1. Determination of the Clean Air Delivery Rate (CADR) of Photocatalytic Oxidation (PCO) Purifiers for Indoor Air Pollutants Using a Closed-Loop Reactor. Part II: Experimental Results
- Author
-
Valérie Héquet, Frédéric Batault, Cécile Raillard, Frédéric Thévenet, Laurence Le Coq, and Éric Dumont
- Subjects
photocatalysis ,Clean Air Delivery Rate (CADR) ,indoor air quality ,Volatile Organic Compounds (VOCs) ,air cleaner ,Organic chemistry ,QD241-441 - Abstract
The performances of a laboratory PhotoCatalytic Oxidation (PCO) device were determined using a recirculation closed-loop pilot reactor. The closed-loop system was modeled by associating equations related to two ideal reactors: a perfectly mixed reservoir with a volume of VR = 0.42 m3 and a plug flow system corresponding to the PCO device with a volume of VP = 5.6 × 10−3 m3. The PCO device was composed of a pleated photocatalytic filter (1100 cm2) and two 18-W UVA fluorescent tubes. The Clean Air Delivery Rate (CADR) of the apparatus was measured under different operating conditions. The influence of three operating parameters was investigated: (i) light irradiance I from 0.10 to 2.0 mW·cm−2; (ii) air velocity v from 0.2 to 1.9 m·s−1; and (iii) initial toluene concentration C0 (200, 600, 1000 and 4700 ppbv). The results showed that the conditions needed to apply a first-order decay model to the experimental data (described in Part I) were fulfilled. The CADR values, ranging from 0.35 to 3.95 m3·h−1, were mainly dependent on the light irradiance intensity. A square root influence of the light irradiance was observed. Although the CADR of the PCO device inserted in the closed-loop reactor did not theoretically depend on the flow rate (see Part I), the experimental results did not enable the confirmation of this prediction. The initial concentration was also a parameter influencing the CADR, as well as the toluene degradation rate. The maximum degradation rate rmax ranged from 342 to 4894 ppbv/h. Finally, this study evidenced that a recirculation closed-loop pilot could be used to develop a reliable standard test method to assess the effectiveness of PCO devices.
- Published
- 2017
- Full Text
- View/download PDF