossed cerebellar diaschisis after awake brain surgery: Can we measure pre/post operative changes on resting state fMRI data?
- Author
-
N. Menjot de Champfleur, H. Duffau, E. Le Bars, Anthony Boyer, Jeremy Deverdun, François Bonnetblanc, Artificial movement and gait restoration (DEMAR), Laboratoire d'Informatique de Robotique et de Microélectronique de Montpellier (LIRMM), Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Inria Sophia Antipolis - Méditerranée (CRISAM), Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria), Cognition, Action, et Plasticité Sensorimotrice [Dijon - U1093] (CAPS), Université de Bourgogne (UB)-Institut National de la Santé et de la Recherche Médicale (INSERM), Institut d’Imagerie Fonctionnelle Humaine [CHU Montpellier] (I2FH), Centre Hospitalier Régional Universitaire [Montpellier] (CHRU Montpellier), Laboratoire Charles Coulomb (L2C), Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), Institut des Neurosciences de Montpellier (INM), Institut National de la Santé et de la Recherche Médicale (INSERM)-Université de Montpellier (UM), Neurochirurgie [Hôpital Gui de Chauliac], Centre Hospitalier Régional Universitaire [Montpellier] (CHRU Montpellier)-Hôpital Gui de Chauliac [CHU Montpellier], Artificial movement and gait restoration ( DEMAR ), Laboratoire d'Informatique de Robotique et de Microélectronique de Montpellier ( LIRMM ), Université de Montpellier ( UM ) -Centre National de la Recherche Scientifique ( CNRS ) -Université de Montpellier ( UM ) -Centre National de la Recherche Scientifique ( CNRS ) -Inria Sophia Antipolis - Méditerranée ( CRISAM ), Institut National de Recherche en Informatique et en Automatique ( Inria ) -Institut National de Recherche en Informatique et en Automatique ( Inria ), Cognition, Action, et Plasticité Sensorimotrice [Dijon - U1093] ( CAPS ), Université de Bourgogne ( UB ) -Institut National de la Santé et de la Recherche Médicale ( INSERM ), Institut d’Imagerie Fonctionnelle Humaine ( I2FH ), Centre Hospitalier Régional Universitaire [Montpellier] ( CHRU Montpellier ), Laboratoire Charles Coulomb ( L2C ), Université de Montpellier ( UM ) -Centre National de la Recherche Scientifique ( CNRS ), Institut des Neurosciences de Montpellier - Déficits sensoriels et moteurs ( INM ), Institut National de la Santé et de la Recherche Médicale ( INSERM ) -Université de Montpellier ( UM ), Centre Hospitalier Régional Universitaire [Montpellier] ( CHRU Montpellier ) -Hôpital Gui de Chauliac, Inria Sophia Antipolis - Méditerranée (CRISAM), Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire d'Informatique de Robotique et de Microélectronique de Montpellier (LIRMM), Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM), Institut des Neurosciences de Montpellier - Déficits sensoriels et moteurs (INM), Centre Hospitalier Régional Universitaire [Montpellier] (CHRU Montpellier)-Hôpital Gui de Chauliac [Montpellier], and Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Inria Sophia Antipolis - Méditerranée (CRISAM)
- Subjects
tumor ,positron-emission-tomography ,030218 nuclear medicine & medical imaging ,ischemic-stroke ,03 medical and health sciences ,0302 clinical medicine ,Glioma ,blood-flow ,medicine ,Post operative ,Awake surgery ,Cerebellum hemisphere ,Resting state fMRI ,medicine.diagnostic_test ,fungi ,food and beverages ,medicine.disease ,Crossed cerebellar diaschisis ,nervous system ,Positron emission tomography ,[ SDV.NEU ] Life Sciences [q-bio]/Neurons and Cognition [q-bio.NC] ,plasticity ,connectivity ,networks ,Ischemic stroke ,[SDV.NEU]Life Sciences [q-bio]/Neurons and Cognition [q-bio.NC] ,history ,Psychology ,Neuroscience ,030217 neurology & neurosurgery - Abstract
International audience; Hypometabolism has been observed in the contralesional cerebellum hemisphere after various cortical lesions, and is referred as crossed cerebellar diaschisis. It is unknown whether it can be measured after awake surgery for brain diffuse low-grade glioma. Using resting state fMRI we suggest that crossed cerebellar diaschisis can be assessed postoperatively.
- Published
- 2015
25. Can loss of sensory attenuation be accurately demonstrated using two effectors simultaneously?
- Author
-
François Bonnetblanc, université de Bourgogne, CAPS, Cognition, Action, et Plasticité Sensorimotrice [Dijon - U1093] (CAPS), Université de Bourgogne (UB)-Institut National de la Santé et de la Recherche Médicale (INSERM), Institut Universitaire de France (IUF), Ministère de l'Education nationale, de l’Enseignement supérieur et de la Recherche (M.E.N.E.S.R.), Artificial movement and gait restoration (DEMAR), Laboratoire d'Informatique de Robotique et de Microélectronique de Montpellier (LIRMM), Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Inria Sophia Antipolis - Méditerranée (CRISAM), Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria), Cognition, Action, et Plasticité Sensorimotrice [Dijon - U1093] ( CAPS ), Université de Bourgogne ( UB ) -Institut National de la Santé et de la Recherche Médicale ( INSERM ), Institut Universitaire de France ( IUF ), Ministère de l'Éducation nationale, de l’Enseignement supérieur et de la Recherche ( M.E.N.E.S.R. ), Artificial movement and gait restoration ( DEMAR ), Laboratoire d'Informatique de Robotique et de Microélectronique de Montpellier ( LIRMM ), Université de Montpellier ( UM ) -Centre National de la Recherche Scientifique ( CNRS ) -Université de Montpellier ( UM ) -Centre National de la Recherche Scientifique ( CNRS ) -Inria Sophia Antipolis - Méditerranée ( CRISAM ), Institut National de Recherche en Informatique et en Automatique ( Inria ) -Institut National de Recherche en Informatique et en Automatique ( Inria ), Inria Sophia Antipolis - Méditerranée (CRISAM), Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire d'Informatique de Robotique et de Microélectronique de Montpellier (LIRMM), Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM), and Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Inria Sophia Antipolis - Méditerranée (CRISAM)
- Subjects
Male ,medicine.medical_specialty ,Movement disorders ,Audiology ,Bilateral coordination ,03 medical and health sciences ,0302 clinical medicine ,Joystick ,Sensation ,medicine ,Psychogenic disease ,Humans ,[SDV.NEU] Life Sciences [q-bio]/Neurons and Cognition [q-bio.NC] ,030304 developmental biology ,0303 health sciences ,Communication ,Movement Disorders ,Sense of agency ,Sensory attenuation ,business.industry ,Tickling ,Hand ,Intensity (physics) ,[ SDV.NEU ] Life Sciences [q-bio]/Neurons and Cognition [q-bio.NC] ,Bilateral tasks ,Somatosensory Disorders ,[SDV.NEU]Life Sciences [q-bio]/Neurons and Cognition [q-bio.NC] ,Female ,Neurology (clinical) ,medicine.symptom ,business ,030217 neurology & neurosurgery - Abstract
Sir, Recently, Parees and colleagues (2014) compared patients with functional (psychogenic) movement disorders and healthy subjects who were asked to match a force delivered to their left finger by pressing on it directly, or by operating a joystick to press down on it, with the other hand. They observed that healthy subjects generated more force than required when pressing directly on their finger (compared with using the joystick), whereas patients did not. They interpreted and discussed this result as a loss of sensory attenuation that typically occurs in healthy subjects during self-generated movements and suggested by return, that it illustrates an altered sense of agency for the patients. More specifically, sensory attenuation is generally observed when the intensity of sensation induced by self-generated movements is reduced, for instance when tickling ourselves (Blakemore et al. , 1998 …
- Published
- 2015
26. Functional reorganization of the attentional networks in low-grade glioma patients: a longitudinal study
- Author
-
Paolo Bartolomeo, Jeremy Deverdun, Pom Charras, Hugues Duffau, Nicolas Menjot de Champfleur, François Bonnetblanc, Guillaume Herbet, Laboratoire Charles Coulomb (L2C), Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), and French Association for Research against Cancer (ARC) (grant 3184 DOC20120605069)
- Subjects
Male ,Longitudinal study ,MESH: Attention: physiology ,Settore M-PSI/02 - PSICOBIOLOGIA E PSICOLOGIA FISIOLOGICA ,cost function masking ,Audiology ,Functional Laterality ,Developmental psychology ,MESH: Nerve Net: pathology,physiopathology ,Attention ,Longitudinal Studies ,MESH: Space Perception: physiology ,MESH: Longitudinal Studies ,media_common ,MESH: Aged ,MESH: Middle Aged ,Brain Neoplasms ,brain-tumor patients ,right-hemisphere damage ,Functional recovery ,Glioma ,Middle Aged ,MESH: Functional Laterality: physiology ,Neuropsychology and Physiological Psychology ,medicine.anatomical_structure ,MESH: Young Adult ,unilateral neglect ,Female ,visual neglect ,[SDV.NEU]Life Sciences [q-bio]/Neurons and Cognition [q-bio.NC] ,medicine.symptom ,Psychology ,Adult ,medicine.medical_specialty ,Adolescent ,Cognitive Neuroscience ,media_common.quotation_subject ,Experimental and Cognitive Psychology ,spatial neglect ,MESH: Brain Neoplasms: complications,pathology,physiopathology ,Lateralization of brain function ,Neglect ,White matter ,Perceptual Disorders ,Young Adult ,MESH: Perceptual Disorders: etiology,pathology,physiopathology ,medicine ,Disconnection syndrome ,Humans ,Slow growing lesion ,Aged ,disconnection syndrome ,MESH: Adolescent ,MESH: Humans ,Hemispatial neglect ,hemispatial neglect ,MESH: Adult ,MESH: Glioma: complications,pathology,physiopathology ,MESH: Male ,sustained attention ,Unilateral neglect ,Space Perception ,Nerve Net ,visuospatial attention ,MESH: Female - Abstract
International audience; Right brain damage often provokes deficits of visuospatial attention. Although the spatial attention networks have been widely investigated in stroke patients as well as in the healthy brain, little is known about the impact of slow growing lesions in the right hemisphere. We here present a longitudinal study of 20 patients who have been undergoing awake brain surgery with per-operative line bisection testing. Our aim was to investigate the impact of tumour presence and of tumour resection on the functional (re)organization of the attention networks. We assessed patients' performance on lateralized target detection, visual exploration and line bisection before surgery, and in the acute and post-acute operative phases after surgery. Clear evidence for transient neglect signs was observed in the acute post-operative phase, although full recovery had invariably occurred in all patients. The resection of the right angular gyrus was associated with transient neglect-like symptoms in all tasks, whereas resection of more anterior regions correlated with transient deficits only in visual exploration or detection (but not in line bisection). The attentional networks showed substantial functional recovery. This impressive pattern of recovery is discussed in terms of involvement of the contralateral left hemisphere and of preservation of long-range white matter pathways within the right hemisphere.
- Published
- 2015
27. Compensation of lateralized fatigue due to referent static positional signals in an ankle-matching task
- Author
-
François Bonnetblanc, Nicolas Forestier, Laboratoire Interuniversitaire de Biologie de la Motricité ( LIBM ), Université Claude Bernard Lyon 1 ( UCBL ), Université de Lyon-Université de Lyon-Université Jean Monnet [Saint-Étienne] ( UJM ) -Université Savoie Mont Blanc ( USMB [Université de Savoie] [Université de Chambéry] ), Cognition, Action, et Plasticité Sensorimotrice [Dijon - U1093] ( CAPS ), Université de Bourgogne ( UB ) -Institut National de la Santé et de la Recherche Médicale ( INSERM ), Laboratoire Interuniversitaire de Biologie de la Motricité (LIBM ), Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Université Jean Monnet [Saint-Étienne] (UJM)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry]), Cognition, Action, et Plasticité Sensorimotrice [Dijon - U1093] (CAPS), and Université de Bourgogne (UB)-Institut National de la Santé et de la Recherche Médicale (INSERM)
- Subjects
[SDV.OT]Life Sciences [q-bio]/Other [q-bio.OT] ,medicine.medical_specialty ,Matching (statistics) ,Proprioception ,medicine.diagnostic_test ,business.industry ,General Neuroscience ,Feed forward ,030229 sport sciences ,Isometric exercise ,Electromyography ,Compensation (engineering) ,Task (project management) ,03 medical and health sciences ,0302 clinical medicine ,medicine.anatomical_structure ,Physical medicine and rehabilitation ,Physical therapy ,Medicine ,[ SDV.OT ] Life Sciences [q-bio]/Other [q-bio.OT] ,Ankle ,business ,ComputingMilieux_MISCELLANEOUS ,030217 neurology & neurosurgery - Abstract
The main objective of this study was to examine whether static and dynamic signals from a non-fatigued reference ankle can differently improve the movement accuracy of a fatigued ankle. To address this question, subjects performed an ankle-matching task in a control condition and in a condition of local fatigue induced in the right tibialis anterior, in two matching conditions. In a bilateral condition, the matching task was completed with the two ankles simultaneously. In a unilateral condition subjects had to match the exact target position with the left non-fatigued ankle first and then tried to match the target position with the right fatigued ankle. Results showed that the final accuracy of the right fatigued ankle was degraded when matched with both ankles simultaneously while, for the unilateral condition, the final accuracy remained constant whether the ankle was fatigued or not. In addition, the EMG activity of the right tibialis increased significantly in the acceleration portion of the ankle movement for the unilateral condition. These results suggest that the CNS was able to integrate the correct static positional signals originating from the left reference ankle, to improve the movement accuracy of the controlateral fatigued ankle. This compensation of lateralized fatigue is operated in a feedforward manner.
- Published
- 2006
28. Neurorehabilitation: From sensorimotor adaptation to motor learning, or the opposite?
- Author
-
François Bonnetblanc, Artificial movement and gait restoration (DEMAR), Laboratoire d'Informatique de Robotique et de Microélectronique de Montpellier (LIRMM), Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Inria Sophia Antipolis - Méditerranée (CRISAM), Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria), Cognition, Action, et Plasticité Sensorimotrice [Dijon - U1093] (CAPS), Université de Bourgogne (UB)-Institut National de la Santé et de la Recherche Médicale (INSERM), Artificial movement and gait restoration ( DEMAR ), Laboratoire d'Informatique de Robotique et de Microélectronique de Montpellier ( LIRMM ), Université de Montpellier ( UM ) -Centre National de la Recherche Scientifique ( CNRS ) -Université de Montpellier ( UM ) -Centre National de la Recherche Scientifique ( CNRS ) -Inria Sophia Antipolis - Méditerranée ( CRISAM ), Institut National de Recherche en Informatique et en Automatique ( Inria ) -Institut National de Recherche en Informatique et en Automatique ( Inria ), Cognition, Action, et Plasticité Sensorimotrice [Dijon - U1093] ( CAPS ), Université de Bourgogne ( UB ) -Institut National de la Santé et de la Recherche Médicale ( INSERM ), Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Inria Sophia Antipolis - Méditerranée (CRISAM), Inria Sophia Antipolis - Méditerranée (CRISAM), Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire d'Informatique de Robotique et de Microélectronique de Montpellier (LIRMM), and Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)
- Subjects
DYNAMICS ,ERRORS ,PRISM ADAPTATION ,03 medical and health sciences ,0302 clinical medicine ,Physiology (medical) ,BRAIN ,PLASTICITY ,[SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics ,Adaptation (computer science) ,CEREBELLUM ,Neurorehabilitation ,ComputingMilieux_MISCELLANEOUS ,030304 developmental biology ,0303 health sciences ,MOVEMENTS ,Sensory Systems ,Neurology ,INTERNAL-MODELS ,[ SPI.NANO ] Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics ,Neurology (clinical) ,Psychology ,Motor learning ,Prism adaptation ,WALKING ,030217 neurology & neurosurgery ,Cognitive psychology - Abstract
International audience
- Published
- 2014
29. Asymmetric interhemispheric excitability evidenced by event-related potential amplitude patterns after 'wide-awake surgery' of brain tumours
- Author
-
Bénédicte Poulin-Charronnat, Pom Charras, David Guiraud, François Bonnetblanc, Guillaume Herbet, Hugues Duffau, Mitsuhiro Hayashibe, Cognition, Action, et Plasticité Sensorimotrice [Dijon - U1093] (CAPS), Université de Bourgogne (UB)-Institut National de la Santé et de la Recherche Médicale (INSERM), Artificial movement and gait restoration (DEMAR), Laboratoire d'Informatique de Robotique et de Microélectronique de Montpellier (LIRMM), Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Inria Sophia Antipolis - Méditerranée (CRISAM), Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria), Hôpital Gui de Chauliac, Université Montpellier 1 (UM1)-Centre Hospitalier Régional Universitaire [Montpellier] (CHRU Montpellier), Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM), Laboratoire d'Etude de l'Apprentissage et du Développement [Dijon] (LEAD), Centre National de la Recherche Scientifique (CNRS)-Université de Bourgogne (UB), Cognition, Action, et Plasticité Sensorimotrice [Dijon - U1093] ( CAPS ), Université de Bourgogne ( UB ) -Institut National de la Santé et de la Recherche Médicale ( INSERM ), Artificial movement and gait restoration ( DEMAR ), Laboratoire d'Informatique de Robotique et de Microélectronique de Montpellier ( LIRMM ), Université de Montpellier ( UM ) -Centre National de la Recherche Scientifique ( CNRS ) -Université de Montpellier ( UM ) -Centre National de la Recherche Scientifique ( CNRS ) -Inria Sophia Antipolis - Méditerranée ( CRISAM ), Institut National de Recherche en Informatique et en Automatique ( Inria ) -Institut National de Recherche en Informatique et en Automatique ( Inria ), Université Montpellier 1 ( UM1 ) -Centre Hospitalier Régional Universitaire [Montpellier] ( CHRU Montpellier ), Université de Montpellier ( UM ) -Centre National de la Recherche Scientifique ( CNRS ), Laboratoire d'Etude de l'Apprentissage et du Développement [Dijon] ( LEAD ), Université de Bourgogne ( UB ) -Centre National de la Recherche Scientifique ( CNRS ), Hayashibe, Mitsuhiro, Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Inria Sophia Antipolis - Méditerranée (CRISAM), Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), Université de Bourgogne (UB)-Centre National de la Recherche Scientifique (CNRS), Inria Sophia Antipolis - Méditerranée (CRISAM), Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire d'Informatique de Robotique et de Microélectronique de Montpellier (LIRMM), Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM), Hôpital Gui de Chauliac [CHU Montpellier], and Centre Hospitalier Régional Universitaire [Montpellier] (CHRU Montpellier)
- Subjects
Adult ,Male ,medicine.medical_specialty ,Neurology ,[ INFO ] Computer Science [cs] ,Plasticity ,[INFO] Computer Science [cs] ,Wide-awake surgery ,050105 experimental psychology ,Functional Laterality ,Neurosurgical Procedures ,[SPI.AUTO]Engineering Sciences [physics]/Automatic ,03 medical and health sciences ,0302 clinical medicine ,[INFO.EIAH] Computer Science [cs]/Technology for Human Learning ,Event-related potential ,[ SPI.AUTO ] Engineering Sciences [physics]/Automatic ,medicine ,Reaction Time ,Humans ,0501 psychology and cognitive sciences ,[INFO]Computer Science [cs] ,Wakefulness ,Awake surgery ,Evoked Potentials ,Balance (ability) ,Interhemispheric imbalance ,Cerebral Cortex ,Brain Neoplasms ,General Neuroscience ,05 social sciences ,Slow-growing infiltrative brain tumours ,Electroencephalography ,Cortical excitability ,Glioma ,Middle Aged ,Electrophysiology ,Amplitude ,[SPI.AUTO] Engineering Sciences [physics]/Automatic ,[ INFO.EIAH ] Computer Science [cs]/Technology for Human Learning ,Extensive resection ,Female ,[INFO.EIAH]Computer Science [cs]/Technology for Human Learning ,Psychology ,Neuroscience ,030217 neurology & neurosurgery - Abstract
International audience; Slow-growing, infiltrative brain tumours may modify the electrophysiological balance between the two hemispheres. To determine whether and how asymmetry in interhemispheric excitability might occur following “wide-awake surgery” for this type of tumour, we recorded electroencephalograms during a simple visuo-manual reaction time paradigm performed by five patients between 3 and 12 months after surgery. Interhemispheric excitability asymmetries were computed by comparing the amplitudes of event-related potentials (ERPs) in the injured hemisphere to those in the healthy hemisphere. For the two patients with the smallest lesions (7.1 and 11.5 cm3, respectively), increased excitability within the ipsilesional hemisphere was evidenced by characteristics increases in the ERP amplitude at several sites, with few occurrences in the contralesional hemisphere. For smaller lesions (and under certain experimental conditions), cortical excitability in the injured hemisphere may increase in order to maintain local compensation. In addition, we observed and increased excitability in the contralesional frontal homologue for one patient who underwent an extensive resection. Post-operative monitoring of interhemispheric asymmetries in ERP amplitudes is of value for determining task constraints inducing electrophysiological imbalance and guiding rehabilitation.
- Published
- 2014
30. Asymmetries of bilateral isometric force matching with movement intention and unilateral fatigue
- Author
-
Denis Mottet, Mathieu Gueugnon, François Bonnetblanc, Kjerstin Torre, Cognition, Action, et Plasticité Sensorimotrice [Dijon - U1093] ( CAPS ), Université de Bourgogne ( UB ) -Institut National de la Santé et de la Recherche Médicale ( INSERM ), Institut Universitaire de France ( IUF ), Ministère de l'Éducation nationale, de l’Enseignement supérieur et de la Recherche ( M.E.N.E.S.R. ), Artificial movement and gait restoration ( DEMAR ), Laboratoire d'Informatique de Robotique et de Microélectronique de Montpellier ( LIRMM ), Université de Montpellier ( UM ) -Centre National de la Recherche Scientifique ( CNRS ) -Université de Montpellier ( UM ) -Centre National de la Recherche Scientifique ( CNRS ) -Inria Sophia Antipolis - Méditerranée ( CRISAM ), Institut National de Recherche en Informatique et en Automatique ( Inria ) -Institut National de Recherche en Informatique et en Automatique ( Inria ), Cognition, Action, et Plasticité Sensorimotrice [Dijon - U1093] (CAPS), Université de Bourgogne (UB)-Institut National de la Santé et de la Recherche Médicale (INSERM), Institut Universitaire de France (IUF), Ministère de l'Education nationale, de l’Enseignement supérieur et de la Recherche (M.E.N.E.S.R.), Artificial movement and gait restoration (DEMAR), Laboratoire d'Informatique de Robotique et de Microélectronique de Montpellier (LIRMM), Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Inria Sophia Antipolis - Méditerranée (CRISAM), Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria), Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Inria Sophia Antipolis - Méditerranée (CRISAM), Inria Sophia Antipolis - Méditerranée (CRISAM), Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire d'Informatique de Robotique et de Microélectronique de Montpellier (LIRMM), and Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)
- Subjects
Adult ,Male ,medicine.medical_specialty ,Matching (statistics) ,CORTEX ,Movement ,Sensory system ,Isometric exercise ,Intention ,Functional Laterality ,Task (project management) ,Developmental psychology ,03 medical and health sciences ,Young Adult ,0302 clinical medicine ,Physical medicine and rehabilitation ,Force matching ,Afferent ,Isometric Contraction ,medicine ,[SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics ,030304 developmental biology ,0303 health sciences ,Analysis of Variance ,Force level ,CONTRACTIONS ,Movement (music) ,General Neuroscience ,HUMANS ,MUSCULAR FATIGUE ,CORPUS-CALLOSUM ,Muscle Fatigue ,Arm ,Female ,[ SPI.NANO ] Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics ,Psychology ,030217 neurology & neurosurgery ,Psychomotor Performance - Abstract
International audience; During bilateral coordination, some level of inter-hemispheric remapping (i.e., the congruency between afferent and efferent force signals from both hemispheres) is required. In this case, sensory-motor information is exchanged between the two hemispheres, but it remains unclear whether this information exchange is always equivalent or not, especially in a bilateral isometric force-matching task. We used unilateral fatigue applied to one arm in order to determine whether inter-hemispheric remapping can vary asymmetrically during a bilateral isometric matching task. Because fatigue is considered to bias the sensory-motor system, we hypothesized that if bimanual coordination is modulated solely in function of the state of the sensory-motor system (motor efferences, inter-hemispheric inhibitions, and sensory reafferences), we should not observe any asymmetric effect of fatigue with movement intention (leading vs. matching arm). However, if any other process could participate in the modulation of inter-hemispheric remapping, we should observe an interaction between movement intentions and fatigue on the force produced. We found that, when the leading arm was the non-fatigued arm, participants succeeded in reproducing the force level with their fatigued arm. By contrast, when the leading arm was fatigued, subjects over-estimated the force level produced with their non-fatigued arm. Hence, lateralized fatigue exacerbates an asymmetric behavior that seems modulated by movement intention (leading vs. matching). In other words, when unilateral fatigue is introduced in a bilateral isometric force-matching task, inter-hemispheric remapping is asymmetrical. Intensity levels of motor commands sent to both arms (directly or modulated through inter-hemispheric inhibitions) and sensory reafferences alone cannot explain these observations. Some attentional focus may be not balanced continuously between both arms but may be mainly directed toward the matching arm.
- Published
- 2014
31. Disrupting posterior cingulate connectivity disconnects consciousness from the external environment
- Author
-
Emmanuelle Le Bars, Sylvie Moritz-Gasser, Hugues Duffau, François Bonnetblanc, Guillaume Herbet, Gilles Lafargue, Nicolas Menjot de Champfleur, Cognition, Action, et Plasticité Sensorimotrice [Dijon - U1093] (CAPS), Université de Bourgogne (UB)-Institut National de la Santé et de la Recherche Médicale (INSERM), Artificial movement and gait restoration (DEMAR), Laboratoire d'Informatique de Robotique et de Microélectronique de Montpellier (LIRMM), Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Inria Sophia Antipolis - Méditerranée (CRISAM), Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria), Cognition, Action, et Plasticité Sensorimotrice [Dijon - U1093] ( CAPS ), Université de Bourgogne ( UB ) -Institut National de la Santé et de la Recherche Médicale ( INSERM ), Artificial movement and gait restoration ( DEMAR ), Laboratoire d'Informatique de Robotique et de Microélectronique de Montpellier ( LIRMM ), Université de Montpellier ( UM ) -Centre National de la Recherche Scientifique ( CNRS ) -Université de Montpellier ( UM ) -Centre National de la Recherche Scientifique ( CNRS ) -Inria Sophia Antipolis - Méditerranée ( CRISAM ), Institut National de Recherche en Informatique et en Automatique ( Inria ) -Institut National de Recherche en Informatique et en Automatique ( Inria ), Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Inria Sophia Antipolis - Méditerranée (CRISAM), Inria Sophia Antipolis - Méditerranée (CRISAM), Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire d'Informatique de Robotique et de Microélectronique de Montpellier (LIRMM), and Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)
- Subjects
Male ,STIMULATION ,CORTEX ,Cognitive Neuroscience ,media_common.quotation_subject ,Precuneus ,Neurosurgery ,Experimental and Cognitive Psychology ,Disorders of consciousness ,ORGANIZATION ,Neuropsychological Tests ,Gyrus Cinguli ,050105 experimental psychology ,03 medical and health sciences ,Behavioral Neuroscience ,[SPI]Engineering Sciences [physics] ,0302 clinical medicine ,COGNITIVE CONTROL ,Cortex (anatomy) ,Neural Pathways ,medicine ,[ SPI ] Engineering Sciences [physics] ,Humans ,0501 psychology and cognitive sciences ,Default mode network ,media_common ,BRAIN-FUNCTION ,Brain Mapping ,Resting state fMRI ,05 social sciences ,MEMORY ,Glioma ,FUNCTIONAL CONNECTIVITY ,Middle Aged ,medicine.disease ,Magnetic Resonance Imaging ,SLEEP ,medicine.anatomical_structure ,Epilepsy, Absence ,Posterior cingulate ,DEFAULT-MODE NETWORK ,Consciousness Disorders ,RESTING-STATE ,Consciousness ,Psychology ,Neuroscience ,030217 neurology & neurosurgery ,Photic Stimulation - Abstract
International audience; Neurophysiological and neuroimaging studies including both patients with disorders of consciousness and healthy subjects with modified states of consciousness suggest a crucial role of the medial posteroparietal cortex in conscious information processing. However no direct neuropsychological evidence supports this hypothesis and studies including patients with restricted lesions of this brain region are almost nonexistent. Using direct intraoperative electrostimulations, we showed in a rare patient that disrupting the subcortical connectivity of the left posterior cingulate cortex (PCC) reliably induced a breakdown in conscious experience. This acute phenomenon was mainly characterized by a transient behavioral unresponsiveness with loss of external connectedness. In all cases, when he regained consciousness, the patient described himself as in dream, outside the operating room. This finding suggests that functional integrity of the PPC connectivity is necessary for maintaining consciousness of external environment. (C) 2014 Elsevier Ltd. All rights reserved.
- Published
- 2014
32. Motor-prediction improvements after virtual rehabilitation in geriatrics: Frail patients reveal different learning curves for movement and postural control
- Author
-
F. Mourey, Alexandre Kubicki, Geoffroy Petrement, François Bonnetblanc, Cognition, Action, et Plasticité Sensorimotrice [Dijon - U1093] ( CAPS ), and Université de Bourgogne ( UB ) -Institut National de la Santé et de la Recherche Médicale ( INSERM )
- Subjects
Male ,medicine.medical_specialty ,Frail Elderly ,Population ,Motor Activity ,Physical medicine and rehabilitation ,AGE ,Physiology (medical) ,medicine ,ARM MOVEMENT ,Learning ,CHANGING STANCE CONDITIONS ,education ,OLDER-ADULTS ,Postural Balance ,CEREBELLUM ,Balance (ability) ,Aged ,Aged, 80 and over ,education.field_of_study ,COORDINATION ,Movement Disorders ,Virtual Reality Exposure Therapy ,Work (physics) ,Motor control ,HUMANS ,General Medicine ,Displacement (psychology) ,PERTURBATIONS ,Biomechanical Phenomena ,ADJUSTMENTS ,Neurology ,Learning curve ,Geriatrics ,Physical therapy ,INTERNAL-MODELS ,Virtual rehabilitation ,Female ,Neurology (clinical) ,[ SCCO ] Cognitive science ,Psychology ,Motor learning - Abstract
International audience; Background. - Postural control associated with self-paced movement is critical for balance in frail older adults. The present work aimed to investigate the effects of a 2D virtual reality-based program on postural control associated with rapid arm movement in this population. Methods. - Participants in an upright standing position performed rapid arm-raising movements towards a target. Practice-related changes were assessed by pre- and post-test comparisons of hand kinematics and centre-of-pressure (CoP) displacement parameters measured in a training group and a control group. During these pre- and post-test sessions, patients have to reach towards yellow balls appearing on the screen, form a standardized upright position (with 15 cm between the two malleoli). Training group patients took part in six sessions of virtual game. In this, patients were asked to reach their arm towards yellow balls appearing on the screen, from an upright position. Results. - After training, we observed improvements in arm movements and in the initial phase of CoP displacement, especially in the anticipatory postural adjustments. Learning curves for these two types of motor improvements showed different rates. These were continuous for the control of the arm movement, and discontinuous for the control of the CoP during the anticipatory postural adjustments. Conclusion. - These results suggest that some level of motor (re)-learning is maintained in frail patients with low functional reserves. They also suggest that re-learning of anticipatory postural control (i.e. motor prediction) is less robust than explicit motor learning involved for the arm reaching. This last point should encourage clinicians to extend the training course duration, even if reaching movement improvements seems acquired, in order to automate these anticipatory postural activities. However, other studies should be done to measure the retention of these two types of learning on a longer-term period. (c) 2013 Elsevier Masson SAS. All rights reserved.
- Published
- 2014
33. Space representation in children with dyslexia and children without dyslexia: Contribution of line bisection and circle centering tasks
- Author
-
François Bonnetblanc, Stéphanie Vieira, Patrick Quercia, Carine Michel, Universidade de Lisboa ( ULISBOA ), Cognition, Action, et Plasticité Sensorimotrice [Dijon - U1093] ( CAPS ), Université de Bourgogne ( UB ) -Institut National de la Santé et de la Recherche Médicale ( INSERM ), Service d'Ophtalmologie (CHU de Dijon), Centre Hospitalier Universitaire de Dijon - Hôpital François Mitterrand ( CHU Dijon ), Artificial movement and gait restoration ( DEMAR ), Laboratoire d'Informatique de Robotique et de Microélectronique de Montpellier ( LIRMM ), Université de Montpellier ( UM ) -Centre National de la Recherche Scientifique ( CNRS ) -Université de Montpellier ( UM ) -Centre National de la Recherche Scientifique ( CNRS ) -Inria Sophia Antipolis - Méditerranée ( CRISAM ), Institut National de Recherche en Informatique et en Automatique ( Inria ) -Institut National de Recherche en Informatique et en Automatique ( Inria ), École de Sages-Femmes - Clermont-Ferrand ( ESF - UdA ), CHU Clermont-Ferrand-Université d'Auvergne - Clermont-Ferrand I ( UdA ), Universidade de Lisboa = University of Lisbon (ULISBOA), Cognition, Action, et Plasticité Sensorimotrice [Dijon - U1093] (CAPS), Université de Bourgogne (UB)-Institut National de la Santé et de la Recherche Médicale (INSERM), Centre Hospitalier Universitaire de Dijon - Hôpital François Mitterrand (CHU Dijon), Artificial movement and gait restoration (DEMAR), Laboratoire d'Informatique de Robotique et de Microélectronique de Montpellier (LIRMM), Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Inria Sophia Antipolis - Méditerranée (CRISAM), Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria), École de Sages-Femmes - Clermont-Ferrand (ESF - UdA), CHU Clermont-Ferrand-Université d'Auvergne - Clermont-Ferrand I (UdA), Universidade de Lisboa (ULISBOA), and Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Inria Sophia Antipolis - Méditerranée (CRISAM)
- Subjects
Male ,Functional Laterality ,050105 experimental psychology ,Dyslexia ,Perceptual Disorders ,03 medical and health sciences ,0302 clinical medicine ,Dimension (vector space) ,Developmental and Educational Psychology ,medicine ,Humans ,Attention ,0501 psychology and cognitive sciences ,Clockwise ,Child ,Representation (mathematics) ,Spatial contextual awareness ,[SCCO.NEUR]Cognitive science/Neuroscience ,05 social sciences ,Response bias ,medicine.disease ,Clinical Psychology ,Case-Control Studies ,Space Perception ,Line (geometry) ,[ SCCO.NEUR ] Cognitive science/Neuroscience ,Female ,Psychology ,030217 neurology & neurosurgery ,Cognitive psychology - Abstract
International audience; Line bisection tasks (different space locations and different line lengths) and circle centering tasks (visuo-proprioceptive and proprioceptive explorations, with left or right starting positions) were used to investigate space representation in children with dyslexia and children without dyslexia. In line bisection, children with dyslexia showed a significant rightward bias for central and right-sided locations and a leftward bias for left-sided location. Furthermore, the spatial context processing was asymmetrically more efficient in the left space. In children without dyslexia, no significant bias was observed in central lines but the spatial context processing was symmetrical in both spaces. When the line length varied, no main effect was shown. These results strengthen the ‘inverse pseudoneglect’ hypothesis in dyslexia. In the lateral dimension of the circle centering tasks, children showed a response bias in the direction of the starting hand location for proprioceptive condition. For radial dimension, the children showed a forward bias in visuo-proprioceptive condition and more backward error in proprioceptive condition. Children with dyslexia showed a forward bias in clockwise exploration and more accurate performance in counterclockwise exploration for left starting position which may be in accordance with leftward asymmetrical spatial context processing in line bisection. These results underline the necessity to use the line bisection task with different locations as an appropriate experimental paradigm to study lateral representational bias in dyslexia. The contribution of the present results in the understanding of space representation in children with dyslexia and children without dyslexia is discussed in terms of attentional processes and neuroanatomical substrate.
- Published
- 2013
34. Is the right frontal cortex really crucial in the mentalizing network? A longitudinal study in patients with a slow-growing lesion
- Author
-
Sylvie Moritz-Gasser, Hugues Duffau, Gilles Lafargue, François Bonnetblanc, Guillaume Herbet, Institut des Neurosciences de Montpellier - Déficits sensoriels et moteurs ( INM ), Institut National de la Santé et de la Recherche Médicale ( INSERM ) -Université de Montpellier ( UM ), Laboratoire de Neurosciences Fonctionnelles et Pathologies ( LNFP ), Université de Lille, Droit et Santé-Centre National de la Recherche Scientifique ( CNRS ), Cognition, Action, et Plasticité Sensorimotrice [Dijon - U1093] ( CAPS ), Université de Bourgogne ( UB ) -Institut National de la Santé et de la Recherche Médicale ( INSERM ), Artificial movement and gait restoration ( DEMAR ), Laboratoire d'Informatique de Robotique et de Microélectronique de Montpellier ( LIRMM ), Université de Montpellier ( UM ) -Centre National de la Recherche Scientifique ( CNRS ) -Université de Montpellier ( UM ) -Centre National de la Recherche Scientifique ( CNRS ) -Inria Sophia Antipolis - Méditerranée ( CRISAM ), Institut National de Recherche en Informatique et en Automatique ( Inria ) -Institut National de Recherche en Informatique et en Automatique ( Inria ), Hôpital Gui de Chauliac, Université Montpellier 1 ( UM1 ) -Centre Hospitalier Régional Universitaire [Montpellier] ( CHRU Montpellier ), Institut des Neurosciences de Montpellier - Déficits sensoriels et moteurs (INM), Institut National de la Santé et de la Recherche Médicale (INSERM)-Université de Montpellier (UM), Laboratoire de Neurosciences Fonctionnelles et Pathologies (LNFP), Université de Lille, Droit et Santé-Centre National de la Recherche Scientifique (CNRS), Cognition, Action, et Plasticité Sensorimotrice [Dijon - U1093] (CAPS), Université de Bourgogne (UB)-Institut National de la Santé et de la Recherche Médicale (INSERM), Artificial movement and gait restoration (DEMAR), Laboratoire d'Informatique de Robotique et de Microélectronique de Montpellier (LIRMM), Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Inria Sophia Antipolis - Méditerranée (CRISAM), Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria), Université Montpellier 1 (UM1)-Centre Hospitalier Régional Universitaire [Montpellier] (CHRU Montpellier), Institut des Neurosciences de Montpellier (INM), Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Inria Sophia Antipolis - Méditerranée (CRISAM), Hôpital Gui de Chauliac [CHU Montpellier], and Centre Hospitalier Régional Universitaire [Montpellier] (CHRU Montpellier)
- Subjects
Adult ,Male ,Cognitive Neuroscience ,Theory of Mind ,Prefrontal Cortex ,Experimental and Cognitive Psychology ,Context (language use) ,Neuropsychological Tests ,Neurosurgical Procedures ,050105 experimental psychology ,Young Adult ,03 medical and health sciences ,0302 clinical medicine ,Theory of mind ,Neuroplasticity ,Reaction Time ,Humans ,0501 psychology and cognitive sciences ,Longitudinal Studies ,Set (psychology) ,Prefrontal cortex ,Brain Neoplasms ,05 social sciences ,Glioma ,Middle Aged ,Magnetic Resonance Imaging ,Frontal Lobe ,Neuropsychology and Physiological Psychology ,Socioeconomic Factors ,Mentalization ,Frontal lobe ,[ SDV.NEU ] Life Sciences [q-bio]/Neurons and Cognition [q-bio.NC] ,Disease Progression ,Educational Status ,Female ,Perception ,[SDV.NEU]Life Sciences [q-bio]/Neurons and Cognition [q-bio.NC] ,Nerve Net ,Psychology ,Neurocognitive ,Neuroscience ,Psychomotor Performance ,030217 neurology & neurosurgery - Abstract
International audience; Assessing the subjective experience of others in terms of mental states, a brain function referred to as mentalizing, is achieved in the brain through a set of low-level perceptual and high-level inference-based processes. Because of its recurrent implication in fMRI studies, the right frontal cortex, especially in its inferolateral and dorsomesial parts, is posited to be a "core system" in the sustenance of these neurocognitive mechanisms. In this context, we reasoned that if the right frontal cortex is really crucial for mentalizing, its surgical resection, following diffuse low-grade glioma invasion, should induce irreversible impairments. To test this hypothesis, we designed a longitudinal experimental setup in which ten patients harboring a low-grade glioma in right frontal areas were assessed just before, immediately after and three months after a brain surgery. Two well-validated behavioral tasks, thought to evaluate both aspects of mentalizing, were administered. The results obtained provide evidence that widespread surgical excisions of the right prefrontal cortex do not induce a long-term worsening of both aspects of mentalizing, although some transitory effects are observed immediately after the surgery. They suggest also for the first time in the same sample of patients a possible double functional dissociation between low-level perceptual (posterior inferolateral prefrontal) and high-level inference-based (dorsomesial prefrontal) mentalizing processes. This overall finding challenges the traditional view according to which the right frontal cortex is an "essential cortical node" in the mentalizing network since it might be expected that massive surgical excisions of this brain area would have induced more definitive impairments.
- Published
- 2013
35. Motor-Prediction Improvements after Virtual Rehabilitation in Frail Older Adults
- Author
-
François Bonnetblanc, F. Mourey, and Alexandre Kubicki
- Subjects
education.field_of_study ,medicine.medical_specialty ,business.industry ,Work (physics) ,Population ,Frail Older Adults ,Kinematics ,Displacement (psychology) ,Physical medicine and rehabilitation ,Initial phase ,medicine ,Virtual rehabilitation ,education ,business ,Balance (ability) - Abstract
Postural control associated with self-paced movement is critical for balance in frail older adults. The present work aimed to investigate the effects of a virtual reality-based program on postural control associated with rapid arm movement in this population. Participants in an upright standing position performed rapid arm-raising movements towards a target. Practice-related changes were assessed by pre- and post-test comparisons of hand kinematics and Centre-of-Pressure (CoP) displacement parameters measured in a training group and a control group. Training group patients took part in six sessions. After training, we observed improvements in arm movements and in the initial phase of CoP displacement, especially in anticipatory postural adjustments. Learning for these two types of motor improvements showed different rates. These results suggest that some level of motor (re)-learning is maintained in frail patients with low functional reserves.
- Published
- 2013
36. 'Awake Surgery' of Slow-Growing Tumors and Cortical Excitability Measured by EEG Recordings. Preliminary Results
- Author
-
Bénédicte Poulin-Charronnat, François Bonnetblanc, Guillaume Herbet, Hugues Duffau, Pom Charras, David Guiraud, Mitsuhiro Hayashibe, Artificial movement and gait restoration ( DEMAR ), Laboratoire d'Informatique de Robotique et de Microélectronique de Montpellier ( LIRMM ), Université de Montpellier ( UM ) -Centre National de la Recherche Scientifique ( CNRS ) -Université de Montpellier ( UM ) -Centre National de la Recherche Scientifique ( CNRS ) -Inria Sophia Antipolis - Méditerranée ( CRISAM ), Institut National de Recherche en Informatique et en Automatique ( Inria ) -Institut National de Recherche en Informatique et en Automatique ( Inria ), Cognition, Action, et Plasticité Sensorimotrice [Dijon - U1093] ( CAPS ), Université de Bourgogne ( UB ) -Institut National de la Santé et de la Recherche Médicale ( INSERM ), Institut des Neurosciences de Montpellier - Déficits sensoriels et moteurs ( INM ), Institut National de la Santé et de la Recherche Médicale ( INSERM ) -Université de Montpellier ( UM ), Hôpital Gui de Chauliac, Université Montpellier 1 ( UM1 ) -Centre Hospitalier Régional Universitaire [Montpellier] ( CHRU Montpellier ), Laboratoire d'Etude de l'Apprentissage et du Développement [Dijon] ( LEAD ), Université de Bourgogne ( UB ) -Centre National de la Recherche Scientifique ( CNRS ), José L. Pons, Diego Torricelli, Marta Pajaro, Artificial movement and gait restoration (DEMAR), Laboratoire d'Informatique de Robotique et de Microélectronique de Montpellier (LIRMM), Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Inria Sophia Antipolis - Méditerranée (CRISAM), Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria), Cognition, Action, et Plasticité Sensorimotrice [Dijon - U1093] (CAPS), Université de Bourgogne (UB)-Institut National de la Santé et de la Recherche Médicale (INSERM), Institut des Neurosciences de Montpellier (INM), Institut National de la Santé et de la Recherche Médicale (INSERM)-Université de Montpellier (UM), Hôpital Gui de Chauliac [CHU Montpellier], Centre Hospitalier Régional Universitaire [Montpellier] (CHRU Montpellier), Laboratoire d'Etude de l'Apprentissage et du Développement [Dijon] (LEAD), Université de Bourgogne (UB)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Inria Sophia Antipolis - Méditerranée (CRISAM), Institut des Neurosciences de Montpellier - Déficits sensoriels et moteurs (INM), Université Montpellier 1 (UM1)-Centre Hospitalier Régional Universitaire [Montpellier] (CHRU Montpellier), Centre National de la Recherche Scientifique (CNRS)-Université de Bourgogne (UB), Bonnetblanc, François, Inria Sophia Antipolis - Méditerranée (CRISAM), Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire d'Informatique de Robotique et de Microélectronique de Montpellier (LIRMM), and Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)
- Subjects
genetic structures ,medicine.diagnostic_test ,[SCCO.NEUR]Cognitive science/Neuroscience ,05 social sciences ,[SCCO.NEUR] Cognitive science/Neuroscience ,Electroencephalography ,Cerebral plasticity ,050105 experimental psychology ,[SPI.AUTO]Engineering Sciences [physics]/Automatic ,03 medical and health sciences ,0302 clinical medicine ,[SPI.AUTO] Engineering Sciences [physics]/Automatic ,[ SPI.AUTO ] Engineering Sciences [physics]/Automatic ,[ SCCO.NEUR ] Cognitive science/Neuroscience ,medicine ,0501 psychology and cognitive sciences ,Psychology ,Awake surgery ,Neuroscience ,Slow Growing ,030217 neurology & neurosurgery - Abstract
International audience; To investigate interhemispheric imbalance following "awake surgeries" of slow-growing tumors we recorded EEG in a visuo-manual RT paradigm. Increase of cortical excitability within the ipsilesional hemisphere was signed by increased ERPs amplitude for two patients. The cortical excitability in the lesioned hemisphere may be increased to maintain performances and cerebral plasticity.
- Published
- 2012
37. Inter-hemispheric remapping between arm proprioception and vision of the hand is disrupted by single pulse TMS on the left parietal cortex
- Author
-
G. Barbieri, François Bonnetblanc, Lilian Fautrelle, Mathieu Gueugnon, Cognition, Action, et Plasticité Sensorimotrice [Dijon - U1093] ( CAPS ), Université de Bourgogne ( UB ) -Institut National de la Santé et de la Recherche Médicale ( INSERM ), Artificial movement and gait restoration ( DEMAR ), Laboratoire d'Informatique de Robotique et de Microélectronique de Montpellier ( LIRMM ), Université de Montpellier ( UM ) -Centre National de la Recherche Scientifique ( CNRS ) -Université de Montpellier ( UM ) -Centre National de la Recherche Scientifique ( CNRS ) -Inria Sophia Antipolis - Méditerranée ( CRISAM ), Institut National de Recherche en Informatique et en Automatique ( Inria ) -Institut National de Recherche en Informatique et en Automatique ( Inria ), Cognition, Action, et Plasticité Sensorimotrice [Dijon - U1093] (CAPS), Université de Bourgogne (UB)-Institut National de la Santé et de la Recherche Médicale (INSERM), Artificial movement and gait restoration (DEMAR), Laboratoire d'Informatique de Robotique et de Microélectronique de Montpellier (LIRMM), Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Inria Sophia Antipolis - Méditerranée (CRISAM), Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria), Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Inria Sophia Antipolis - Méditerranée (CRISAM), Inria Sophia Antipolis - Méditerranée (CRISAM), Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire d'Informatique de Robotique et de Microélectronique de Montpellier (LIRMM), and Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)
- Subjects
Adult ,Male ,medicine.medical_specialty ,genetic structures ,Cognitive Neuroscience ,Posterior parietal cortex ,Experimental and Cognitive Psychology ,Audiology ,050105 experimental psychology ,Functional Laterality ,[SPI.AUTO]Engineering Sciences [physics]/Automatic ,03 medical and health sciences ,Interhemispheric transfer ,0302 clinical medicine ,Arts and Humanities (miscellaneous) ,Transcranial magnetic stimulation (TMS) ,Remapping ,[ SPI.AUTO ] Engineering Sciences [physics]/Automatic ,Parietal Lobe ,Moro reflex ,Developmental and Educational Psychology ,medicine ,Left parietal area ,Reaction Time ,Visual attention ,Humans ,0501 psychology and cognitive sciences ,Attention ,Simple reaction time (RT) ,Brain Mapping ,Proprioception ,[SCCO.NEUR]Cognitive science/Neuroscience ,05 social sciences ,Contralateral hemisphere ,Single pulse ,Hand ,Gaze ,Transcranial Magnetic Stimulation ,Neuropsychology and Physiological Psychology ,Startle reflex ,[ SCCO.NEUR ] Cognitive science/Neuroscience ,Arm ,Visual Perception ,Psychology ,Neuroscience ,030217 neurology & neurosurgery ,Arm position ,Psychomotor Performance - Abstract
International audience; Parietal cortical areas are involved in sensori-motor transformations for their respective contralateral hemifield/body. When arms of the subjects are crossed while their gaze is fixed straight ahead, vision of the hand is processed by the hemisphere ipsilateral to the arm position and proprioception of the arm by the contralateral hemisphere. It induces interhemispheric transfer and remapping. Our objective was to investigate whether a single pulse TMS applied to the left parietal cortical area would disturb interhemispheric remapping in a similar case, and would increase a simple reaction time (RT) with respect to a control single pulse TMS applied to the frontal cortical area. Two LED were superimposed and located in front of the subjects on the saggital axis. Subjects were asked to carefully fixate on these LED during each trial. The lighting of the red LED was used as a warning signal. Following the green one was illuminated after a variable delay and served as a go-signal. The hand for the response was determined before the start of each trial. TMS was applied to the left parietal, the left frontal cortical areas, or not applied to the subject. Results revealed that: (1) Irrespective of its location, single pulse TMS induced a non-specific effect similar to a startle reflex and reduced RT substantially (15 ms on average) with respect to a control condition without TMS (mean value = 153 ms). (2) Irrespective of TMS, RT were shorter when the right or the left hand was positioned in the right visual hemi-field (i.e. normal and crossed positions respectively). (3) Finally, RT increased when single pulse TMS was applied to the left parietal area and when hands were crossed irrespective of which hand was used. We concluded that interhemispheric sensori-motor remapping was disrupted by a single pulse TMS that was applied to the left parietal cortex. This effect was also combined some visual attention directed towards the hand located on the right visual hemi-field.
- Published
- 2012
38. Ultra-fast recovery from right neglect after 'awake surgery' for slow-growing tumor invading the left parietal area
- Author
-
Etienne Sallard, François Bonnetblanc, Hugues Duffau, Cognition, Action, et Plasticité Sensorimotrice [Dijon - U1093] (CAPS), Université de Bourgogne (UB)-Institut National de la Santé et de la Recherche Médicale (INSERM), Hôpital Gui de Chauliac [CHU Montpellier], Centre Hospitalier Régional Universitaire [Montpellier] (CHRU Montpellier), Artificial movement and gait restoration (DEMAR), Laboratoire d'Informatique de Robotique et de Microélectronique de Montpellier (LIRMM), Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Inria Sophia Antipolis - Méditerranée (CRISAM), Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria), Hôpital Gui de Chauliac, Université Montpellier 1 (UM1)-Centre Hospitalier Régional Universitaire [Montpellier] (CHRU Montpellier), Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Inria Sophia Antipolis - Méditerranée (CRISAM), Cognition, Action, et Plasticité Sensorimotrice [Dijon - U1093] ( CAPS ), Université de Bourgogne ( UB ) -Institut National de la Santé et de la Recherche Médicale ( INSERM ), Université Montpellier 1 ( UM1 ) -Centre Hospitalier Régional Universitaire [Montpellier] ( CHRU Montpellier ), Artificial movement and gait restoration ( DEMAR ), Laboratoire d'Informatique de Robotique et de Microélectronique de Montpellier ( LIRMM ), Université de Montpellier ( UM ) -Centre National de la Recherche Scientifique ( CNRS ) -Université de Montpellier ( UM ) -Centre National de la Recherche Scientifique ( CNRS ) -Inria Sophia Antipolis - Méditerranée ( CRISAM ), Institut National de Recherche en Informatique et en Automatique ( Inria ) -Institut National de Recherche en Informatique et en Automatique ( Inria ), Inria Sophia Antipolis - Méditerranée (CRISAM), Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire d'Informatique de Robotique et de Microélectronique de Montpellier (LIRMM), and Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)
- Subjects
Male ,Neurosurgical Procedures ,BRAIN PLASTICITY ,UNILATERAL SPATIAL NEGLECT ,0302 clinical medicine ,Parietal Lobe ,Awake surgery ,media_common ,Brain Mapping ,LOW-GRADE GLIOMAS ,Supplementary motor area ,Brain Neoplasms ,05 social sciences ,SURGICAL RESECTION ,Middle Aged ,Magnetic Resonance Imaging ,Treatment Outcome ,medicine.anatomical_structure ,PRIMARY SOMATOSENSORY AREA ,[ SCCO.NEUR ] Cognitive science/Neuroscience ,Female ,FUNCTIONAL RECOVERY ,medicine.symptom ,Psychology ,Slow Growing ,Adult ,medicine.medical_specialty ,media_common.quotation_subject ,DOMINANT HEMISPHERE ,050105 experimental psychology ,Plasticity ,Slow-growing tumor ,Right hemineglect ,Neglect ,Perceptual Disorders ,Lesion ,03 medical and health sciences ,Arts and Humanities (miscellaneous) ,medicine ,Humans ,0501 psychology and cognitive sciences ,Ultra fast ,Wakefulness ,[SCCO.NEUR]Cognitive science/Neuroscience ,CONSECUTIVE SERIES ,SUPPLEMENTARY MOTOR AREA ,ELECTRICAL-STIMULATION ,Electric Stimulation ,Surgery ,Functional mapping ,Standard line ,Neurology (clinical) ,030217 neurology & neurosurgery - Abstract
Sallard, Etienne | Duffau, Hugues | Bonnetblanc, Francois; International audience; It is now possible to perform resections of slow-growing tumors in awake patients. Using direct electrical stimulation, real-time functional mapping of the brain can be used to prevent the resection of essential areas near the tumor. Simple clinical observations of patients with a resection of slow-growing tumors have demonstrated substantial recovery within a few days of such 'awake surgery'. The aim of this study was to investigate the kinetics of recovery following the resection of slow-growing tumors invading the left parietal area and to focus mainly on its rapidity. Two patients were assessed by standard line bisection tests and compared with eight healthy individuals. Independently of the pure nature of the symptoms, we report that the patients rapidly and substantially recovered from pronounced right neglect. They were tested 48 hours after the surgery and the recovery was significant for both patients after less than 4 hours. Strikingly, for one patient, recovery was ultra fast and substantial in the first practice session within less than 7 minutes: it occurred without verbal feedback and was substantially retained during the following testing session. Its rapidity suggests a process of unmasking redundant networks. With the slow growth of the lesion, the contralesional hemisphere is probably progressively prepared for rapid unmasking of homologue networks. These results have major clinical implications. For patients with an invading left-side tumor, it is now clear that line bisections are required before, during, and after awake surgery to: plan the surgery, control the quality of the resection, and also optimize the rehabilitation of the patient.
- Published
- 2012
39. On-line Coordination in Complex Goal-directed Movements: a Matter of Interactions between Several Loops
- Author
-
Lilian Fautrelle, François Bonnetblanc, Cognition, Action, et Plasticité Sensorimotrice [Dijon - U1093] (CAPS), Université de Bourgogne (UB)-Institut National de la Santé et de la Recherche Médicale (INSERM), Artificial movement and gait restoration (DEMAR), Laboratoire d'Informatique de Robotique et de Microélectronique de Montpellier (LIRMM), Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Inria Sophia Antipolis - Méditerranée (CRISAM), Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria), Inria Sophia Antipolis - Méditerranée (CRISAM), Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire d'Informatique de Robotique et de Microélectronique de Montpellier (LIRMM), Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM), Cognition, Action, et Plasticité Sensorimotrice [Dijon - U1093] ( CAPS ), Université de Bourgogne ( UB ) -Institut National de la Santé et de la Recherche Médicale ( INSERM ), Artificial movement and gait restoration ( DEMAR ), Laboratoire d'Informatique de Robotique et de Microélectronique de Montpellier ( LIRMM ), Université de Montpellier ( UM ) -Centre National de la Recherche Scientifique ( CNRS ) -Université de Montpellier ( UM ) -Centre National de la Recherche Scientifique ( CNRS ) -Inria Sophia Antipolis - Méditerranée ( CRISAM ), Institut National de Recherche en Informatique et en Automatique ( Inria ) -Institut National de Recherche en Informatique et en Automatique ( Inria ), Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Inria Sophia Antipolis - Méditerranée (CRISAM), and Bonnetblanc, François
- Subjects
Computer science ,Process (engineering) ,Movement ,050105 experimental psychology ,[SPI.AUTO]Engineering Sciences [physics]/Automatic ,03 medical and health sciences ,0302 clinical medicine ,Control theory ,[ SPI.AUTO ] Engineering Sciences [physics]/Automatic ,Neural Pathways ,Reaction Time ,Animals ,Humans ,0501 psychology and cognitive sciences ,Cerebral Cortex ,Flexibility (engineering) ,Communication ,business.industry ,General Neuroscience ,[SCCO.NEUR]Cognitive science/Neuroscience ,05 social sciences ,[SCCO.NEUR] Cognitive science/Neuroscience ,Motor control ,Efference copy ,16. Peace & justice ,Motor coordination ,Degrees of freedom problem ,[SPI.AUTO] Engineering Sciences [physics]/Automatic ,[ SCCO.NEUR ] Cognitive science/Neuroscience ,Nerve Net ,Motor learning ,business ,Goals ,Motor goal ,Psychomotor Performance ,030217 neurology & neurosurgery - Abstract
International audience; Motor flexibility is the ability to rapidly modify behavior when unexpected perturbations occur. In goal directed movements, this process may be involved during the motor execution itself, by using on-line motor corrections, or off-line, on a trial-by-trial basis. A consensus has emerged to describe and unify these two dependant processes within the framework of the internal models theory in which the cerebellum is involved in error processing. However, this general framework may be incomplete to describe on-line motor corrections when complex motor coordination is involved in the task. In particular, interaction torques existing between different effectors limit the independence between different controllers that could be considered to control various body parts. In addition, recent findings suggest that different (sub)-cortical loops may be involved during orienting responses to visual stimuli but also during on-line motor corrections following visual perturbations. The way these different loops with different dynamics interact but achieve the same motor goal is an important problem in motor control. The simplest organization may be sequential, as in the well-known stretch reflex. This implies that during on-line corrections, the nervous system may be involved in a distributed fashion and that motor plans and synergies depend both on anatomical and temporal constraints. More particularly, motor plans and synergies may be stored and may differ according to the (sub)-cortical loops involved during the whole on-line correction process. Finally, questions concerning the independence (or not) of these loops remain unanswered. The case of strict independence would mean that between the various corrective loops, (i) error processing and (ii) motor plans/synergies would be different. By contrast, in a situation of dependency, it would probably mean that interactions would link lower (and faster) to upper (and longer) loops by informing these latter of the motor corrections sent by the former, similarly to an efference copy.
- Published
- 2012
40. Manual Reaction Times and Brain Dynamics after 'Awake Surgery' of Slow-Growing Tumours Invading the Parietal Area. A Case Report
- Author
-
Etienne Sallard, Jérôme Barral, Hugues Duffau, François Bonnetblanc, Cognition, Action, et Plasticité Sensorimotrice [Dijon - U1093] (CAPS), Université de Bourgogne (UB)-Institut National de la Santé et de la Recherche Médicale (INSERM), Hôpital Gui de Chauliac, Université Montpellier 1 (UM1)-Centre Hospitalier Régional Universitaire [Montpellier] (CHRU Montpellier), Artificial movement and gait restoration (DEMAR), Inria Sophia Antipolis - Méditerranée (CRISAM), Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire d'Informatique de Robotique et de Microélectronique de Montpellier (LIRMM), Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM), Cognition, Action, et Plasticité Sensorimotrice [Dijon - U1093] ( CAPS ), Université de Bourgogne ( UB ) -Institut National de la Santé et de la Recherche Médicale ( INSERM ), Université Montpellier 1 ( UM1 ) -Centre Hospitalier Régional Universitaire [Montpellier] ( CHRU Montpellier ), Artificial movement and gait restoration ( DEMAR ), Laboratoire d'Informatique de Robotique et de Microélectronique de Montpellier ( LIRMM ), Université de Montpellier ( UM ) -Centre National de la Recherche Scientifique ( CNRS ) -Université de Montpellier ( UM ) -Centre National de la Recherche Scientifique ( CNRS ) -Inria Sophia Antipolis - Méditerranée ( CRISAM ), Institut National de Recherche en Informatique et en Automatique ( Inria ) -Institut National de Recherche en Informatique et en Automatique ( Inria ), Laboratoire d'Informatique de Robotique et de Microélectronique de Montpellier (LIRMM), Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Inria Sophia Antipolis - Méditerranée (CRISAM), Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria), Bonnetblanc, François, Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Inria Sophia Antipolis - Méditerranée (CRISAM), Hôpital Gui de Chauliac [CHU Montpellier], and Centre Hospitalier Régional Universitaire [Montpellier] (CHRU Montpellier)
- Subjects
Adult ,Male ,medicine.medical_specialty ,Neuroscience (miscellaneous) ,Stimulation ,Cerebral plasticity ,Stimulus (physiology) ,Audiology ,Functional Laterality ,Neurosurgical Procedures ,050105 experimental psychology ,[SPI.AUTO]Engineering Sciences [physics]/Automatic ,03 medical and health sciences ,0302 clinical medicine ,Parietal Lobe ,[ SPI.AUTO ] Engineering Sciences [physics]/Automatic ,Reaction Time ,Developmental and Educational Psychology ,medicine ,Humans ,0501 psychology and cognitive sciences ,Wakefulness ,Awake surgery ,Brain Neoplasms ,[SCCO.NEUR]Cognitive science/Neuroscience ,[SCCO.NEUR] Cognitive science/Neuroscience ,05 social sciences ,Neuropsychology ,Glioma ,Middle Aged ,Electric Stimulation ,Sagittal plane ,Treatment Outcome ,[SPI.AUTO] Engineering Sciences [physics]/Automatic ,medicine.anatomical_structure ,[ SCCO.NEUR ] Cognitive science/Neuroscience ,Female ,Neurology (clinical) ,Psychology ,Slow Growing ,Neuroscience ,Psychomotor Performance ,030217 neurology & neurosurgery - Abstract
International audience; PRIMARY OBJECTIVES: Awake surgeries of slow-growing tumours invading the brain and guided by direct electrical stimulation induce major brain reorganizations accompanied with slight impairments post-operatively. In most cases, these deficits are so slight after a few days that they are often not detectable on classical neuropsychological evaluations. Consequently, this study investigated whether simple visuo-manual reaction time paradigms would sign some level of functional asymmetries between both hemispheres. Importantly, the visual stimulus was located in the saggital plane in order to limit attentional biases and to focus mainly on the inter-hemispheric asymmetry. METHODS AND PROCEDURES: Three patients (aged 41, 59 and 59 years) after resections in parietal regions and a control group (age = 44, SD = 6.9) were compared during simple uni- and bimanual reaction times (RTs). MAIN OUTCOMES AND RESULTS: Longer RTs were observed for the contralesional compared to the ipsilesional hand in the unimanual condition. This asymmetry was reversed for the bimanual condition despite longer RTs. CONCLUSION AND CLINICAL IMPLICATIONS: Reaction time paradigms are useful in these patients to monitor more precisely their functional deficits, especially their level of functional asymmetry, and to understand brain (re)organization following slow-growing lesions.
- Published
- 2012
41. Awake Surgery: Skills of Neurosurgeon Matter but Those of Patient Too. How to Optimize Functional Brain Mapping by Improving Per-Operatory Testing?
- Author
-
Cheikh Niang, Pom Charras, Hugues Duffau, Stéphane Argon, David Guiraud, François Bonnetblanc, Christine Azevedo Coste, Artificial movement and gait restoration (DEMAR), Laboratoire d'Informatique de Robotique et de Microélectronique de Montpellier (LIRMM), Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Inria Sophia Antipolis - Méditerranée (CRISAM), Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria), Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), Cognition, Action, et Plasticité Sensorimotrice [Dijon - U1093] (CAPS), Université de Bourgogne (UB)-Institut National de la Santé et de la Recherche Médicale (INSERM), Laboratoire d'Etude de l'Apprentissage et du Développement [Dijon] (LEAD), Université de Bourgogne (UB)-Centre National de la Recherche Scientifique (CNRS), Institut des Neurosciences de Montpellier (INM), Institut National de la Santé et de la Recherche Médicale (INSERM)-Université de Montpellier (UM), Neurochirurgie [Hôpital Gui de Chauliac], Centre Hospitalier Régional Universitaire [Montpellier] (CHRU Montpellier)-Hôpital Gui de Chauliac [CHU Montpellier], Centre Hospitalier Régional Universitaire [Montpellier] (CHRU Montpellier), Bardy Lagarde Mottet, European Project: 34329,SKILLS, Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Inria Sophia Antipolis - Méditerranée (CRISAM), Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM), Centre National de la Recherche Scientifique (CNRS)-Université de Bourgogne (UB), Institut des Neurosciences de Montpellier - Déficits sensoriels et moteurs (INM), Centre Hospitalier Régional Universitaire [Montpellier] (CHRU Montpellier)-Hôpital Gui de Chauliac [Montpellier], Artificial movement and gait restoration ( DEMAR ), Laboratoire d'Informatique de Robotique et de Microélectronique de Montpellier ( LIRMM ), Université de Montpellier ( UM ) -Centre National de la Recherche Scientifique ( CNRS ) -Université de Montpellier ( UM ) -Centre National de la Recherche Scientifique ( CNRS ) -Inria Sophia Antipolis - Méditerranée ( CRISAM ), Institut National de Recherche en Informatique et en Automatique ( Inria ) -Institut National de Recherche en Informatique et en Automatique ( Inria ), Université de Montpellier ( UM ) -Centre National de la Recherche Scientifique ( CNRS ), Cognition, Action, et Plasticité Sensorimotrice [Dijon - U1093] ( CAPS ), Université de Bourgogne ( UB ) -Institut National de la Santé et de la Recherche Médicale ( INSERM ), Laboratoire d'Etude de l'Apprentissage et du Développement [Dijon] ( LEAD ), Université de Bourgogne ( UB ) -Centre National de la Recherche Scientifique ( CNRS ), Institut des Neurosciences de Montpellier - Déficits sensoriels et moteurs ( INM ), Institut National de la Santé et de la Recherche Médicale ( INSERM ) -Université de Montpellier ( UM ), Centre Hospitalier Régional Universitaire [Montpellier] ( CHRU Montpellier ) -Hôpital Gui de Chauliac, European Project : 34329,SKILLS, Inria Sophia Antipolis - Méditerranée (CRISAM), Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire d'Informatique de Robotique et de Microélectronique de Montpellier (LIRMM), and Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)
- Subjects
medicine.medical_specialty ,Clinical tests ,Environmental Engineering ,lcsh:QP1-981 ,business.industry ,[SCCO.NEUR]Cognitive science/Neuroscience ,lcsh:QR1-502 ,lcsh:Microbiology ,lcsh:Physiology ,Industrial and Manufacturing Engineering ,Surgery ,Resection ,[SPI.AUTO]Engineering Sciences [physics]/Automatic ,Functional brain ,Functional mapping ,[ SPI.AUTO ] Engineering Sciences [physics]/Automatic ,lcsh:Zoology ,[ SCCO.NEUR ] Cognitive science/Neuroscience ,medicine ,Medical physics ,lcsh:QL1-991 ,Neurosurgery ,business ,Awake surgery - Abstract
International audience; It is now possible to perform resections of slowgrowing tumors in awake patients. Using direct electrical stimulation (DES), real-time functional mapping of the brain can be used to prevent the resection of essential areas near the tumor. For now, simple clinical tests are performed on conscious patients and combined with DES in order to discriminate functional and non-functional areas invaded by the tumors. In this work we try to develop a simple device based on a simple technology to better quantify the performances of the patients during the surgery itself and give a real-time feedback to the neurosurgeon that will help to further guide the surgery by improving the sensibility of the functional mapping. This procedure should also allow building a strong database that should serve retrospectively to improve the surgical procedure and reinforce the neurosurgeons' experience as well as to monitor the patients' performances all along their life.
- Published
- 2011
42. Pointing to double-step visual stimuli from a standing position: motor corrections when the speed-accuracy trade-off is unexpectedly modified in-flight. A breakdown of the perception-action coupling
- Author
-
François Bonnetblanc, Lilian Fautrelle, Yves Ballay, and G. Barbieri
- Subjects
Adult ,Male ,Visual perception ,Computer science ,media_common.quotation_subject ,Movement ,Motion Perception ,Trade-off ,Hand position ,Executive Function ,Young Adult ,Control theory ,Feedback, Sensory ,Perception ,Orientation ,Reaction Time ,Humans ,media_common ,Communication ,business.industry ,General Neuroscience ,GRASP ,Hand ,Amplitude ,Speed accuracy ,business ,Movement planning ,Psychomotor Performance - Abstract
The time required to complete a fast and accurate movement is a function of its amplitude and the target size. This phenomenon refers to the well known speed-accuracy trade-off. Some interpretations have suggested that the speed-accuracy trade-off is already integrated into the movement planning phase. More specifically, pointing movements may be planned to minimize the variance of the final hand position. However, goal-directed movements can be altered at any time, if for instance, the target location is changed during execution. Thus, one possible limitation of these interpretations may be that they underestimate feedback processes. To further investigate this hypothesis we designed an experiment in which the speed-accuracy trade-off was unexpectedly varied at the hand movement onset by modifying separately the target distance or size, or by modifying both of them simultaneously. These pointing movements were executed from an upright standing position. Our main results showed that the movement time increased when there was a change to the size or location of the target. In addition, the terminal variability of finger position did not change. In other words, it showed that the movement velocity is modulated according to the target size and distance during motor programming or during the final approach, independently of the final variability of the hand position. It suggests that when the speed-accuracy trade-off is unexpectedly modified, terminal feedbacks based on intermediate representations of the endpoint velocity are used to monitor and control the hand displacement. There is clearly no obvious perception-action coupling in this case but rather intermediate processing that may be involved.
- Published
- 2011
43. Integration of proprioceptive signals and attentional capacity during postural control are impaired but subject to improvement in dyslexic children
- Author
-
François Bonnetblanc, Patrick Quercia, Mickaël Dos Santos, Laurent Demougeot, Cognition, Action, et Plasticité Sensorimotrice [Dijon - U1093] ( CAPS ), Université de Bourgogne ( UB ) -Institut National de la Santé et de la Recherche Médicale ( INSERM ), Artificial movement and gait restoration ( DEMAR ), Laboratoire d'Informatique de Robotique et de Microélectronique de Montpellier ( LIRMM ), Université de Montpellier ( UM ) -Centre National de la Recherche Scientifique ( CNRS ) -Université de Montpellier ( UM ) -Centre National de la Recherche Scientifique ( CNRS ) -Inria Sophia Antipolis - Méditerranée ( CRISAM ), Institut National de Recherche en Informatique et en Automatique ( Inria ) -Institut National de Recherche en Informatique et en Automatique ( Inria ), Cognition, Action, et Plasticité Sensorimotrice [Dijon - U1093] (CAPS), Université de Bourgogne (UB)-Institut National de la Santé et de la Recherche Médicale (INSERM), Artificial movement and gait restoration (DEMAR), Laboratoire d'Informatique de Robotique et de Microélectronique de Montpellier (LIRMM), Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Inria Sophia Antipolis - Méditerranée (CRISAM), Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria), Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Inria Sophia Antipolis - Méditerranée (CRISAM), Inria Sophia Antipolis - Méditerranée (CRISAM), Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire d'Informatique de Robotique et de Microélectronique de Montpellier (LIRMM), and Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)
- Subjects
medicine.medical_specialty ,Adolescent ,media_common.quotation_subject ,[SDV]Life Sciences [q-bio] ,Posture ,Illusion ,Audiology ,VERTICAL PHORIA ,Vibration ,050105 experimental psychology ,VISUAL LOCALIZATION ,Dyslexia ,03 medical and health sciences ,0302 clinical medicine ,Center of pressure (terrestrial locomotion) ,Communication disorder ,medicine ,Humans ,0501 psychology and cognitive sciences ,Language disorder ,Attention ,Child ,media_common ,Analysis of Variance ,Proprioception ,OCULAR MUSCLE PROPRIOCEPTION ,[ SDV ] Life Sciences [q-bio] ,PRISMATIC GLASSES ,General Neuroscience ,05 social sciences ,PERFORMANCE ,medicine.disease ,Gaze ,medicine.anatomical_structure ,Reading ,BALANCE ,DEFICIT ,CEREBELLAR ,DEVELOPMENTAL DYSLEXIA ,Ankle ,Psychology ,DIFFICULTIES ,030217 neurology & neurosurgery ,Cognitive psychology - Abstract
Import JabRef | WosArea Neurosciences and Neurology; International audience; Children with developmental dyslexia suffer from delayed reading capabilities and may also exhibit attentional and sensori-motor deficits. The objective of this study was twofold. First, we aimed at investigating whether integration of proprioceptive signals in balance control was more impaired in dyslexic children when the attentional demand was varied. Secondly, we checked whether this effect was reduced significantly by using a specific treatment to improve eye control deficits and certain postural signs that are often linked to dyslexia (Quercia et al. in J Fr Ophtalmol 28:713-723, 2005, J Fr Ophtalmol 30:380-89, 2007). Thirty dyslexic and 51 treated dyslexic children (> 3 months of treatment) were compared with 42 non-dyslexic children in several conditions (mean age: 136.2 +/- A 23.6, 132.2 +/- A 18.7 and 140.2 +/- A 25 months, respectively). Co-vibration of ankle muscles was effected in order to alter proprioceptive information originating from the ankle. In two vibration conditions, ankle muscles were either not vibrated or vibrated at 85 Hz without illusion of any movement. These two vibration conditions were combined with two attentional conditions. In the first such condition, children maintained balance while merely fixing their gaze on a point in front of them. In the second condition, they had to look for smaller or larger stars in a panel showing forty of each kind. Balance was assessed by means of a force plate. Results indicated that the mean velocity (i.e. the total length) of the center of pressure (CoP) displacement in the 85-Hz vibration condition increased significantly more (compared with no vibration) in the dyslexic and the treated dyslexic groups than in the control group, irrespective of the attention task. Interestingly, in the condition without vibration, the attentional performance of treated children was similar to that of the control group, whereas the attentional performance of the untreated dyslexic children was significantly impaired. Altogether, these results suggest that integration of proprioceptive signals in balance control and attentional capacity are impaired in dyslexic children. However, attention capacity during the control of stance could be improved significantly.
- Published
- 2011
44. CATCHING FALLING OBJECTS: THE ROLE OF THE CEREBELLUM IN PROCESSING SENSORY-MOTOR ERRORS THAT MAY INFLUENCE UPDATING OF FEEDFORWARD COMMANDS. AN fMRI STUDY
- Author
-
François Bonnetblanc, F. Ricolfi, Cédric Pichat, Carole Peyrin, Lilian Fautrelle, Cognition, Action, et Plasticité Sensorimotrice [Dijon - U1093] ( CAPS ), Université de Bourgogne ( UB ) -Institut National de la Santé et de la Recherche Médicale ( INSERM ), Cognition, Action, et Plasticité Sensorimotrice [Dijon - U1093] (CAPS), Université de Bourgogne (UB)-Institut National de la Santé et de la Recherche Médicale (INSERM), Laboratoire de Psychologie et NeuroCognition (LPNC), Centre National de la Recherche Scientifique (CNRS)-Université Pierre Mendès France - Grenoble 2 (UPMF)-Université Joseph Fourier - Grenoble 1 (UJF)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry]), Laboratoire de Psychologie et NeuroCognition ( LPNC ), and Université Pierre Mendès France - Grenoble 2 ( UPMF ) -Université Joseph Fourier - Grenoble 1 ( UJF ) -Université Savoie Mont Blanc ( USMB [Université de Savoie] [Université de Chambéry] ) -Centre National de la Recherche Scientifique ( CNRS ) -Université Grenoble Alpes ( UGA )
- Subjects
Adult ,Male ,CORTEX ,REPRESENTATION ,genetic structures ,TRANSFORMATIONS ,Movement ,Speech recognition ,REACHING MOVEMENTS ,[ SCCO.PSYC ] Cognitive science/Psychology ,Image processing ,Sensory system ,Brain mapping ,MECHANISMS ,03 medical and health sciences ,0302 clinical medicine ,Cerebellum ,Motor system ,Image Processing, Computer-Assisted ,Humans ,ADAPTATION ,030304 developmental biology ,ARM MOVEMENTS ,Neurons ,Brain Mapping ,0303 health sciences ,Communication ,business.industry ,[SCCO.NEUR]Cognitive science/Neuroscience ,General Neuroscience ,Feed forward ,GRIP ,Cognition ,HUMAN BRAIN ,Magnetic Resonance Imaging ,Functional imaging ,body regions ,nervous system ,[SCCO.PSYC]Cognitive science/Psychology ,[ SCCO.NEUR ] Cognitive science/Neuroscience ,Ball (bearing) ,INTERNAL-MODELS ,business ,Psychology ,human activities ,Psychomotor Performance ,030217 neurology & neurosurgery ,psychological phenomena and processes - Abstract
Import JabRef | WosArea Neurosciences and Neurology; International audience; The human motor system continuously adapts to changes in the environment by comparing differences between the brain's predicted outcome of a certain behavior and the observed outcome. This discrepancy signal triggers a sensory-motor error and it is assumed that the cerebellum is a key structure in updating this error and associated feedforward commands. Using fMRI, the aim of the present study was to determine the main cerebellar structures that are involved in the processing of sensory-motor errors and in updating feedforward commands when simply catching a falling ball without displacement of the hand. Subjects only grasped the ball with their fingers when receiving it in their hand. By contrasting functional imaging signal obtained in conditions in which it was possible and impossible to predict the weight of the ball, we aimed to highlight sensory-motor error processing which we expected to be more marked in the conditions without prediction (less accurate feedforward process or more important feedback corrections) with respect to conditions with prediction (more accurate feedforward process or less important feedback corrections). When catching a falling ball and the possibility of prediction about the ball weight was manipulated, our results showed that both the right and left cerebellum is engaged in processing sensory-motor errors. It may also be involved in updating feedforward motor commands, perhaps on a trial by trial basis. In addition, when subjects were blindfolded, we observed a similar network but centered in a more anterior portion of the right cerebellum and we noted the presence of a cerebellar-thalamo-prefrontral network that may be involved in cognitive prediction (rather than sensory prediction) about ball weight. (C) 2011 IBRO. Published by Elsevier Ltd. All rights reserved.
- Published
- 2011
45. Left minineglect or inverse pseudoneglect in children with dyslexia?
- Author
-
Samuel Bidot, Carine Michel, François Bonnetblanc, Patrick Quercia, Cognition, Action, et Plasticité Sensorimotrice [Dijon - U1093] (CAPS), Université de Bourgogne (UB)-Institut National de la Santé et de la Recherche Médicale (INSERM), Artificial movement and gait restoration (DEMAR), Laboratoire d'Informatique de Robotique et de Microélectronique de Montpellier (LIRMM), Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Inria Sophia Antipolis - Méditerranée (CRISAM), Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria), Cognition, Action, et Plasticité Sensorimotrice [Dijon - U1093] ( CAPS ), Université de Bourgogne ( UB ) -Institut National de la Santé et de la Recherche Médicale ( INSERM ), Artificial movement and gait restoration ( DEMAR ), Laboratoire d'Informatique de Robotique et de Microélectronique de Montpellier ( LIRMM ), Université de Montpellier ( UM ) -Centre National de la Recherche Scientifique ( CNRS ) -Université de Montpellier ( UM ) -Centre National de la Recherche Scientifique ( CNRS ) -Inria Sophia Antipolis - Méditerranée ( CRISAM ), Institut National de Recherche en Informatique et en Automatique ( Inria ) -Institut National de Recherche en Informatique et en Automatique ( Inria ), Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Inria Sophia Antipolis - Méditerranée (CRISAM), Inria Sophia Antipolis - Méditerranée (CRISAM), Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire d'Informatique de Robotique et de Microélectronique de Montpellier (LIRMM), and Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)
- Subjects
Male ,medicine.medical_specialty ,Adolescent ,Bisection ,media_common.quotation_subject ,Context (language use) ,Audiology ,Neuropsychological Tests ,Developmental psychology ,Neglect ,Dyslexia ,Perceptual Disorders ,Communication disorder ,medicine ,Humans ,Language disorder ,Attention ,Child ,media_common ,Cued speech ,General Neuroscience ,[SCCO.NEUR]Cognitive science/Neuroscience ,Cognition ,medicine.disease ,Space Perception ,[ SCCO.NEUR ] Cognitive science/Neuroscience ,Female ,Psychology ,Psychomotor Performance - Abstract
International audience; This study compared the visuospatial asymmetries in children with dyslexia and healthy children by using the manual line bisection task, and investigated the processing of spatial context with a 'local' cueing paradigm consisting of geometric symbols placed on the extremities of the lines. The performance between healthy children (leftward bias) and children with dyslexia (rightward bias) was significantly different. Furthermore, the bisection mark was shifted in the direction of the unilaterally cued extremities in all children. As children with dyslexia showed a rightward bias in their spatial representation, which did not interfere with local context processing, we proposed the term 'inverse pseudoneglect' to depict their behaviour in line bisection.
- Published
- 2010
46. Muscular synergies during motor corrections: investigation of the latencies of muscle activities
- Author
-
François Bonnetblanc, Yves Ballay, and Lilian Fautrelle
- Subjects
Adult ,Male ,Principal Component Analysis ,Time Factors ,medicine.diagnostic_test ,Motor sequence ,Movement (music) ,Computer science ,Electromyography ,Movement ,Motor control ,Hand ,Functional system ,Biomechanical Phenomena ,Behavioral Neuroscience ,Electrophysiology ,medicine ,Jump ,Reaction Time ,Humans ,Latency (engineering) ,Muscle, Skeletal ,Neuroscience - Abstract
To reduce the complexity of muscular control, a small number of muscular activations are combined to produce an infinity of movements. This concept of muscle synergies has been widely investigated, mainly by means of principal component analyses (PCA) in the case of unperturbed movements. However, reaching movements can be altered at any time if the target location is changed during their execution. In this case, PCA does not precisely measure the latencies of muscles activities. We develop here a simple method to investigate how a random target jump toward a single location induced motor corrections in the whole musculature by precisely determining the latencies of muscle activities during a complex pointing movement. Our main result demonstrated that both initiation times together as well as correction times together were strongly correlated for some pairs of muscles, independently of their occurrences during the motor sequence and independently of the location of the muscles at the anatomical level. This study thus provides a simple method to investigate the latencies of muscular activities and the way they are correlated between certain muscles to stress the muscular synergies involved in the movement. It also suggests that the CNS re-programs a new synergy after the target jumps in order to correct the on-going reaching movement. This latter corrective synergy involves the control of more muscles together compared to that used to initiate the movement. At the level of the Primary Motor Cortice (M1), muscles appear to be controlled as a coupled functional system, rather than individually and separately.
- Published
- 2010
47. Pointing to double-step visual stimuli from a standing position: very short latency (express) corrections are observed in upper and lower limbs and may not require cortical involvement
- Author
-
C. Prablanc, Bastien Berret, Yves Ballay, François Bonnetblanc, and Lilian Fautrelle
- Subjects
Adult ,Male ,Visual perception ,Movement ,Posture ,Electromyography ,Upper Extremity ,Young Adult ,Position (vector) ,medicine ,Reaction Time ,Humans ,Latency (engineering) ,Cerebral Cortex ,medicine.diagnostic_test ,General Neuroscience ,Motor control ,Anatomy ,Biomechanical Phenomena ,Electrophysiology ,medicine.anatomical_structure ,Lower Extremity ,Jump ,Upper limb ,Psychology ,Photic Stimulation ,Psychomotor Performance - Abstract
How fast can we correct a planned movement following an unexpected target jump? Subjects, starting in an upright standing position, were required to point to a target that randomly and unexpectedly jumps forward to a constant spatial location. Rapid motor corrections in the upper and lower limbs, with latency responses of less than 100 ms, were revealed by contrasting electromyographic activities in perturbed and unperturbed trials. The earliest responses were observed primarily in the anterior section of the deltoidus anterior (shoulder) and the tibialis anterior (leg) muscles. Our findings indicate that visual on-going movement corrections may be accomplished via fast loops at the level of the upper and lower limbs and may not require cortical involvement.
- Published
- 2010
48. Equilibrium constraints do not affect the timing of muscular synergies during the initiation of a whole body reaching movement
- Author
-
Lilian Fautrelle, Bastien Berret, Enrico Chiovetto, François Bonnetblanc, and Thierry Pozzo
- Subjects
Adult ,Male ,medicine.medical_specialty ,Time Factors ,Posture ,Motor Activity ,Base of support ,Fingers ,Physical medicine and rehabilitation ,Center of pressure (terrestrial locomotion) ,Abdomen ,Task Performance and Analysis ,medicine ,Pressure ,Humans ,Learning ,Muscle, Skeletal ,Mathematics ,Communication ,Leg ,Principal Component Analysis ,business.industry ,Electromyography ,General Neuroscience ,Thorax ,Trunk ,Biomechanical Phenomena ,Principal component analysis ,Arm ,Whole body ,business - Abstract
The aim of this study was to determine whether the timing of the muscular synergies was influenced by the reduction of the base of support when we initiate a whole body reaching movement. To answer this question, we performed a principal component analysis on electromyographic activities of 24 muscles recorded on the leg, the trunk, and the arm. Our results demonstrated that during the initiation of the whole body pointing movement, only three principal components accounted for at least 95% of the variance for the overall muscular data, both when the equilibrium constraints were normal and when the base of support was reduced. These principal components were strongly correlated despite the fact that the center of mass forward displacement and the center of pressure backward displacements significantly decreased when the base of support was reduced. It suggests that the central nervous system did not change the overall timing of the muscular synergies when new equilibrium constraints were introduced in the task but was rather able to tune their amplitude as evidenced by the modification of the center of mass and center of pressure displacements.
- Published
- 2009
49. Saccadic adaptation without retinal postsaccadic error
- Author
-
François Bonnetblanc and Pierre Baraduc
- Subjects
Adult ,Male ,Time Factors ,Adaptation (eye) ,Retina ,chemistry.chemical_compound ,Conditioning, Psychological ,medicine ,Reaction Time ,Saccades ,Humans ,Communication ,business.industry ,Adaptation, Ocular ,General Neuroscience ,Efference copy ,Eye movement ,Retinal ,medicine.disease ,Saccadic masking ,chemistry ,Extinction (neurology) ,Saccade ,Female ,Microsaccade ,Visual Fields ,Psychology ,business ,Neuroscience ,Photic Stimulation - Abstract
Primary saccades undershoot their target. Corrective saccades are then triggered by retinal postsaccadic information. We tested whether primary saccades still undershoot when no postsaccadic visual information is available. Participants saccaded to ¢ve targets (10^341) that were either constantly illuminated (ON) or extinguished at saccade onset (OFFOnset). In OFF Onset, few corrective saccades were observed. The saccadic gain increased over trials for the furthest (341) target. Terminal eye position after glissades or microsaccades progressively converged to the values observed in ON (targets over 161).Target extinction during the saccade only did not elicit any change.The results show that (i) postsaccadic retinal signals stabilize the saccadic gain and (ii) adaptive changes that reduce terminal error can take place without visual information. NeuroReport 00:000^ 000 � c 2007 Lippincott Williams & Wilkins.
- Published
- 2007
50. Contrasting acute and slow-growing lesions: a new door to brain plasticity
- Author
-
Michel Desmurget, Hugues Duffau, François Bonnetblanc, Cerveau et vision, Institut National de la Recherche Agronomique (INRA)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-IFR19-Institut National de la Santé et de la Recherche Médicale (INSERM), Laboratoire d'Imagerie Fonctionnelle (LIF), Université Pierre et Marie Curie - Paris 6 (UPMC)-IFR14-IFR49-Institut National de la Santé et de la Recherche Médicale (INSERM), Département de neurochirurgie, Centre Hospitalier Régional Universitaire [Montpellier] (CHRU Montpellier), and Saidi, Vanessa
- Subjects
MESH: Cheval ,Poison control ,MESH: Magnetic Resonance Imaging ,MESH: Glioma ,Intraoperative Period ,0302 clinical medicine ,Cerebrovascular Accident ,MESH: Cerebrovascular Accident ,Medicine ,MESH: Animals ,MESH: Neuronal Plasticity ,Stroke ,Neuronal Plasticity ,Brain Neoplasms ,05 social sciences ,Brain ,Glioma ,MESH: Recovery of Function ,Magnetic Resonance Imaging ,medicine.anatomical_structure ,Acute Disease ,MESH: Brain Neoplasms ,MESH: Acute Disease ,[SDV.IB]Life Sciences [q-bio]/Bioengineering ,medicine.symptom ,Slow Growing ,Central nervous system ,Context (language use) ,050105 experimental psychology ,Lesion ,03 medical and health sciences ,Animal data ,MESH: Brain ,Neuroplasticity ,Animals ,Humans ,0501 psychology and cognitive sciences ,[SDV.IB] Life Sciences [q-bio]/Bioengineering ,MESH: Intraoperative Period ,MESH: Humans ,business.industry ,Animal ,Recovery of Function ,medicine.disease ,Disease Models, Animal ,MESH: Nerve Net ,Brain Injuries ,Disease Models ,MESH: Brain Injuries ,Neurology (clinical) ,Nerve Net ,MESH: Disease Models, Animal ,business ,Neuroscience ,030217 neurology & neurosurgery ,Cheval - Abstract
The concept of plasticity describes the mechanisms that rearrange cerebral organization following a brain injury. During the last century, plasticity has been mainly investigated in humans with acute strokes. It was then shown: (i) that the brain is organized into highly specialized functional areas, often designated 'eloquent' areas and (ii) that a lesion within the eloquent area gives rise to major irrevocable deficits. However, in sharp contrast with these observations, it was recently found that patients with low-grade gliomas were able to undergo massive cerebral resections without detectable functional consequence. In this paper, we tackle this puzzling observation and address the idea that brain plasticity cannot be fully understood and fruitfully studied without considering the temporal pattern of the injury inflicted to the brain. To achieve this goal, we first review experimental evidence showing that functional recovery is considerably better in the context of slow-growing injuries than after acute lesions. Both human and animal data are considered. In a second step, we emphasize that slow and acute lesions involve very different patterns of reorganization. In agreement with this idea, we show that the recruitment of remote brain areas in the ipsi- and contralesional hemispheres is much more efficient in slow growing than acute lesions. Finally in a last section, we briefly discuss the main implications of these results.
- Published
- 2007
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.