122 results on '"Frédéric Favier"'
Search Results
2. Transport Properties of Li-TFSI Water-in-Salt Electrolytes
- Author
-
Benjamin Rotenberg, Anne-Laure Rollet, Olivier Fontaine, Oleg Borodin, Roza Bouchal, Frédéric Favier, Zhujie Li, Cécile Rizzi, Trinidad Méndez-Morales, S. Le Vot, and Mathieu Salanne
- Subjects
Aqueous solution ,Materials science ,010304 chemical physics ,Force field (physics) ,Ionic bonding ,chemistry.chemical_element ,Electrolyte ,010402 general chemistry ,01 natural sciences ,0104 chemical sciences ,Surfaces, Coatings and Films ,Ion ,Molecular dynamics ,chemistry.chemical_compound ,chemistry ,Chemical physics ,0103 physical sciences ,Ionic liquid ,Materials Chemistry ,Lithium ,Physical and Theoretical Chemistry - Abstract
Water-in-salts are a new family of electrolytes that may allow the development of aqueous Li-ion batteries. They have a structure that is reminiscent of ionic liquids, and they are characterized by a high concentration of ionic species. In this work, we study their transport properties and how they evolve with concentration by using molecular dynamic simulations. We first focus on the choice of the force field. By comparing the simulated viscosities and self-diffusion coefficients with experimental measurements, we select a set of parameters that reproduces well the transport properties. We then use the selected force field to study in detail the variations of the self and collective diffusivities of all the species as well as the transport number of the lithium ion. We show that correlations between ions and water play an important role over the whole concentration range. In the water-in-salt regime, the anions form a percolating network that reduces the cation-anion correlations and leads to rather large values for the transport number compared to other standard electrolytes.
- Published
- 2019
3. Physicochemical properties and theoretical studies of novel fragile ionic liquids based on N-allyl-N,N-dimethylethylammonium cation
- Author
-
Steven Le Vot, Sabri Messaoudi, Olivier Fontaine, Rahma Hachicha, Frédéric Favier, Ramzi Zarrougui, Ouassim Ghodbane, Institut National de Recherche et d'Analyse Physico-Chimique (INRAP), Université de Tunis - El Manar II, Université de Tunis El Manar (UTM), Institut Charles Gerhardt Montpellier - Institut de Chimie Moléculaire et des Matériaux de Montpellier (ICGM ICMMM), Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Université Montpellier 1 (UM1)-Université Montpellier 2 - Sciences et Techniques (UM2)-Institut de Chimie du CNRS (INC), Faculté des Sciences de Bizerte [Université de Carthage], Université de Carthage - University of Carthage, Réseau sur le stockage électrochimique de l'énergie (RS2E), Université de Picardie Jules Verne (UPJV)-Institut de Chimie du CNRS (INC)-Aix Marseille Université (AMU)-Université de Pau et des Pays de l'Adour (UPPA)-Université de Nantes (UN)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Ecole Nationale Supérieure de Chimie de Paris - Chimie ParisTech-PSL (ENSCP), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Collège de France (CdF (institution))-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA)-Université Grenoble Alpes (UGA)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM), This work was supported by the PHC-UTIQUE project (code 17G 1209), managed by the CMCU Committee, between Charles Gerhardt Institute of Montpellier (France) and National Institute of Research and Physico-chemical Analysis (Tunisia). Furthermore, the authors thank all the staff of the Useful Materials Laboratory (LMU) and especially, Pr. Mohieddine Abdellaoui for the electrochemical analyses and Moomen Marzouki and Riadh Hamdi for helpful discussions., University of Tunis El Manar, Institut Charles Gerhardt Montpellier - Institut de Chimie Moléculaire et des Matériaux de Montpellier (ICGM), Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Institut de Chimie du CNRS (INC)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), Université de Nantes (UN)-Aix Marseille Université (AMU)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Collège de France (CdF (institution))-Université de Picardie Jules Verne (UPJV)-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Ecole Nationale Supérieure de Chimie de Paris - Chimie ParisTech-PSL (ENSCP), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Pau et des Pays de l'Adour (UPPA)-Institut de Chimie du CNRS (INC)-Université de Montpellier (UM)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), and Université Grenoble Alpes (UGA)-Université Grenoble Alpes (UGA)
- Subjects
Materials science ,02 engineering and technology ,010402 general chemistry ,Electrochemistry ,01 natural sciences ,Ion ,chemistry.chemical_compound ,Materials Chemistry ,[CHIM]Chemical Sciences ,Ionic conductivity ,Physical and Theoretical Chemistry ,Spectroscopy ,Intermolecular force ,Interaction energy ,021001 nanoscience & nanotechnology ,Condensed Matter Physics ,Atomic and Molecular Physics, and Optics ,0104 chemical sciences ,Electronic, Optical and Magnetic Materials ,Ionic liquids . Transport properties . Fragility Ion-pair interaction energy . Electrochemical stability window ,Solvent ,chemistry ,Ionic liquid ,Physical chemistry ,Density functional theory ,0210 nano-technology - Abstract
International audience; A series of novel ionic liquids (ILs) based on N-allyl-N,N-dimethylethylammonium (N112A+) are synthesized and characterized. Their physical properties and electrochemical stabilities are investigated and discussed toward the anion constituents. Herein, four anions are studied including one planar non-fluorinated anion (DCA−) and three fluorinated anions (TFSI−, OTf−, TFA−). The experimental properties are compared to those predicted by density functional theory (DFT) calculations. All salts are found to be low melting compounds while being liquid at room temperature. N112A-TFSI is the most thermally stable (Td = 329 °C) and N112A-TFA is the least stable (Td = 158 °C). The temperature effect on ILs transport properties is determined and discussed using the ionicity and Angell's fragility concepts. Among the good and fragile prepared ILs, N112A –DCA exhibits outstanding transport properties thanks to the low dynamic viscosity (19.97 mPa·s) and high ionic conductivity (19.20 mS·cm−1) reached at 298 K. These suitable properties are explained, from theoretical calculations, by the lower intermolecular interactions of ion-pairs in N112A –DCA and quantified by the decreased value of dispersion ion-pairs interaction energy (−6 kJ·mol−1). The electrochemical stability window (ESW) of selected ILs is strongly affected by the anion structure. The ESW values are found to decrease in the following order N112A-TFSI (4.40 V) > N112A-OTf (3.80 V) > N112A-DCA (3.00 V) > N112A-TFA (2.18 V). Taking into account the most likely oxidation and reduction reactions, the ESWs are discussed and validated by the density-based solvent model (SMD). The experimental values of ESWs are very close to the predicted ones.
- Published
- 2019
4. Investigation of Electrochemical and Chemical Processes Occurring at Positive Potentials in 'Water-in-Salt' Electrolytes
- Author
-
Olivier Fontaine, Niklas Lindahl, Daniel Bélanger, Frédéric Favier, Marion Maffre, Stefan Freunberger, Roza Bouchal, Patrik Johansson, Institut Charles Gerhardt Montpellier - Institut de Chimie Moléculaire et des Matériaux de Montpellier (ICGM), Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Institut de Chimie du CNRS (INC)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), Réseau sur le stockage électrochimique de l'énergie (RS2E), Université de Nantes (UN)-Aix Marseille Université (AMU)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Collège de France (CdF (institution))-Université de Picardie Jules Verne (UPJV)-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Ecole Nationale Supérieure de Chimie de Paris - Chimie ParisTech-PSL (ENSCP), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Pau et des Pays de l'Adour (UPPA)-Institut de Chimie du CNRS (INC)-Université de Montpellier (UM)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA)-Université Grenoble Alpes (UGA), Institute for Chemistry and Technology of Materials [Graz], Graz University of Technology [Graz] (TU Graz), Chalmers University of Technology [Göteborg], Département de Chimie [Montréal], Université du Québec à Montréal = University of Québec in Montréal (UQAM), ANR-19-CE05-0014,BALWISE,Batteries aqueuses au Li utilisant des électrolytes superconcentrés(2019), Institut Charles Gerhardt Montpellier - Institut de Chimie Moléculaire et des Matériaux de Montpellier (ICGM ICMMM), Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Université Montpellier 1 (UM1)-Université Montpellier 2 - Sciences et Techniques (UM2)-Institut de Chimie du CNRS (INC), Université de Picardie Jules Verne (UPJV)-Institut de Chimie du CNRS (INC)-Aix Marseille Université (AMU)-Université de Pau et des Pays de l'Adour (UPPA)-Université de Nantes (UN)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Ecole Nationale Supérieure de Chimie de Paris - Chimie ParisTech-PSL (ENSCP), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Collège de France (CdF (institution))-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA)-Université Grenoble Alpes (UGA)-Institut National Polytechnique (Toulouse) (Toulouse INP), and Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)
- Subjects
Chemical process ,chemistry.chemical_classification ,Materials science ,Renewable Energy, Sustainability and the Environment ,Inorganic chemistry ,Salt (chemistry) ,02 engineering and technology ,Electrolyte ,010402 general chemistry ,021001 nanoscience & nanotechnology ,Condensed Matter Physics ,Electrochemistry ,01 natural sciences ,0104 chemical sciences ,Surfaces, Coatings and Films ,Electronic, Optical and Magnetic Materials ,chemistry ,Materials Chemistry ,[CHIM]Chemical Sciences ,0210 nano-technology ,ComputingMilieux_MISCELLANEOUS - Abstract
Lithium bis(trifluoromethylsulfonyl)imide (LiTFSI) based water-in-salt electrolytes (WiSEs) has recently emerged as a new promising class of electrolytes, primarily owing to their wide electrochemical stability windows (∼3–4 V), that by far exceed the thermodynamic stability window of water (1.23 V). Upon increasing the salt concentration towards superconcentration the onset of the oxygen evolution reaction (OER) shifts more significantly than the hydrogen evolution reaction (HER) does. The OER shift has been explained by the accumulation of hydrophobic anions blocking water access to the electrode surface, hence by double layer theory. Here we demonstrate that the processes during oxidation are much more complex, involving OER, carbon and salt decomposition by OER intermediates, and salt precipitation upon local oversaturation. The positive shift in the onset potential of oxidation currents was elucidated by combining several advanced analysis techniques: rotating ring-disk electrode voltammetry, online electrochemical mass spectrometry, and X-ray photoelectron spectroscopy, using both dilute and superconcentrated electrolytes. The results demonstrate the importance of reactive OER intermediates and surface films for electrolyte and electrode stability and motivate further studies of the nature of the electrode.
- Published
- 2021
5. On chip MnO2-based 3D micro-supercapacitors with ultra-high areal energy density
- Author
-
Camille Douard, Christophe Lethien, Thierry Brousse, Botayna Bounor, Frédéric Favier, Bouchra Asbani, Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 (IEMN), Centrale Lille-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF)-JUNIA (JUNIA), Réseau sur le stockage électrochimique de l'énergie (RS2E), Université de Picardie Jules Verne (UPJV)-Institut de Chimie du CNRS (INC)-Aix Marseille Université (AMU)-Université de Pau et des Pays de l'Adour (UPPA)-Université de Nantes (UN)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Ecole Nationale Supérieure de Chimie de Paris - Chimie ParisTech-PSL (ENSCP), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Collège de France (CdF (institution))-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA)-Université Grenoble Alpes (UGA)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM), Institut des Matériaux Jean Rouxel (IMN), Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST), Université de Nantes (UN)-Université de Nantes (UN)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Ecole Polytechnique de l'Université de Nantes (EPUN), Université de Nantes (UN)-Université de Nantes (UN), Institut Charles Gerhardt Montpellier - Institut de Chimie Moléculaire et des Matériaux de Montpellier (ICGM ICMMM), Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Université Montpellier 1 (UM1)-Université Montpellier 2 - Sciences et Techniques (UM2)-Institut de Chimie du CNRS (INC), Circuits Systèmes Applications des Micro-ondes - IEMN (CSAM - IEMN ), Centrale Lille-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF)-JUNIA (JUNIA)-Centrale Lille-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF)-JUNIA (JUNIA), Renatech Network, ANR-10-LABX-0076,STORE-EX,Laboratory of excellency for electrochemical energy storage(2010), ANR-17-CE05-0015,DENSSCAPIO,Supercondensateurs nanostructurés tout-solides pour stockage d'énergie plus dense et plus sûr(2017), Université catholique de Lille (UCL)-Université catholique de Lille (UCL), Université de Nantes (UN)-Aix Marseille Université (AMU)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Collège de France (CdF (institution))-Université de Picardie Jules Verne (UPJV)-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Ecole Nationale Supérieure de Chimie de Paris - Chimie ParisTech-PSL (ENSCP), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Pau et des Pays de l'Adour (UPPA)-Institut de Chimie du CNRS (INC)-Université de Montpellier (UM)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA)-Université Grenoble Alpes (UGA), Université de Nantes (UN)-Université de Nantes (UN)-Ecole Polytechnique de l'Université de Nantes (EPUN), Université de Nantes (UN)-Université de Nantes (UN)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Institut Charles Gerhardt Montpellier - Institut de Chimie Moléculaire et des Matériaux de Montpellier (ICGM), Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Institut de Chimie du CNRS (INC)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), Université catholique de Lille (UCL)-Université catholique de Lille (UCL)-Centrale Lille-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF)-JUNIA (JUNIA), This research is financially supported by the ANR within the DENSSCAPIO project (ANR-17-CE05–0015–02). The authors also want to thank the ANR STORE-EX and the French network on electrochemical energy storage (RS2E) for the financial support. The French RENATECH network is greatly acknowledged for the use of microfabrication facilities., and CMNF
- Subjects
Supercapacitor ,Materials science ,Fabrication ,Renewable Energy, Sustainability and the Environment ,business.industry ,[SPI.NRJ]Engineering Sciences [physics]/Electric power ,Energy Engineering and Power Technology ,02 engineering and technology ,Electrolyte ,010402 general chemistry ,021001 nanoscience & nanotechnology ,01 natural sciences ,7. Clean energy ,Energy storage ,0104 chemical sciences ,Small form factor ,Optoelectronics ,General Materials Science ,Millimeter ,Wafer ,Electronics ,[SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics ,0210 nano-technology ,business - Abstract
International audience; In the near future, Internet of Things will be widely deployed all over the connected world. Powering will be crucial for miniaturized electronic devices requiring fast charging, high energy density and long term-durability. 3D micro-supercapacitors are an attractive energy storage solution at the millimeter scale to power miniaturized IoT devices exhibiting small form factor packaging issues. However, there are nowadays not any microdevices on the shelves that could fulfill both energy and mass production requirements. Here, we demonstrate the collective fabrication of 3D micro-supercapacitors (MSCs) integrated on silicon wafer and using MnO2 as the active electrode material and 5 M aqueous LiNO3 as the electrolyte. 0.05 - 0.1 mWh cm(-2) energy densities reached by the fabricated 3D MSCs are remarkable, exceeding those of state-of-the-art micro-supercapacitors, competing those of hybrid microdevices and approaching the performance of lithium micro-batteries. Without sacrificing the power performance (> 1 mW cm(-2)), the 3D MSCs demonstrate a very good cycling behavior over 10 000 cycles (similar to 15% loss).
- Published
- 2021
6. MnO2-MXene Composite as Electrode for Supercapacitor
- Author
-
Yachao Zhu, Khalil Rajouâ, Steven Le Vot, Olivier Fontaine, Patrice Simon, Frédéric Favier, Centre interuniversitaire de recherche et d'ingenierie des matériaux (CIRIMAT), Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT), Réseau sur le stockage électrochimique de l'énergie (RS2E), Aix Marseille Université (AMU)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Collège de France (CdF (institution))-Université de Picardie Jules Verne (UPJV)-Ecole Nationale Supérieure de Chimie de Paris - Chimie ParisTech-PSL (ENSCP), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Pau et des Pays de l'Adour (UPPA)-Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA)-Université Grenoble Alpes (UGA)-Nantes Université (Nantes Univ)-Université de Montpellier (UM)-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM), Université de Montpellier (UM), Institut Charles Gerhardt Montpellier - Institut de Chimie Moléculaire et des Matériaux de Montpellier (ICGM), Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM), Institut Universitaire de France (IUF), Ministère de l'Education nationale, de l’Enseignement supérieur et de la Recherche (M.E.N.E.S.R.), Vidyasirimedhi Institute of Science and Technology [Thaïlande] (VISTEC), and ANR-10-LABX-0076,STORE-EX,Laboratory of excellency for electrochemical energy storage(2010)
- Subjects
Renewable Energy, Sustainability and the Environment ,capacitance ,Materials Chemistry ,Electrochemistry ,electrolyte ,[CHIM.MATE]Chemical Sciences/Material chemistry ,MnO2 ,MXene ,Condensed Matter Physics ,energy ,Surfaces, Coatings and Films ,Electronic, Optical and Magnetic Materials - Abstract
A MnO2-MXene composite material is reported, in which MnO2 particles have been grown onto Ti3C2 MXene flakes. Thanks to its interconnected structure, it can not only boost the low electrical conductivity of MnO2, but also suppress the restacking of MXene flakes. As an electrode material in a three-electrode cell, the composite showed greater capacitance and improved stability performance than raw MnO2 in both KOH and Na2SO4 aqueous electrolytes. Equipped with MnO2–MXene composite material as positive and activated carbon as negative, an asymmetric device using Na2SO4 as electrolyte displayed an energy density of 20 Wh kg−1 at 500 W kg−1 power density. On the other hand, the device operated in KOH electrolyte showed an energy density of 17 Wh kg−1 at 400 W kg−1, and 11 Wh kg−1 at 8 kW kg−1.
- Published
- 2022
7. Evaluation of the Properties of an Electrolyte Based on Formamide and LiTFSI for Electrochemical Capacitors
- Author
-
Bongu Chandra Sekhar, Rahma Hachicha, Olivier Fontaine, Charlotte Bodin, Steven Le Vot, Marion Maffre, Frédéric Favier, Institut National de Recherche et d'Analyse Physico-Chimique (INRAP), Institut Charles Gerhardt Montpellier - Institut de Chimie Moléculaire et des Matériaux de Montpellier (ICGM ICMMM), and Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Université Montpellier 1 (UM1)-Université Montpellier 2 - Sciences et Techniques (UM2)-Institut de Chimie du CNRS (INC)
- Subjects
Formamide ,Materials science ,Renewable Energy, Sustainability and the Environment ,02 engineering and technology ,Electrolyte ,010402 general chemistry ,021001 nanoscience & nanotechnology ,Condensed Matter Physics ,Electrochemistry ,01 natural sciences ,0104 chemical sciences ,Surfaces, Coatings and Films ,Electronic, Optical and Magnetic Materials ,law.invention ,chemistry.chemical_compound ,Capacitor ,chemistry ,Chemical engineering ,law ,Materials Chemistry ,[CHIM]Chemical Sciences ,0210 nano-technology ,ComputingMilieux_MISCELLANEOUS - Abstract
International audience
- Published
- 2020
8. Shuttle Effect Quantification for Redox Ionic Liquid Electrolyte Correlated to the Coulombic Efficiency of Supercapacitors
- Author
-
Chandra Sekhar Bongur, Frédéric Favier, Charlotte Bodin, Sylvain Catrouillet, Steven Le Vot, Mathieu Deschanels, Olivier Fontaine, Institut Charles Gerhardt Montpellier - Institut de Chimie Moléculaire et des Matériaux de Montpellier (ICGM), Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Institut de Chimie du CNRS (INC)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), Réseau sur le stockage électrochimique de l'énergie (RS2E), Université de Nantes (UN)-Aix Marseille Université (AMU)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Collège de France (CdF (institution))-Université de Picardie Jules Verne (UPJV)-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Ecole Nationale Supérieure de Chimie de Paris - Chimie ParisTech-PSL (ENSCP), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Pau et des Pays de l'Adour (UPPA)-Institut de Chimie du CNRS (INC)-Université de Montpellier (UM)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA)-Université Grenoble Alpes (UGA), Institut Charles Gerhardt Montpellier - Institut de Chimie Moléculaire et des Matériaux de Montpellier (ICGM ICMMM), Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Université Montpellier 1 (UM1)-Université Montpellier 2 - Sciences et Techniques (UM2)-Institut de Chimie du CNRS (INC), Université de Picardie Jules Verne (UPJV)-Institut de Chimie du CNRS (INC)-Aix Marseille Université (AMU)-Université de Pau et des Pays de l'Adour (UPPA)-Université de Nantes (UN)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Ecole Nationale Supérieure de Chimie de Paris - Chimie ParisTech-PSL (ENSCP), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Collège de France (CdF (institution))-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA)-Université Grenoble Alpes (UGA)-Institut National Polytechnique (Toulouse) (Toulouse INP), and Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)
- Subjects
Supercapacitor ,Energy Engineering and Power Technology ,02 engineering and technology ,Electrolyte ,[CHIM.MATE]Chemical Sciences/Material chemistry ,010402 general chemistry ,021001 nanoscience & nanotechnology ,01 natural sciences ,7. Clean energy ,Redox ,0104 chemical sciences ,chemistry.chemical_compound ,chemistry ,Chemical engineering ,Ionic liquid ,Electrode ,Electrochemistry ,Energy density ,Molecule ,Electrical and Electronic Engineering ,0210 nano-technology ,Faraday efficiency - Abstract
International audience; The use of redox active electrolyte is a good opportunity to increase the energy density of supercapacitors, the main limitation of this technology. The addition of redox molecules allows the storage of charge in the electrode and in the electrolyte. The key to keep the increase of charge is to avoid the shuttle effect of the redox molecule. Indeed, once the molecule is oxidized or reduced, it diffuses across the cell to react at the surface of the opposite electrode and the stored charge is lost. Is this shuttle effect however damageable for the device? This study proposes to answer this question by quantifying the shuttle effect and correlating it to the decrease of Coulombic efficiency of supercapacitors.
- Published
- 2020
9. Unveiling Pseudocapacitive Charge Storage Behavior in FeWO 4 Electrode Material by Operando X‐Ray Absorption Spectroscopy
- Author
-
Antonella Iadecola, Christophe Payen, Richard Retoux, Marie-Liesse Doublet, Etsuro Iwama, Katsuhiko Naoi, Frédéric Favier, Thierry Brousse, Nicolas Goubard-Bretesché, Camille Douard, Kazuaki Kisu, Olivier Crosnier, Institut des Matériaux Jean Rouxel (IMN), Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST), Université de Nantes (UN)-Université de Nantes (UN)-Ecole Polytechnique de l'Université de Nantes (EPUN), Université de Nantes (UN)-Université de Nantes (UN)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Réseau sur le stockage électrochimique de l'énergie (RS2E), Université de Nantes (UN)-Aix Marseille Université (AMU)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Collège de France (CdF (institution))-Université de Picardie Jules Verne (UPJV)-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Ecole Nationale Supérieure de Chimie de Paris - Chimie ParisTech-PSL (ENSCP), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Pau et des Pays de l'Adour (UPPA)-Institut de Chimie du CNRS (INC)-Université de Montpellier (UM)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA)-Université Grenoble Alpes (UGA), Laboratoire de cristallographie et sciences des matériaux (CRISMAT), Université de Caen Normandie (UNICAEN), Normandie Université (NU)-Normandie Université (NU)-École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN), Normandie Université (NU)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche sur les Matériaux Avancés (IRMA), Normandie Université (NU)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Rouen Normandie (UNIROUEN), Normandie Université (NU)-Institut national des sciences appliquées Rouen Normandie (INSA Rouen Normandie), Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Rouen Normandie (UNIROUEN), Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS), Institut Charles Gerhardt Montpellier - Institut de Chimie Moléculaire et des Matériaux de Montpellier (ICGM), Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Institut de Chimie du CNRS (INC)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), Tokyo University of Agriculture and Technology (TUAT), Université de Nantes (UN)-Université de Nantes (UN)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Ecole Polytechnique de l'Université de Nantes (EPUN), Université de Nantes (UN)-Université de Nantes (UN), Université de Picardie Jules Verne (UPJV)-Institut de Chimie du CNRS (INC)-Aix Marseille Université (AMU)-Université de Pau et des Pays de l'Adour (UPPA)-Université de Nantes (UN)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Ecole Nationale Supérieure de Chimie de Paris - Chimie ParisTech-PSL (ENSCP), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Collège de France (CdF (institution))-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA)-Université Grenoble Alpes (UGA)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM), École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN), Normandie Université (NU)-Normandie Université (NU)-Centre National de la Recherche Scientifique (CNRS)-Université de Caen Normandie (UNICAEN), Normandie Université (NU)-Institut de Chimie du CNRS (INC), Institut Charles Gerhardt Montpellier - Institut de Chimie Moléculaire et des Matériaux de Montpellier (ICGM ICMMM), and Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Université Montpellier 1 (UM1)-Université Montpellier 2 - Sciences et Techniques (UM2)-Institut de Chimie du CNRS (INC)
- Subjects
Materials science ,Pseudocapacitance 2 ,Absorption spectroscopy ,02 engineering and technology ,010402 general chemistry ,Electrochemistry ,01 natural sciences ,Redox ,Pseudocapacitance ,law.invention ,Biomaterials ,Metal ,law ,FeWO 4 ,General Materials Science ,Operando ,X-ray absorption spectroscopy ,General Chemistry ,021001 nanoscience & nanotechnology ,0104 chemical sciences ,Capacitor ,Chemical physics ,visual_art ,Electrode ,visual_art.visual_art_medium ,[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci] ,0210 nano-technology ,Electrochemical capacitors ,Biotechnology - Abstract
International audience; In nano-sized FeWO 4 electrode material, both Fe and W metal cations are suspected to be involved in the fast and reversible Faradaic surface reactions giving rise to its pseudocapacitive signature. As for any other pseudocapacitive materials, to fully understand the charge storage mechanism, a deeper insight into the involvement of the electroactive cations still has to be provided. The present paper illustrates how operando X-ray absorption spectroscopy (XAS) has been successfully used to collect data of unprecedented quality allowing to elucidate the complex electrochemical behavior of this multicationic pseudocapacitive material. Moreover, these in-depth experiments were obtained in real time upon cycling the electrode, which allowed investigating the reactions occurring in the material within a realistic timescale, which is compatible with electrochemical capacitors practical operation. Both Fe K-edge and W L 3-edge measurements point out the involvement of the Fe 3+ /Fe 2+ redox couple in the charge storage while W 6+ acts as a spectator cation. The result of this study enables to unambiguously discriminate between the Faradaic and capacitive behavior of FeWO 4. Beside these valuable insights toward the full description of the charge storage mechanism in FeWO 4 , this paper demonstrates the potential of operando X-ray absorption spectroscopy to enable a better material engineering for new high capacitance pseudocapacitive electrode materials.
- Published
- 2020
10. Modifications of MXene layers for supercapacitors
- Author
-
Frédéric Favier, Yachao Zhu, Steven Le Vot, Khalil Rajouâ, Olivier Fontaine, Patrice Simon, Institut Charles Gerhardt Montpellier - Institut de Chimie Moléculaire et des Matériaux de Montpellier (ICGM ICMMM), Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Université Montpellier 1 (UM1)-Université Montpellier 2 - Sciences et Techniques (UM2)-Institut de Chimie du CNRS (INC), Centre interuniversitaire de recherche et d'ingenierie des matériaux (CIRIMAT), Centre National de la Recherche Scientifique (CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Institut de Chimie du CNRS (INC), Centre National de la Recherche Scientifique - CNRS (FRANCE), Ecole Nationale Supérieure de Chimie de Montpellier - ENSCM (FRANCE), Institut National Polytechnique de Toulouse - Toulouse INP (FRANCE), Université Toulouse III - Paul Sabatier - UT3 (FRANCE), and Université de Montpellier (FRANCE)
- Subjects
Materials science ,Matériaux ,Pseudocapacitive behavior ,Composite number ,Nanoparticle ,02 engineering and technology ,010402 general chemistry ,7. Clean energy ,01 natural sciences ,Capacitance ,pseudocapacitive behavior ,[CHIM]Chemical Sciences ,General Materials Science ,Surface layer ,Electrical and Electronic Engineering ,Composite material ,Porosity ,Supercapacitor ,Renewable Energy, Sustainability and the Environment ,layer modification ,021001 nanoscience & nanotechnology ,Foam ,0104 chemical sciences ,Layer modification ,Electrode ,0210 nano-technology ,MXene ,foam ,Current density - Abstract
The re-stacking of Ti3C2Tx-MXene layers has been prevented by using two different approaches: a facile hard templating method and a pore-forming approach. The expanded MXene obtained by using MgO nanoparticles as hard templates displayed an open morphology based on crumpled layers. The corresponding electrode material delivered 180 F g???? 1 of capacitance at 1 A g???? 1 and maintained 99% of its initial capacitance at 5 A g???? 1 over five thousand charge-discharge cycles. On the other hand, the MXene foam prepared after heating a MXene-urea composite at 550�C, showed numerous macropores on the surface layer and a complex open 3D innerarchitecture. Thanks to this foamy porous structure, the binder-free electrode based on the resulting MXene foam displayed a great capacitance of 203 F g???? 1 at 5 A g???? 1 current density, 99% of which was retained after five thousand cycles. In comparison, the pristine MXene –based electrode delivered 82 F g???? 1, only, in the same operating conditions. An asymmetric device built on a negative MXene foam electrode and a positive MnO2 electrode exhibited an attractive energy density of 16.5 Wh kg???? 1 (or 10 Wh L???? 1) and 160 W kg???? 1 (or 8.5 kW L???? 1) power density. Altogether, the enhanced performances of these nano-engineered 2D materials are a clear demonstration of the efficiency of the chosen synthetic approaches to work out the re-stacking issue of MXene layers.
- Published
- 2020
11. Unveiling Pseudocapacitive Charge Storage Behavior in FeWO
- Author
-
Nicolas, Goubard-Bretesché, Olivier, Crosnier, Camille, Douard, Antonella, Iadecola, Richard, Retoux, Christophe, Payen, Marie-Liesse, Doublet, Kazuaki, Kisu, Etsuro, Iwama, Katsuhiko, Naoi, Frédéric, Favier, and Thierry, Brousse
- Abstract
In nanosized FeWO
- Published
- 2020
12. Unveiling Pseudocapacitive Charge Storage Behavior in FeWO4 Electrode Material by Operando X-ray Absorption Spectroscopy
- Author
-
Nicolas Goubard-Bretesché, Olivier Crosnier, Camille Douard, Antonella Iadecola, Richard Retoux, Christophe Payen, Marie-Liesse Doublet, Kazuaki Kisu, Etsuro Iwama, Katsuhiko Naoi, Frédéric Favier, and Thierry Brousse
- Abstract
In nano-sized FeWO4 electrode material, both Fe and W metal cations are suspected to be involved in the fast and reversible Faradaic surface reactions giving rise to its pseudocapacitive signature. As for any other pseudocapacitive materials, to fully understand the charge storage mechanism, a deeper insight into the involvement of the electroactive cations still has to be provided. The present paper illustrates how operando X-ray absorption spectroscopy (XAS) has been successfully used to collect data of unprecedented quality allowing to elucidate the complex electrochemical behavior of this multicationic pseudocapacitive material. Moreover, these in-depth experiments were obtained in real time upon cycling the electrode, which allowed investigating the reactions occurring in the material within a realistic timescale, which is compatible with electrochemical capacitors practical operation. Both Fe K-edge and W L3-edge measurements point out the involvement of the Fe3+/Fe2+ redox couple in the charge storage while W6+ acts as a spectator cation. The result of this study enables to unambiguously discriminate between the Faradaic and capacitive behavior of FeWO4. Beside these valuable insights toward the full description of the charge storage mechanism in FeWO4, this paper demonstrates the potential of operando X-ray absorption spectroscopy to enable a better material engineering for new high capacitance pseudocapacitive electrode materials.
- Published
- 2019
13. Biredox ionic liquids: new opportunities toward high performance supercapacitors
- Author
-
Eléonore Mourad, Charlotte Bodin, Dodzi Zigah, Frédéric Favier, Olivier Fontaine, S. Le Vot, and Stefan Freunberger
- Subjects
Supercapacitor ,Materials science ,Capacitive sensing ,Nanotechnology ,02 engineering and technology ,Electrolyte ,Glassy carbon ,010402 general chemistry ,021001 nanoscience & nanotechnology ,01 natural sciences ,Capacitance ,0104 chemical sciences ,Ion ,chemistry.chemical_compound ,Adsorption ,chemistry ,Chemical engineering ,Ionic liquid ,Physical and Theoretical Chemistry ,0210 nano-technology - Abstract
Nowadays commercial supercapacitors are based on purely capacitive storage at the porous carbons that are used for the electrodes. However, the limits that capacitive storage imposes on energy density calls to investigate new materials to improve the capacitance of the device. This new type of electrodes (e.g., RuO2, MnO2…) involves pseudo-capacitive faradaic redox processes with the solid material. Ion exchange with solid materials is, however, much slower than the adsorption process in capacitive storage and inevitably leads to significant loss of power. Faradaic process in the liquid state, in contrast can be similarly fast as capacitive processes due to the fast ion transport. Designing new devices with liquid like dynamics and improved specific capacitance is challenging. We present a new approach to increase the specific capacitance using biredox ionic liquids, where redox moieties are tethered to the electrolyte ions, allowing high redox concentrations and significant pseudo-capacitive storage in the liquid state. Anions and cations are functionalized with anthraquinone (AQ) and 2,2,6,6-tetramethylpiperidinyl-1-oxyl (TEMPO) moieties, respectively. Glassy carbon, carbon-onion, and commercial activated carbon electrodes that exhibit different double layer structures and thus different diffusion dynamics were used to simultaneously study the electrochemical response of biredox ionic liquids at the positive and negative electrode.
- Published
- 2018
14. New nanocomposite material as supercapacitor electrode prepared via restacking of Ni-Mn LDH and MnO2 nanosheets
- Author
-
Wei Quan, Shitong Wang, Caihua Jiang, Yesheng Li, Frédéric Favier, Zhongtai Zhang, and Zilong Tang
- Subjects
Supercapacitor ,Nanocomposite ,Materials science ,General Chemical Engineering ,Inorganic chemistry ,02 engineering and technology ,Electrolyte ,010402 general chemistry ,021001 nanoscience & nanotechnology ,01 natural sciences ,0104 chemical sciences ,Amorphous solid ,Chemical engineering ,Electrode ,Electrochemistry ,medicine ,0210 nano-technology ,Activated carbon ,medicine.drug ,Power density ,Leakage (electronics) - Abstract
A new pseudocapacitive nanocomposite is reported in this article. Such amorphous materials were prepared via restacking of Ni-Mn LDH and MnO2 nanosheets obtained by exfoliation treatments. Synergetic effects of the two components were demonstrated in both alkaline and neutral aqueous electrolytes, as rate capability and cycle stability were both greatly improved compared to each-component samples and mixture. Tests on an activated carbon//nano-composite asymmetric device reveal that the energy density could be about 16 Wh/Kg at a power density of 15 KW/Kg in alkaline electrolytes, while in neutral electrolytes, the value reached about 13 Wh/Kg at a power density of 9 KW/Kg, matching with many other composition technologies. Besides, rather small leakage and self-discharge currents further indicate its promising applications in practical areas.
- Published
- 2017
15. On the Transport Properties of Li-TFSI Water-in-Salt Electrolytes
- Author
-
Zhujie Li, Roza Bouchal, Trinidad Mendez-Morales, Anne-Laure Rollet, Cecile Rizzi, Steven Le Vot, Frédéric Favier, Benjamin Rotenberg, Oleg Borodin, Olivier Fontaine, Mathieu Salanne, PHysicochimie des Electrolytes et Nanosystèmes InterfaciauX (PHENIX), Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Institut Charles Gerhardt Montpellier - Institut de Chimie Moléculaire et des Matériaux de Montpellier (ICGM ICMMM), Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Université Montpellier 1 (UM1)-Université Montpellier 2 - Sciences et Techniques (UM2)-Institut de Chimie du CNRS (INC), Grupo de Nanomateriales y Materia Blanda, and Universidade de Santiago de Compostela [Spain] (USC )
- Subjects
[PHYS]Physics [physics] ,[CHIM]Chemical Sciences - Abstract
Water-in-salts are a new family of electrolytes that may allow the development of aqueous Li-ion batteries. They have a structure which is reminiscent of the one of ionic liquids, and they are characterized by a large concentration of ionic species. In this work we study their transport properties and how they evolve with concentration by using molecular dynamics simulations. We first focus on the choice of the force field. By comparing the simulated viscosities and self diffusion coefficients with experimental measurements, we select a set of parameters that reproduces well the transport properties. We then use the selected force field to study in detail the variations of the self and collective diffusivities of all the species as well as the transport number of the lithium ion. We show that correlation between ions and water play an important role over the whole concentration range. In the water-in-salt regime, the anions form a percolating network which reduces the cation-anion correlations and leads to rather large values for the transport number compared to other standard electrolytes.
- Published
- 2019
16. Electrochemical study of asymmetric aqueous supercapacitors based on high density oxides: C/Ba0.5Sr0.5Co0.8Fe0.2O3-δ and FeWO4/Ba0.5Sr0.5Co0.8Fe0.2O3-δ
- Author
-
Pierre Lannelongue, Olivier Fontaine, Steven Le Vot, Frédéric Favier, Thierry Brousse, Institut Charles Gerhardt Montpellier - Institut de Chimie Moléculaire et des Matériaux de Montpellier (ICGM ICMMM), Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Université Montpellier 1 (UM1)-Université Montpellier 2 - Sciences et Techniques (UM2)-Institut de Chimie du CNRS (INC), Institut des Matériaux Jean Rouxel (IMN), Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST), Université de Nantes (UN)-Université de Nantes (UN)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Ecole Polytechnique de l'Université de Nantes (EPUN), and Université de Nantes (UN)-Université de Nantes (UN)
- Subjects
Asymmetric devices ,Materials science ,General Chemical Engineering ,Analytical chemistry ,02 engineering and technology ,010402 general chemistry ,Electrochemistry ,BSCF ,Perovskite ,7. Clean energy ,01 natural sciences ,Capacitance ,law.invention ,law ,FeWO 4 ,Supercapacitors ,Volumetric energy density ,Perovskite (structure) ,Supercapacitor ,Aqueous solution ,Precipitation (chemistry) ,[CHIM.MATE]Chemical Sciences/Material chemistry ,021001 nanoscience & nanotechnology ,0104 chemical sciences ,Capacitor ,Electrode ,Aqueous electrochemical capacitors ,0210 nano-technology - Abstract
International audience; Two asymmetric aqueous electrochemical capacitors operated in 5 M LiNO3 are reported: C/Ba0.5Sr0.5Co0.8Fe0.2O3-δ (BSCF) and FeWO4/BSCF, with activated carbon and FeWO4 (synthesized by a precipitation method) as negative electrodes, respectively, and BSCF (synthesized by a modified glycine-nitrate process) as positive electrodes. These two devices were operated between 0 and 1.6 V and between 0 and 1.4 V, respectively. They demonstrated a remarkable cycling ability with a high capacitance retention over 10,000 and 45,000 cycles, respectively. Thanks to the high density of BSCF, the C/BSCF device exhibits a volumetric energy density up to 2.7 Wh L−1 at low current densities. This study demonstrates the advantages and limits of the use of high density multicationic oxides with pseudocapacitive behavior to improve the volumetric energy density of aqueous electrochemical capacitors.
- Published
- 2019
17. Laser‐Induced Colloidal Writing of Organometallic Precursor–Based Repeatable and Fast Pd–Ni Hydrogen Sensor
- Author
-
Guy Rahamim, Frédéric Favier, Hagay Shpaisman, David Zitoun, Khalil Rajouâ, Ehud Greenberg, Bar Ilan Institute of Nanotechnology and Advanced Materials (BINA), Institut Charles Gerhardt Montpellier - Institut de Chimie Moléculaire et des Matériaux de Montpellier (ICGM ICMMM), and Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Université Montpellier 1 (UM1)-Université Montpellier 2 - Sciences et Techniques (UM2)-Institut de Chimie du CNRS (INC)
- Subjects
Materials science ,Fabrication ,Hydrogen ,business.industry ,Mechanical Engineering ,chemistry.chemical_element ,Nanoparticle ,02 engineering and technology ,[CHIM.MATE]Chemical Sciences/Material chemistry ,010402 general chemistry ,021001 nanoscience & nanotechnology ,Laser ,01 natural sciences ,Hydrogen sensor ,0104 chemical sciences ,law.invention ,chemistry ,Optical microscope ,Mechanics of Materials ,law ,Hydrogen economy ,Optoelectronics ,0210 nano-technology ,business ,Dispersion (chemistry) - Abstract
International audience; The advent of hydrogen economy brings new challenges in terms of safety and sensing with a need for fast and low-cost monitoring of hydrogen concentration. Herein, a repeatable process for the fabrication of Pd-based hydrogen sensor is presented. First, a room-temperature reaction of organometallic precursors yields colloidal Pd/Ni alloyed nanoparticles. This organic solvent-based colloidal dispersion shows stability over months even with a relatively high metal content (≈1 wt %). Then, a laser induced microbubble deposits the nanoparticles in predetermined patterns from a microdroplet dispersion that is placed on a glass slide. An optical microscope monitors the writing process while a multimeter measures the sensor's conductance, assessing the success of the fabrication process. The fabricated sensors demonstrate excellent hydrogen detection performance in terms of response time, signal stability, and detection limit down to 100 ppm of H2 in air at room temperature.
- Published
- 2019
18. Biredox ionic liquids with solid-like redox density in the liquid state for high-energy supercapacitors
- Author
-
Dodzi Zigah, Ahmad Mehdi, Laura Coustan, Frédéric Favier, Olivier Fontaine, Stefan Freunberger, Pierre Lannelongue, Eléonore Mourad, and André Vioux
- Subjects
Materials science ,Orders of magnitude (temperature) ,FOS: Physical sciences ,02 engineering and technology ,010402 general chemistry ,Electrochemistry ,01 natural sciences ,7. Clean energy ,Redox ,Ion ,chemistry.chemical_compound ,General Materials Science ,Solubility ,Supercapacitor ,Condensed Matter - Materials Science ,Mechanical Engineering ,Materials Science (cond-mat.mtrl-sci) ,General Chemistry ,021001 nanoscience & nanotechnology ,Condensed Matter Physics ,0104 chemical sciences ,chemistry ,Mechanics of Materials ,Chemical physics ,Ionic liquid ,0210 nano-technology ,Electrochemical window - Abstract
Kinetics of electrochemical reactions are several orders of magnitude slower in solids than in liquids as a result of the much lower ion diffusivity. Yet, the solid state maximizes the density of redox species, which is at least two orders of magnitude lower in liquids because of solubility limitations. With regard to electrochemical energy storage devices, this leads to high-energy batteries with limited power and high-power supercapacitors with a well-known energy deficiency. For such devices the ideal system should endow the liquid state with a density of redox species close to the solid state. Here we report an approach based on biredox ionic liquids to achieve bulk-like redox density at liquid-like fast kinetics. The cation and anion of these biredox ionic liquids bear moieties that undergo very fast reversible redox reactions. As a first demonstration of their potential for high-capacity/high-rate charge storage, we used them in redox supercapacitors. These ionic liquids are able to decouple charge storage from an ion-accessible electrode surface, by storing significant charge in the pores of the electrodes, to minimize self-discharge and leakage current as a result of retaining the redox species in the pores, and to raise working voltage due to their wide electrochemical window.
- Published
- 2016
19. Faradaic contributions in the supercapacitive charge storage mechanisms of manganese dioxides
- Author
-
Pierre Lannelongue, Frédéric Favier, Laura Coustan, and Paul Arcidiacono
- Subjects
Birnessite ,Materials science ,General Chemical Engineering ,Inorganic chemistry ,Spinel ,chemistry.chemical_element ,02 engineering and technology ,Electrolyte ,Manganese ,engineering.material ,010402 general chemistry ,021001 nanoscience & nanotechnology ,Electrochemistry ,01 natural sciences ,Capacitance ,0104 chemical sciences ,Amorphous solid ,chemistry ,Electrode ,engineering ,0210 nano-technology - Abstract
Electrode materials based on four different manganese dioxides, amorphous, birnessite, crytpomelane and spinel were fabricated and their electrochemical behaviors compared in two electrolytes, Li 2 SO 4 and (NMe 4 ) 2 SO 4 . With respect to the structural characteristics of the various prepared MnO 2 , these electrolytes can be differentiated by their cation size. Voltammetric studies showed that these electrode materials presented distinct capacitive behaviors depending on the electrolyte used. Modeling of the electrode capacitances measured at various scan rates allowed to discriminate the surface and material bulk contributions to the overall specific capacitance of the fabricated electrodes.
- Published
- 2016
20. (Invited) Anthraquinone on Carbon: Is There Any Way to Get It Working?
- Author
-
Mathieu Deschanels, Olivier Fontaine, Frédéric Favier, Yachao Zhu, and Steven Le Vot
- Subjects
chemistry.chemical_compound ,Chemistry ,Organic chemistry ,chemistry.chemical_element ,Anthraquinone ,Carbon - Abstract
Grafting redox active moieties, including anthraquinone, on large surface area carbons has been for long considered has a good opportunity to increase the energy density of electrochemical capacitors. From the CVs, usually looking like the merging of redox and capacitive signals, the storage capability obviously takes benefit from both contributions. Unfortunately, performances are not fully met: when increasing the anthraquinone loading above 10-15 w%, the double layer contribution decreases because of pore clogging. Cyclability is also poor: during the first few hundreds of cycles (often less), the capacity is progressively fading down because of either physisorb anthraquinone molecules being washed away from the carbon surface and molecule degradation. Various approaches have been considered to address these limits. This paper is an introduction to two of those we have explored. The first one consists in the covalent grafting of an anthraquinone propargyl molecule by a Diels Alders reaction using carbon surfaces as dienophyl. For the second, anthraquinone molecules are first simply adsorbed at the carbon surface. In a second step, flakes from exfoliated MXene are deposited on top of the anthraquinone film by dip-coating. This carbide shell provides the resulting composite some extra electronic conductivity while allowing the electrolytic species to reach both anthraquinone and carbon thanks to its open structure. Attractive electrochemical characteristics have been obtained from electrodes based on these two different materials. These are discussed based on the compositions and morphologies of the prepared composite materials. References Brousse, T.; Cougnon, C.; Bélanger, D., Grafting of Quinones on Carbons as Active Electrode Materials in Electrochemical Capacitors. Journal of the Brazilian Chemical Society 2018, 29, 989-997. Pognon, G.; Brousse, T.; Demarconnay, L.; Bélanger, D., Performance and stability of electrochemical capacitor based on anthraquinone modified activated carbon. Journal of Power Sources 2011, 196 (8), 4117-4122.
- Published
- 2020
21. Polycationic oxides as potential electrode materials for aqueous-based electrochemical capacitors
- Author
-
Thierry Brousse, Laurence Athouël, Pierre Lannelongue, Olivier Crosnier, Gaëtan Buvat, Camille Douard, Frédéric Favier, Nicolas Goubard-Bretesché, Institut des Matériaux Jean Rouxel (IMN), Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST), Université de Nantes (UN)-Université de Nantes (UN)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Ecole Polytechnique de l'Université de Nantes (EPUN), Université de Nantes (UN)-Université de Nantes (UN), Réseau sur le stockage électrochimique de l'énergie (RS2E), Université de Picardie Jules Verne (UPJV)-Institut de Chimie du CNRS (INC)-Aix Marseille Université (AMU)-Université de Pau et des Pays de l'Adour (UPPA)-Université de Nantes (UN)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Ecole Nationale Supérieure de Chimie de Paris - Chimie ParisTech-PSL (ENSCP), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Collège de France (CdF (institution))-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA)-Université Grenoble Alpes (UGA)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM), Laboratoire de Génie des Matériaux et Procédés Associés (LGMPA), Ecole Polytechnique de l'Université de Nantes (EPUN), Institut Charles Gerhardt Montpellier - Institut de Chimie Moléculaire et des Matériaux de Montpellier (ICGM ICMMM), Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Université Montpellier 1 (UM1)-Université Montpellier 2 - Sciences et Techniques (UM2)-Institut de Chimie du CNRS (INC), Université de Nantes (UN)-Université de Nantes (UN)-Ecole Polytechnique de l'Université de Nantes (EPUN), Université de Nantes (UN)-Université de Nantes (UN)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Université de Nantes (UN)-Aix Marseille Université (AMU)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Collège de France (CdF (institution))-Université de Picardie Jules Verne (UPJV)-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Ecole Nationale Supérieure de Chimie de Paris - Chimie ParisTech-PSL (ENSCP), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Pau et des Pays de l'Adour (UPPA)-Institut de Chimie du CNRS (INC)-Université de Montpellier (UM)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA)-Université Grenoble Alpes (UGA), Institut Charles Gerhardt Montpellier - Institut de Chimie Moléculaire et des Matériaux de Montpellier (ICGM), and Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Institut de Chimie du CNRS (INC)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Materials science ,Oxide ,Nanotechnology ,02 engineering and technology ,010402 general chemistry ,Electrochemistry ,01 natural sciences ,Energy storage ,Analytical Chemistry ,law.invention ,Metal ,chemistry.chemical_compound ,law ,ComputingMilieux_MISCELLANEOUS ,Supercapacitor ,Aqueous solution ,[CHIM.MATE]Chemical Sciences/Material chemistry ,021001 nanoscience & nanotechnology ,0104 chemical sciences ,Capacitor ,chemistry ,visual_art ,Electrode ,visual_art.visual_art_medium ,0210 nano-technology - Abstract
Summary Since the early use of RuO2-based electrodes in electrochemical capacitors, so called supercapacitors, metal oxides have always attracted much attention as pseudocapacitive electrode materials for such energy storage devices. Although the literature is well documented about electrode materials based on single metal oxides, polycationic oxides have also drawn some attention upon the last five years. It is however still quite difficult to build a pertinent strategy to design polycationic architectures that can provide at the same time pseudocapacitive behavior, high capacitance and long term cycling efficiency. This review aims at providing more insight into these polycationic oxide materials as potential electrode materials for supercapacitors.
- Published
- 2018
22. Investigation of Ba 0.5 Sr 0.5 Co x Fe 1-x O 3-δ as a pseudocapacitive electrode material with high volumetric capacitance
- Author
-
Moulay Tahar Sougrati, Olivier Fontaine, Olivier Crosnier, Frédéric Favier, Thierry Brousse, Steven Le Vot, Pierre Lannelongue, Institut Charles Gerhardt Montpellier - Institut de Chimie Moléculaire et des Matériaux de Montpellier (ICGM ICMMM), Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Université Montpellier 1 (UM1)-Université Montpellier 2 - Sciences et Techniques (UM2)-Institut de Chimie du CNRS (INC), Réseau sur le stockage électrochimique de l'énergie (RS2E), Université de Picardie Jules Verne (UPJV)-Institut de Chimie du CNRS (INC)-Aix Marseille Université (AMU)-Université de Pau et des Pays de l'Adour (UPPA)-Université de Nantes (UN)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Ecole Nationale Supérieure de Chimie de Paris - Chimie ParisTech-PSL (ENSCP), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Collège de France (CdF (institution))-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA)-Université Grenoble Alpes (UGA)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM), Institut des Matériaux Jean Rouxel (IMN), Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST), Université de Nantes (UN)-Université de Nantes (UN)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Ecole Polytechnique de l'Université de Nantes (EPUN), Université de Nantes (UN)-Université de Nantes (UN), Institut Charles Gerhardt Montpellier - Institut de Chimie Moléculaire et des Matériaux de Montpellier (ICGM), Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Institut de Chimie du CNRS (INC)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), Université de Nantes (UN)-Aix Marseille Université (AMU)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Collège de France (CdF (institution))-Université de Picardie Jules Verne (UPJV)-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Ecole Nationale Supérieure de Chimie de Paris - Chimie ParisTech-PSL (ENSCP), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Pau et des Pays de l'Adour (UPPA)-Institut de Chimie du CNRS (INC)-Université de Montpellier (UM)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA)-Université Grenoble Alpes (UGA), Université de Nantes (UN)-Université de Nantes (UN)-Ecole Polytechnique de l'Université de Nantes (EPUN), and Université de Nantes (UN)-Université de Nantes (UN)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Materials science ,020209 energy ,General Chemical Engineering ,Analytical chemistry ,Oxide ,02 engineering and technology ,Electrolyte ,Electrochemistry ,Capacitance ,Ion ,chemistry.chemical_compound ,Neutral aqueous electrolyte ,0202 electrical engineering, electronic engineering, information engineering ,medicine ,[CHIM]Chemical Sciences ,Perovskite (structure) ,High density polycationic oxides ,Fe/Co ratio ,Pseudocapacitive electrode material ,021001 nanoscience & nanotechnology ,High volumetric capacitance ,chemistry ,Electrode ,0210 nano-technology ,Activated carbon ,medicine.drug - Abstract
International audience; Ba0.5Sr0.5CoxFe1-xO3-d phases, with 0.75 < x < 0.90, so-called BSCFs, were investigated as pseudocapacitive electrode materials. These polycationic oxide phases were prepared by a modified glycine-nitrate process and show the same perovskite structural arrangement and similar morphological characteristics in the whole series. The electrochemical performance was evaluated in aqueous electrolytes at room temperature. BSCF powders showed promising pseudocapacitive behavior as electrode materials with high volumetric capacitances which depend on the Co/Fe ratio. A volumetric capacitance of 500 F cm-3 , i.e. five times higher than that of a standard activated carbon electrode, was measured in 5.0 M LiNO3 for the electrode based on Ba0.5Sr0.5Co0.8Fe0.2O3-d material composition (x = 0.80). The electrode also exhibited moderate self-discharge and 90% of capacitance retention over 2000 cycles. The charge storage mechanism seems to be dependent upon the nature of the ions in the electrolyte and on the Co/Fe ratio.
- Published
- 2018
23. Platinum for hydrogen sensing: surface and grain boundary scattering antagonistic effects in Pt@Au core-shell nanoparticle assemblies prepared using a Langmuir-Blodgett method
- Author
-
Frédéric Favier, L. Baklouti, K. Rajouâ, Institut Charles Gerhardt Montpellier - Institut de Chimie Moléculaire et des Matériaux de Montpellier (ICGM ICMMM), and Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Université Montpellier 1 (UM1)-Université Montpellier 2 - Sciences et Techniques (UM2)-Institut de Chimie du CNRS (INC)
- Subjects
Materials science ,Hydrogen ,Scattering ,Shell (structure) ,General Physics and Astronomy ,chemistry.chemical_element ,Nanoparticle ,Nanotechnology ,02 engineering and technology ,[CHIM.MATE]Chemical Sciences/Material chemistry ,010402 general chemistry ,021001 nanoscience & nanotechnology ,01 natural sciences ,Langmuir–Blodgett film ,0104 chemical sciences ,chemistry ,Chemical physics ,Monolayer ,Grain boundary ,Physical and Theoretical Chemistry ,0210 nano-technology ,Platinum ,ComputingMilieux_MISCELLANEOUS - Abstract
Hydrogen resistive sensors are fabricated through the synthesis of a series of Pt@Au core–shell nanoparticles showing various Pt shell thicknesses. Resulting colloids are assembled as hexagonal close-packed 2D monolayers of various dimension characteristics using a simple Langmuir–Blodgett method. The fabricated sensors show attractive hydrogen sensing performances with reversible responses in extended sensing ranges, a good specificity towards H2, short response and recovery times… Sensing measurements and data analyses allow the demonstration of the associated sensing mechanisms. The dissociative chemisorption of H2 and O2 on the Pt surface through a Langmuir–Hinshelwood mechanism leads to the formation of chemisorbed hydrogen and hydroxyl groups. This surface nature change induces the modification of the scattering of the conduction electrons at both the grain surface and intercontacts, tuned by the extent of hydrogen and hydroxyl group coverages. In assemblies made of particles showing thin Pt shells, the predominance of the surface scattering described by the Fuchs–Sondheimer model accounts for the observed conductive responses as the number of involved grain boundaries is limited. In contrast, in assemblies made of particles with thick Pt shells, the scattering at the grain boundaries described by the Mayadas–Shatzkes model mostly contributes to the observed resistive responses. The sensor behavior is balanced by these two antagonistic effects.
- Published
- 2017
24. Chemical Modification of Graphene Oxide through Diazonium Chemistry and Its Influence on the Structure-Property Relationships of Graphene Oxide-Iron Oxide Nanocomposites
- Author
-
Thierry Brousse, Fortunato Neri, Cédric Martin, Valentina Rebuttini, Nicola Pinna, Saveria Santangelo, Frédéric Favier, Enza Fazio, Gianvito Caputo, Humboldt-Universität zu Berlin, Università degli studi di Messina, Universita Mediterranea of Reggio Calabria [Reggio Calabria], Capacités SAS, Institut des Matériaux Jean Rouxel (IMN), Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST), Université de Nantes (UN)-Université de Nantes (UN)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Ecole Polytechnique de l'Université de Nantes (EPUN), Université de Nantes (UN)-Université de Nantes (UN), Réseau sur le stockage électrochimique de l'énergie (RS2E), Université de Picardie Jules Verne (UPJV)-Institut de Chimie du CNRS (INC)-Aix Marseille Université (AMU)-Université de Pau et des Pays de l'Adour (UPPA)-Université de Nantes (UN)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Ecole Nationale Supérieure de Chimie de Paris - Chimie ParisTech-PSL (ENSCP), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Collège de France (CdF (institution))-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA)-Université Grenoble Alpes (UGA)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM), Institut Charles Gerhardt Montpellier - Institut de Chimie Moléculaire et des Matériaux de Montpellier (ICGM ICMMM), Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Université Montpellier 1 (UM1)-Université Montpellier 2 - Sciences et Techniques (UM2)-Institut de Chimie du CNRS (INC), Humboldt University Of Berlin, Università degli Studi di Messina = University of Messina (UniMe), Université de Nantes (UN)-Université de Nantes (UN)-Ecole Polytechnique de l'Université de Nantes (EPUN), Université de Nantes (UN)-Université de Nantes (UN)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Université de Nantes (UN)-Aix Marseille Université (AMU)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Collège de France (CdF (institution))-Université de Picardie Jules Verne (UPJV)-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Ecole Nationale Supérieure de Chimie de Paris - Chimie ParisTech-PSL (ENSCP), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Pau et des Pays de l'Adour (UPPA)-Institut de Chimie du CNRS (INC)-Université de Montpellier (UM)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA)-Université Grenoble Alpes (UGA), Institut Charles Gerhardt Montpellier - Institut de Chimie Moléculaire et des Matériaux de Montpellier (ICGM), and Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Institut de Chimie du CNRS (INC)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
iron oxide ,Inorganic chemistry ,Oxide ,Iron oxide ,Nanoparticle ,02 engineering and technology ,010402 general chemistry ,01 natural sciences ,Catalysis ,law.invention ,chemistry.chemical_compound ,law ,nanocomposites ,electrochemical performance ,graphene ,supercapacitors ,ComputingMilieux_MISCELLANEOUS ,Graphene oxide paper ,Nanocomposite ,Graphene ,Organic Chemistry ,Chemical modification ,[CHIM.MATE]Chemical Sciences/Material chemistry ,General Chemistry ,021001 nanoscience & nanotechnology ,0104 chemical sciences ,chemistry ,Chemical engineering ,0210 nano-technology ,Iron oxide nanoparticles - Abstract
4-Carboxyphenyl groups are covalently grafted onto graphene oxide via diazonium chemistry for studying their role on the adsorption of iron oxide nanoparticles. The nanoparticles are deposited via a novel phase-transfer approach involving specific interactions at the interface between two immiscible solvents. The increased density and the homogeneous distribution of surface carboxyl moieties enable the preparation of a nanocomposite with improved iron oxide distribution and loading. Structure-properties relationships are investigated by analysing the electrochemical properties of the nanocomposites, which are regarded as promising active materials for application in supercapacitors. It is demonstrated that the nature of the interactions between the components similarly affects the overall electrochemical performances of the nanocomposites and the structure of the materials.
- Published
- 2015
25. Graphene-like carbide derived carbon for high-power supercapacitors
- Author
-
Yury Gogotsi, Barbara Daffos, Patrice Simon, Pierre-Louis Taberna, Wan-Yu Tsai, Pengcheng Gao, Carlos R. Perez, Frédéric Favier, Centre National de la Recherche Scientifique - CNRS (FRANCE), Drexel University (USA), Ecole Nationale Supérieure de Chimie de Montpellier - ENSCM (FRANCE), Institut National Polytechnique de Toulouse - INPT (FRANCE), Université Toulouse III - Paul Sabatier - UT3 (FRANCE), Institut National Polytechnique de Toulouse - Toulouse INP (FRANCE), Institut Charles Gerhardt Montpellier - Institut de Chimie Moléculaire et des Matériaux de Montpellier (ICGM ICMMM), Université Montpellier 1 (UM1)-Université Montpellier 2 - Sciences et Techniques (UM2)-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Réseau sur le stockage électrochimique de l'énergie (RS2E), Université de Nantes (UN)-Aix Marseille Université (AMU)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Collège de France (CdF (institution))-Université de Picardie Jules Verne (UPJV)-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Ecole Nationale Supérieure de Chimie de Paris - Chimie ParisTech-PSL (ENSCP), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Pau et des Pays de l'Adour (UPPA)-Institut de Chimie du CNRS (INC)-Université de Montpellier (UM)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA)-Université Grenoble Alpes (UGA), Centre interuniversitaire de recherche et d'ingenierie des matériaux (CIRIMAT), Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT), Drexel University, Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Université Montpellier 1 (UM1)-Université Montpellier 2 - Sciences et Techniques (UM2)-Institut de Chimie du CNRS (INC), Université de Picardie Jules Verne (UPJV)-Institut de Chimie du CNRS (INC)-Aix Marseille Université (AMU)-Université de Pau et des Pays de l'Adour (UPPA)-Université de Nantes (UN)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Ecole Nationale Supérieure de Chimie de Paris - Chimie ParisTech-PSL (ENSCP), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Collège de France (CdF (institution))-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA)-Université Grenoble Alpes (UGA)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM), Centre National de la Recherche Scientifique (CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Institut de Chimie du CNRS (INC), and Department of Materials Science and Engineering and A.J. Drexel Nanotechnology Institute
- Subjects
Energie électrique ,Materials science ,Chimie-Physique ,Oxide ,chemistry.chemical_element ,Nanotechnology ,Carbide ,law.invention ,Organic electrolyte ,chemistry.chemical_compound ,law ,General Materials Science ,Graphite ,Electrical and Electronic Engineering ,ComputingMilieux_MISCELLANEOUS ,Supraconductivité ,Supercapacitor ,Renewable Energy, Sustainability and the Environment ,Graphene ,[CHIM.MATE]Chemical Sciences/Material chemistry ,Microporous material ,High powersuperca-pacitor ,chemistry ,Chemical engineering ,Carbide-derived carbon ,2D carbide ,Carbon ,Microporous CDC - Abstract
International audience; Two graphene-like carbide derived carbons (CDC-Gs) were produced by chlorination of SiC nanosheets obtained by magnesio-thermal reduction at moderate temperature of silica/graphene oxide nanocomposites. These CDC-Gs were evaluated as supercapacitor electrode materials in an organic electrolyte. Starting from a low SiO2/GO ratio in the precursor, the resulting CDC-G nanosheets are composed of a few layers of graphite, partially coated with microporous CDC. In contrast, a high SiO2/GO ratio leads to micropores generated on the basal plane of individual carbon nanosheets. The latter CDC-G shows a remarkable high power capability with 76 % of retention of the initial capacity at scan rates up to 3 V s−1. Notably, the equivalent series resistance (ESR) and time constant of the cell were found to be extremely low at 0.45 Ω·cm2 and 0.4 s, respectively, thanks to the unique 2D open surface and enhanced access to micropores. These features were attributed to the unique nanostructure of the microporous graphene.
- Published
- 2015
26. MnO2 as ink material for the fabrication of supercapacitor electrodes
- Author
-
Frédéric Favier, Laura Coustan, Thierry Brousse, Annaïg Le Comte, Institut Charles Gerhardt Montpellier - Institut de Chimie Moléculaire et des Matériaux de Montpellier (ICGM), Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Institut de Chimie du CNRS (INC)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), Réseau sur le stockage électrochimique de l'énergie (RS2E), Université de Nantes (UN)-Aix Marseille Université (AMU)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Collège de France (CdF (institution))-Université de Picardie Jules Verne (UPJV)-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Ecole Nationale Supérieure de Chimie de Paris - Chimie ParisTech-PSL (ENSCP), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Pau et des Pays de l'Adour (UPPA)-Institut de Chimie du CNRS (INC)-Université de Montpellier (UM)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA)-Université Grenoble Alpes (UGA), Institut des Matériaux Jean Rouxel (IMN), Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST), Université de Nantes (UN)-Université de Nantes (UN)-Ecole Polytechnique de l'Université de Nantes (EPUN), Université de Nantes (UN)-Université de Nantes (UN)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Institut Charles Gerhardt Montpellier - Institut de Chimie Moléculaire et des Matériaux de Montpellier (ICGM ICMMM), Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Université Montpellier 1 (UM1)-Université Montpellier 2 - Sciences et Techniques (UM2)-Institut de Chimie du CNRS (INC), Université de Picardie Jules Verne (UPJV)-Institut de Chimie du CNRS (INC)-Aix Marseille Université (AMU)-Université de Pau et des Pays de l'Adour (UPPA)-Université de Nantes (UN)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Ecole Nationale Supérieure de Chimie de Paris - Chimie ParisTech-PSL (ENSCP), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Collège de France (CdF (institution))-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA)-Université Grenoble Alpes (UGA)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM), Université de Nantes (UN)-Université de Nantes (UN)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Ecole Polytechnique de l'Université de Nantes (EPUN), and Université de Nantes (UN)-Université de Nantes (UN)
- Subjects
Supercapacitor ,Materials science ,General Chemical Engineering ,Inorganic chemistry ,[CHIM.MATE]Chemical Sciences/Material chemistry ,02 engineering and technology ,010402 general chemistry ,021001 nanoscience & nanotechnology ,Electrochemistry ,01 natural sciences ,0104 chemical sciences ,Amorphous solid ,Adsorption ,Oxidation state ,Electrode ,Particle ,Surface charge ,0210 nano-technology ,ComputingMilieux_MISCELLANEOUS - Abstract
With the objective of the formulation of ready-to-print stable water-based inks of supercapacitive MnO2, selected surfactants have been used as reactants for the synthesis of manganese oxide powders. The presence of sodium dodecylsulfate (SDS), caffeic acid and Triton TX100 in the reaction medium drastically impacts on the characteristics of the resulting material at crystal and molecular levels, on particle shape and size, on the Mn oxidation state as well as on the electrochemical behavior of the corresponding electrodes. With caffeic acid and Triton TX100, resulting oxides are mixtures of amorphous MnO2 and Mn2O3 with limited electrochemical performances. Showing, in contrast, strong similarities with birnessite-type MnO2, surfactant-free powders and those prepared in presence of SDS, both show attractive electrochemical performances with capacitances up to 164 F/g for the latter. The excess of particle surface charges upon SDS adsorption is pointed out for a better stability of the corresponding ink formulation as well as for a better dispersibility of the powder at dry state, which result in a more homogeneous composite electrode.
- Published
- 2015
27. Supercapacitors Based on Carbon or Pseudocapacitive Materials
- Author
-
Patrice Simon, Thierry Brousse, Frédéric Favier, Centre National de la Recherche Scientifique - CNRS (FRANCE), Institut National Polytechnique de Toulouse - INPT (FRANCE), Université Toulouse III - Paul Sabatier - UT3 (FRANCE), Université de Nantes (FRANCE), and Institut National Polytechnique de Toulouse - Toulouse INP (FRANCE)
- Subjects
Energie électrique ,Matériaux ,Supercapacitors ,Electrochemical double‐layer capacitors ,Functionalized carbon ,Hierarchical porous carbon ,Graphene ,Activated microporous carbon - Abstract
Electrochemical capacitors are electrochemical energy storage devices able to quickly deliver or store large quantities of energy. They have stimulated numerous innovations throughout the last 20 years and are now implemented in many fields. Supercapacitors Based on Carbon or Pseudocapacitive Materials provides the scientific basis for a better understanding of the characteristics and performance of electrochemical capacitors based on electrochemical double layer electrodes or pseudocapacitive materials, as well as providing information on the design and conception of new devices such as lithium-ion capacitors. This book details the various applications of supercapacitors, ranging from power electronics and stationary use, to transportation (hybrid vehicles, trams, planes, etc.). They are increasingly used in the automotive sector, especially as part of stop/start systems that have allowed for energy recovery through braking and reduced fuel consumption.
- Published
- 2017
28. Electrochemical Double-Layer Capacitors (EDLC)
- Author
-
Patrice Simon, Thierry Brousse, and Frédéric Favier
- Subjects
Supercapacitor ,Materials science ,Graphene ,law ,business.industry ,Optoelectronics ,business ,Electrochemical double layer capacitor ,law.invention - Published
- 2017
29. Other titles from iSTE in Energy
- Author
-
Frédéric Favier, Thierry Brousse, and Patrice Simon
- Subjects
Physics ,Engineering physics ,Energy (signal processing) - Published
- 2017
30. Hybrid and/or Asymmetric Systems
- Author
-
Patrice Simon, Frédéric Favier, and Thierry Brousse
- Published
- 2017
31. Synthesis and characterization of silver nanoparticles from (bis)alkylamine silver carboxylate precursors
- Author
-
Joanna Zakrzewska, Pawel Uznanski, Ewa Bryszewska, Frédéric Favier, Slawomir Kazmierski, Centre of Molecular and Macromolecular Studies, Polska Akademia Nauk = Polish Academy of Sciences (PAN), Institut Charles Gerhardt Montpellier - Institut de Chimie Moléculaire et des Matériaux de Montpellier (ICGM ICMMM), and Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Université Montpellier 1 (UM1)-Université Montpellier 2 - Sciences et Techniques (UM2)-Institut de Chimie du CNRS (INC)
- Subjects
Denticity ,Silver ,Chemistry(all) ,Carboxylic acid ,Bioengineering ,02 engineering and technology ,Silver carboxylate ,010402 general chemistry ,Photochemistry ,01 natural sciences ,Silver nanoparticle ,chemistry.chemical_compound ,Materials Science(all) ,Modelling and Simulation ,Amide ,Polymer chemistry ,Molecule ,General Materials Science ,Carboxylate ,ComputingMilieux_MISCELLANEOUS ,chemistry.chemical_classification ,[CHIM.MATE]Chemical Sciences/Material chemistry ,General Chemistry ,Carbon-13 NMR ,021001 nanoscience & nanotechnology ,Condensed Matter Physics ,Atomic and Molecular Physics, and Optics ,0104 chemical sciences ,chemistry ,Modeling and Simulation ,Amine-silver carboxylate adducts ,Nanoparticles ,Amine gas treating ,0210 nano-technology ,Synthesis method ,Research Paper - Abstract
A comparative study of amine and silver carboxylate adducts [R1COOAg-2(R2NH2)] (R1 = 1, 7, 11; R2 = 8, 12) as a key intermediate in NPs synthesis is carried out via differential scanning calorimetry, solid-state FT-infrared spectroscopy, 13C CP MAS NMR, powder X-ray diffraction and X-ray photoelectron spectroscopy, and various solution NMR spectroscopies (1H and 13C NMR, pulsed field gradient spin-echo NMR, and ROESY). It is proposed that carboxyl moieties in the presence of amine ligands are bound to silver ions via chelating bidentate type of coordination as opposed to bridging bidentate coordination of pure silver carboxylates resulting from the formation of dimeric units. All complexes are packed as lamellar bilayer structures. Silver carboxylate/amine complexes show one first-order melting transition. The evidence presented in this study shows that phase behavior of monovalent metal carboxylates are controlled, mainly, by head group bonding. In solution, insoluble silver salt is stabilized by amine molecules which exist in dynamic equilibrium. Using (bis)amine-silver carboxylate complex as precursor, silver nanoparticles were fabricated. During high-temperature thermolysis, the (bis)amine-carboxylate adduct decomposes to produce silver nanoparticles of small size. NPs are stabilized by strongly interacting carboxylate and trace amounts of amine derived from the silver precursor interacting with carboxylic acid. A corresponding aliphatic amide obtained from silver precursor at high-temperature reaction conditions is not taking part in the stabilization. Combining NMR techniques with FTIR, it was possible to follow an original stabilization mechanism. Graphical abstractThe synthesis of a series (bis)alkylamine silver(I) carboxylate complexes in nonpolar solvents were carried out and fully characterized both in the solid and solution. Carboxyl moieties in the presence of amine ligands are bound to silver ions via chelating bidentate type of coordination. The complexes form layered structures which thermally decompose forming nanoparticles stabilized only by aliphatic carboxylates.
- Published
- 2017
32. Microstructural and Morphological Effects on Charge Storage Properties in MnO2-Carbon Nanofibers Based Supercapacitors
- Author
-
Melanie Louro, Frédéric Favier, Ouassim Ghodbane, Alexandra Patru, Laura Coustan, Institut Charles Gerhardt Montpellier - Institut de Chimie Moléculaire et des Matériaux de Montpellier (ICGM ICMMM), Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Université Montpellier 1 (UM1)-Université Montpellier 2 - Sciences et Techniques (UM2)-Institut de Chimie du CNRS (INC), Institut National de Recherche et d'Analyse Physico-Chimique (INRAP), Réseau sur le stockage électrochimique de l'énergie (RS2E), Université de Picardie Jules Verne (UPJV)-Institut de Chimie du CNRS (INC)-Aix Marseille Université (AMU)-Université de Pau et des Pays de l'Adour (UPPA)-Université de Nantes (UN)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Ecole Nationale Supérieure de Chimie de Paris - Chimie ParisTech-PSL (ENSCP), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Collège de France (CdF (institution))-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA)-Université Grenoble Alpes (UGA)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM), Université Montpellier 1 (UM1)-Université Montpellier 2 - Sciences et Techniques (UM2)-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Université de Nantes (UN)-Aix Marseille Université (AMU)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Collège de France (CdF (institution))-Université de Picardie Jules Verne (UPJV)-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Ecole Nationale Supérieure de Chimie de Paris - Chimie ParisTech-PSL (ENSCP), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Pau et des Pays de l'Adour (UPPA)-Institut de Chimie du CNRS (INC)-Université de Montpellier (UM)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), and Université Grenoble Alpes (UGA)-Université Grenoble Alpes (UGA)
- Subjects
Supercapacitor ,Materials science ,Renewable Energy, Sustainability and the Environment ,Carbon nanofiber ,Charge (physics) ,[CHIM.MATE]Chemical Sciences/Material chemistry ,02 engineering and technology ,010402 general chemistry ,021001 nanoscience & nanotechnology ,Condensed Matter Physics ,01 natural sciences ,0104 chemical sciences ,Surfaces, Coatings and Films ,Electronic, Optical and Magnetic Materials ,Chemical engineering ,Materials Chemistry ,Electrochemistry ,0210 nano-technology ,ComputingMilieux_MISCELLANEOUS - Abstract
International audience
- Published
- 2013
33. Electrochemical study of aqueous asymmetric FeWO 4 /MnO 2 supercapacitor
- Author
-
Nicolas Goubard-Bretesché, Frédéric Favier, Olivier Crosnier, Gaëtan Buvat, Thierry Brousse, Réseau sur le stockage électrochimique de l'énergie (RS2E), Université de Picardie Jules Verne (UPJV)-Institut de Chimie du CNRS (INC)-Aix Marseille Université (AMU)-Université de Pau et des Pays de l'Adour (UPPA)-Université de Nantes (UN)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Ecole Nationale Supérieure de Chimie de Paris - Chimie ParisTech-PSL (ENSCP), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Collège de France (CdF (institution))-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA)-Université Grenoble Alpes (UGA)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM), Institut des Matériaux Jean Rouxel (IMN), Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST), Université de Nantes (UN)-Université de Nantes (UN)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Ecole Polytechnique de l'Université de Nantes (EPUN), Université de Nantes (UN)-Université de Nantes (UN), Laboratoire des Agrégats Moléculaires et Matériaux Inorganiques (LAMMI), Centre National de la Recherche Scientifique (CNRS)-Université Montpellier 2 - Sciences et Techniques (UM2), Université de Nantes (UN)-Aix Marseille Université (AMU)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Collège de France (CdF (institution))-Université de Picardie Jules Verne (UPJV)-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Ecole Nationale Supérieure de Chimie de Paris - Chimie ParisTech-PSL (ENSCP), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Pau et des Pays de l'Adour (UPPA)-Institut de Chimie du CNRS (INC)-Université de Montpellier (UM)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA)-Université Grenoble Alpes (UGA), Université de Nantes (UN)-Université de Nantes (UN)-Ecole Polytechnique de l'Université de Nantes (EPUN), Université de Nantes (UN)-Université de Nantes (UN)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), and Université Montpellier 2 - Sciences et Techniques (UM2)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Materials science ,Oxide ,Energy Engineering and Power Technology ,Nanotechnology ,02 engineering and technology ,Electrolyte ,010402 general chemistry ,Electrochemistry ,01 natural sciences ,7. Clean energy ,law.invention ,chemistry.chemical_compound ,law ,Electrical and Electronic Engineering ,Physical and Theoretical Chemistry ,ComputingMilieux_MISCELLANEOUS ,Supercapacitor ,Aqueous solution ,Renewable Energy, Sustainability and the Environment ,021001 nanoscience & nanotechnology ,Nanocrystalline material ,0104 chemical sciences ,Capacitor ,Chemical engineering ,chemistry ,Electrode ,[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci] ,0210 nano-technology - Abstract
The concept of an asymmetric FeWO 4 /MnO 2 electrochemical capacitor cycled in a neutral aqueous electrolyte is presented for the first time. Commercially available cryptomelane-type MnO 2 and synthesized nanocrystalline FeWO 4 were used as positive and negative electrode materials, respectively. Prior to assembling the cell, the electrodes have been individually tested in a 5 M LiNO 3 electrolyte solution to define both the adequate balance of active material in the supercapacitor and the proper working voltage window. Then, the full asymmetric device has been cycled between 0 and 1.4 V for over 40,000 cycles and subjected to accelerated ageing tests under floating conditions at different voltages, without any significant change on its electrochemical behavior. This remarkable stability shows the interest of developing full oxide-based asymmetric supercapacitors operating in non-toxic aqueous electrolytes that could compete with commercial carbon-based electrochemical double-layer capacitors.
- Published
- 2016
34. Improving the Volumetric Energy Density of Supercapacitors
- Author
-
Olivier Crosnier, Thierry Brousse, Frédéric Favier, Nicolas Goubard-Bretesché, Réseau sur le stockage électrochimique de l'énergie (RS2E), Université de Picardie Jules Verne (UPJV)-Institut de Chimie du CNRS (INC)-Aix Marseille Université (AMU)-Université de Pau et des Pays de l'Adour (UPPA)-Université de Nantes (UN)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Ecole Nationale Supérieure de Chimie de Paris - Chimie ParisTech-PSL (ENSCP), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Collège de France (CdF (institution))-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA)-Université Grenoble Alpes (UGA)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM), Institut des Matériaux Jean Rouxel (IMN), Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST), Université de Nantes (UN)-Université de Nantes (UN)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Ecole Polytechnique de l'Université de Nantes (EPUN), Université de Nantes (UN)-Université de Nantes (UN), Laboratoire des Agrégats Moléculaires et Matériaux Inorganiques (LAMMI), Centre National de la Recherche Scientifique (CNRS)-Université Montpellier 2 - Sciences et Techniques (UM2), Université de Nantes (UN)-Aix Marseille Université (AMU)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Collège de France (CdF (institution))-Université de Picardie Jules Verne (UPJV)-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Ecole Nationale Supérieure de Chimie de Paris - Chimie ParisTech-PSL (ENSCP), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Pau et des Pays de l'Adour (UPPA)-Institut de Chimie du CNRS (INC)-Université de Montpellier (UM)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA)-Université Grenoble Alpes (UGA), Université de Nantes (UN)-Université de Nantes (UN)-Ecole Polytechnique de l'Université de Nantes (EPUN), Université de Nantes (UN)-Université de Nantes (UN)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), and Université Montpellier 2 - Sciences et Techniques (UM2)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Supercapacitor ,Materials science ,business.industry ,General Chemical Engineering ,Capacitive sensing ,Nanotechnology ,02 engineering and technology ,010402 general chemistry ,021001 nanoscience & nanotechnology ,01 natural sciences ,7. Clean energy ,Capacitance ,0104 chemical sciences ,Electrode ,Electrochemistry ,[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci] ,Gravimetric analysis ,Optoelectronics ,Farad ,0210 nano-technology ,business ,Porosity ,Datasheet ,ComputingMilieux_MISCELLANEOUS - Abstract
Due to the low double-layer capacitance of activated carbons ( −2 ) and to their low density related to their large micro/meso porosity, the volumetric energy density of commercial supercapacitors remains low. Therefore, the use of pseudocapacitive oxides or nitrides as electrode materials can drastically improve the volumetric performance. However, there is currently a lack of reliable tools to extrapolate the performance of a 1 cm 2 electrode to a real life cell of several thousand farads. In this paper, we provide a calculation tool to extrapolate the cell capacitance and the energy density both from a gravimetric and volumetric point of view in a 399 cm 3 device. The calculation datasheet indicates that in order to improve the volumetric energy density of supercapacitors, it is crucial to lower the electrodes porosity down to 30–40%. Similarly, the use of high-density pseudocapacitive oxides greatly enhances the volumetric energy density of the related devices. Combining both parameters (porosity of 30%, density of 4.5 g cm −3 , active material capacitance of 250 F g −1 ) can lead to a 28000 F device compared to only 3000 F for a commercial cell of the same volume. The design of asymmetric aqueous devices by combining two high-density pseudocapacitive oxides with reasonable specific capacitance (≈100 F g −1 ) is also an interesting way to further improve the cell voltage and subsequently the volumetric energy density. Additionally, the use of aqueous electrolytes enhances the safety of the cells. Finally, the provided spreadsheet will help to envision different associations of pseudocapacitive and/or capacitive materials and to predict their performance when used in real life cells.
- Published
- 2016
35. In situ crystallographic investigations of charge storage mechanisms in MnO2-based electrochemical capacitors
- Author
-
Nae-Lih Wu, Fatemeh Ataherian, Frédéric Favier, Ouassim Ghodbane, Institut Charles Gerhardt Montpellier - Institut de Chimie Moléculaire et des Matériaux de Montpellier (ICGM ICMMM), Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Université Montpellier 1 (UM1)-Université Montpellier 2 - Sciences et Techniques (UM2)-Institut de Chimie du CNRS (INC), Institut National de Recherche et d'Analyse Physico-Chimique (INRAP), Department of Chemical Engineering, and National Taiwan University [Taiwan] (NTU)
- Subjects
Materials science ,Birnessite ,Renewable Energy, Sustainability and the Environment ,Intercalation (chemistry) ,Spinel ,Energy Engineering and Power Technology ,[CHIM.MATE]Chemical Sciences/Material chemistry ,02 engineering and technology ,Electrolyte ,engineering.material ,010402 general chemistry ,021001 nanoscience & nanotechnology ,Electrochemistry ,01 natural sciences ,Redox ,0104 chemical sciences ,Crystallography ,Electrode ,engineering ,Cryptomelane ,Electrical and Electronic Engineering ,Physical and Theoretical Chemistry ,0210 nano-technology ,ComputingMilieux_MISCELLANEOUS - Abstract
Structural behaviors of four MnO 2 allotropes are investigated by in situ synchrotron X-ray diffraction analyses upon charge/discharge cycling in LiCl and KCl aqueous media. During the anodic/cathodic scans of the 2D birnessite electrode, the interlayer spacing respectively extend/contract along the z direction by ∼0.2 A. This behavior is associated to electrostatic attractive forces between charged framework layers and hydrated electrolyte cations. In contrast, the oxidation/reduction of the 3D spinel electrode lead to the contraction/swelling of (1 1 1) crystalline planes by ∼0.05 A. Manganese–oxygen distance changes induced by Mn(III)/Mn(IV) redox reactions are assigned to such a mechanism. Structural characterizations are focused on the (0 0 2), (2 1 1), (1 1 0) and (2 0 0) planes for MnO 2 cryptomelane, while (0 0 2) and (2 0 0) planes for MnO 2 OMS-5. The 1D cryptomelane and OMS-5 electrodes also exhibit contraction/swelling processes of their structures upon discharge/charge cycling associated to deintercalation/intercalation of hydrated electrolyte cations in their channels, respectively, driven by size/steric constraints.
- Published
- 2012
36. MnO2-coated Ni nanorods: Enhanced high rate behavior in pseudo-capacitive supercapacitor
- Author
-
Frédéric Favier, Yannick Lei, Barbara Daffos, Patrice Simon, Pierre-Louis Taberna, Institut Charles Gerhardt Montpellier - Institut de Chimie Moléculaire et des Matériaux de Montpellier (ICGM ICMMM), Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Université Montpellier 1 (UM1)-Université Montpellier 2 - Sciences et Techniques (UM2)-Institut de Chimie du CNRS (INC), Centre interuniversitaire de recherche et d'ingenierie des matériaux (CIRIMAT), Centre National de la Recherche Scientifique (CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Institut de Chimie du CNRS (INC), Centre National de la Recherche Scientifique - CNRS (FRANCE), Ecole Nationale Supérieure de Chimie de Montpellier - ENSCM (FRANCE), Institut National Polytechnique de Toulouse - INPT (FRANCE), Université Toulouse III - Paul Sabatier - UT3 (FRANCE), Université de Montpellier 1 (FRANCE), Université de Montpellier 2 (FRANCE), and Institut National Polytechnique de Toulouse - Toulouse INP (FRANCE)
- Subjects
Energie électrique ,Materials science ,Matériaux ,General Chemical Engineering ,High rate capacitance ,Manganese dioxide ,Mineralogy ,02 engineering and technology ,Substrate (electronics) ,010402 general chemistry ,Electrochemistry ,01 natural sciences ,7. Clean energy ,Coating ,chemistry.chemical_compound ,Supercapacitor ,Anodizing ,[CHIM.MATE]Chemical Sciences/Material chemistry ,021001 nanoscience & nanotechnology ,0104 chemical sciences ,Dielectric spectroscopy ,chemistry ,Chemical engineering ,Electrode ,Aluminium oxide ,Nanorods ,Nanorod ,0210 nano-technology - Abstract
International audience; Ni nanorods prepared by electrochemical growth through an anodized aluminium oxide membrane were used as substrate for the electrodeposition of MnO2 either in potentiostatic mode or by a pulsed method. Electrochemical deposition parameters were chosen for an homogeneous deposit onto Ni nanorods. Resulting Ni supportedMnO2 electrodes were tested for electrochemical performances as nanostructured negative electrodes for supercapacitors. They exhibited initial capacitances up to 190 F/g and remarkable performances at high charge/discharge rates.
- Published
- 2010
37. Cover Feature: Two-Photon Fluorescence Imaging and Therapy of Cancer Cells with Anisotropic Gold-Nanoparticle-Supported Porous Silicon Nanostructures (ChemNanoMat 4/2018)
- Author
-
Arnaud Chaix, Jean-Olivier Durand, Frédéric Favier, Anthony Brocéro, Magali Gary-Bobo, Khaled El Cheikh, Elise Bouffard, Vanja Stojanovic, Marcel Garcia, Alain Morère, Frédérique Cunin, Marie Maynadier, and Khalil Rajoua
- Subjects
Nanostructure ,Materials science ,Silicon ,Renewable Energy, Sustainability and the Environment ,Energy Engineering and Power Technology ,chemistry.chemical_element ,Nanoparticle ,Nanotechnology ,Porous silicon ,Two photon fluorescence ,Biomaterials ,chemistry ,Feature (computer vision) ,Materials Chemistry ,Anisotropy - Published
- 2018
38. Microstructural Effects on Charge-Storage Properties in MnO2-Based Electrochemical Supercapacitors
- Author
-
Frédéric Favier, Ouassim Ghodbane, Jean-Louis Pascal, Institut Charles Gerhardt Montpellier - Institut de Chimie Moléculaire et des Matériaux de Montpellier (ICGM ICMMM), and Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Université Montpellier 1 (UM1)-Université Montpellier 2 - Sciences et Techniques (UM2)-Institut de Chimie du CNRS (INC)
- Subjects
Materials science ,Birnessite ,020209 energy ,Spinel ,Inorganic chemistry ,[CHIM.MATE]Chemical Sciences/Material chemistry ,02 engineering and technology ,engineering.material ,010402 general chemistry ,021001 nanoscience & nanotechnology ,Microstructure ,01 natural sciences ,0104 chemical sciences ,Dielectric spectroscopy ,Chemical engineering ,Todorokite ,Specific surface area ,0202 electrical engineering, electronic engineering, information engineering ,engineering ,Cryptomelane ,General Materials Science ,Cyclic voltammetry ,0210 nano-technology ,ComputingMilieux_MISCELLANEOUS - Abstract
The charge-storage mechanism in manganese dioxide (MnO2)-based electrochemical supercapacitors was investigated and discussed toward prepared MnO2 microstructures. The preparation of a series of MnO2 allotropic phases was performed by following dedicated synthetic routes. The resulting compounds are classified into three groups depending on their crystal structures based on 1D channels, 2D layers, or 3D interconnected tunnels. The 1D group includes pyrolusite, ramsdellite, cryptomelane, Ni-doped todorokite (Ni-todorokite), and OMS-5. The 2D and 3D groups are composed of birnessite and spinel, respectively. The prepared MnO2 powders were characterized using X-ray diffraction, scanning electron microscopy, the Brunauer-Emmett-Teller technique, cyclic voltammetry (CV), and electrochemical impedance spectroscopy. The influence of the MnO2 microstructure on the electrochemical performance of MnO2-based electrodes is commented on through the specific surface area and the electronic and ionic conductivities. It was demonstrated that the charge-storage mechanism in MnO2-based electrodes is mainly faradic rather than capacitive. The specific capacitance values are found to increase in the following order: pyrolusite (28 Fx g(-1))Ni-todorokiteramsdellitecryptomelaneOMS-5birnessitespinel (241 Fx g(-1)). Thus, increasing the cavity size and connectivity results in the improvement of the electrochemical performance. In contrast with the usual assumption, the electrochemical performance of MnO2-based electrodes was not dependent on the specific surface area. The electronic conductivity was shown to have a limited impact as well. However, specific capacitances of MnO2 forms were strongly correlated with the corresponding ionic conductivities, which obviously rely on the microstructure. The CV experiments confirmed the good stability of all MnO2 phases during 500 charge/discharge cycles.
- Published
- 2009
39. Mesoporous carbon–manganese oxide composite as negative electrode material for supercapacitors
- Author
-
Claire Fournier, Jean-Louis Pascal, Yannick Lei, Frédéric Favier, Institut Charles Gerhardt Montpellier - Institut de Chimie Moléculaire et des Matériaux de Montpellier (ICGM ICMMM), and Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Université Montpellier 1 (UM1)-Université Montpellier 2 - Sciences et Techniques (UM2)-Institut de Chimie du CNRS (INC)
- Subjects
Materials science ,Inorganic chemistry ,Composite number ,Capacitance ,chemistry.chemical_element ,02 engineering and technology ,Manganese Oxide ,010402 general chemistry ,01 natural sciences ,General Materials Science ,Supercapacitor ,Nanocomposite ,[CHIM.MATE]Chemical Sciences/Material chemistry ,General Chemistry ,021001 nanoscience & nanotechnology ,Condensed Matter Physics ,0104 chemical sciences ,chemistry ,Chemical engineering ,Mechanics of Materials ,Electrode ,Mesoporous Carbon ,Cyclic voltammetry ,0210 nano-technology ,Mesoporous material ,Carbon - Abstract
International audience; 3D-assembles of silica spheres were used as hard template to synthesize porous carbon materials with large mesopores to be included as current collectors in supercapacitors and developing large surface areas reaching up to 900m2.g-1. Birnessite-type MnO2 was deposited by a co-precipitation method in the porous network. Electrochemical performances of resulting MnO2/C nanocomposites were evaluated by cyclic voltammetry and showed an initial capacitance and a retained capacitance after 500 cycles for the nanocomposite at 6wt% MnO2 in C of about 660 and 490 F.g-1, respectively.
- Published
- 2008
40. Nanocrystalline FeWO4 as a pseudocapacitive electrode material for high volumetric energy density supercapacitors operated in an aqueous electrolyte
- Author
-
Christophe Payen, Thierry Brousse, Frédéric Favier, Olivier Crosnier, Nicolas Goubard-Bretesché, Réseau sur le stockage électrochimique de l'énergie (RS2E), Université de Picardie Jules Verne (UPJV)-Institut de Chimie du CNRS (INC)-Aix Marseille Université (AMU)-Université de Pau et des Pays de l'Adour (UPPA)-Université de Nantes (UN)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Ecole Nationale Supérieure de Chimie de Paris - Chimie ParisTech-PSL (ENSCP), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Collège de France (CdF (institution))-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA)-Université Grenoble Alpes (UGA)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM), Institut des Matériaux Jean Rouxel (IMN), Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST), Université de Nantes (UN)-Université de Nantes (UN)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Ecole Polytechnique de l'Université de Nantes (EPUN), Université de Nantes (UN)-Université de Nantes (UN), Institut Charles Gerhardt Montpellier - Institut de Chimie Moléculaire et des Matériaux de Montpellier (ICGM ICMMM), Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Université Montpellier 1 (UM1)-Université Montpellier 2 - Sciences et Techniques (UM2)-Institut de Chimie du CNRS (INC), Université de Nantes (UN)-Aix Marseille Université (AMU)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Collège de France (CdF (institution))-Université de Picardie Jules Verne (UPJV)-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Ecole Nationale Supérieure de Chimie de Paris - Chimie ParisTech-PSL (ENSCP), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Pau et des Pays de l'Adour (UPPA)-Institut de Chimie du CNRS (INC)-Université de Montpellier (UM)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA)-Université Grenoble Alpes (UGA), Université de Nantes (UN)-Université de Nantes (UN)-Ecole Polytechnique de l'Université de Nantes (EPUN), Université de Nantes (UN)-Université de Nantes (UN)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Institut Charles Gerhardt Montpellier - Institut de Chimie Moléculaire et des Matériaux de Montpellier (ICGM), and Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Institut de Chimie du CNRS (INC)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Supercapacitor ,Materials science ,Inorganic chemistry ,Crystal structure ,[CHIM.MATE]Chemical Sciences/Material chemistry ,Electrochemistry ,7. Clean energy ,Nanocrystalline material ,lcsh:Chemistry ,chemistry.chemical_compound ,lcsh:Industrial electrochemistry ,lcsh:QD1-999 ,Tungstate ,chemistry ,Specific surface area ,Electrode ,medicine ,ComputingMilieux_MISCELLANEOUS ,lcsh:TP250-261 ,Activated carbon ,medicine.drug - Abstract
Iron tungstate (FeWO4) has been synthesized using two low-temperature synthetic routes and investigated as a new pseudocapacitive electrode material for supercapacitors operating in a neutral aqueous electrolyte. Its electrochemical properties are clearly related to the specific surface area and seem to originate from Fe3+/Fe2+ fast surface reactions. For FeWO4 obtained by polyol-mediated synthesis, a high volumetric capacitance of 210 F·cm−3 (i.e. more than two times higher than that of activated carbon) was measured at 20 mV·s−1 with less than 5% fade over 10,000 cycles. Furthermore, unlike most of the previously investigated iron based electrodes, a unique pseudocapacitive behavior is observed, thus emphasizing the role of the crystallographic structure on the electrochemical signature. Keywords: Iron tungstate, Pseudocapacitive behavior, High density, Neutral aqueous electrolyte, Supercapacitor
- Published
- 2015
41. Electronic and Mechanical Antagonist Effects in Resistive Hydrogen Sensors Based on Pd@Au Core-Shell Nanoparticle Assembles Prepared by Langmuir-Blodgett
- Author
-
Khalil Rajoua, Frédéric Favier, Linda Baklouti, Institut Charles Gerhardt Montpellier - Institut de Chimie Moléculaire et des Matériaux de Montpellier (ICGM ICMMM), and Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Université Montpellier 1 (UM1)-Université Montpellier 2 - Sciences et Techniques (UM2)-Institut de Chimie du CNRS (INC)
- Subjects
Resistive touchscreen ,Materials science ,Hydrogen ,Shell (structure) ,Nanoparticle ,chemistry.chemical_element ,Nanotechnology ,Palladium hydride ,[CHIM.MATE]Chemical Sciences/Material chemistry ,Langmuir–Blodgett film ,Surfaces, Coatings and Films ,Electronic, Optical and Magnetic Materials ,chemistry.chemical_compound ,General Energy ,chemistry ,Chemical engineering ,Reactivity (chemistry) ,Physical and Theoretical Chemistry ,ComputingMilieux_MISCELLANEOUS ,Palladium - Abstract
Pd@Au core–shell nanoparticles, synthesized with a good control of the shell thickness, can be assembled by a simple Langmuir–Blodgett method as 2D assembles and transferred onto glass chips to fabricate H2 resistive sensors. Thanks to the specific reactivity of palladium toward hydrogen leading to the reversible conversion of palladium as palladium hydride, these core–shell nanoparticle layers can be used to detect hydrogen in extended H2 concentration ranges. Fabricated sensors show attractive sensing performances including high signal amplitudes, good specificity toward hydrogen, and short response and recovery times. Depending on the Pd shell thickness and H2 concentration, distinct response types are observed, either resistive or conductive. These responses, in terms of amplitude and sign, strongly depend on the balanced contribution of two antagonist mechanical and electronic effects, promoted by the palladium hydride formation under H2 atmosphere. By using the percolation theory and simple data mod...
- Published
- 2015
42. Microwave-Assisted Decoration of Carbon Substrates for Manganese Dioxide-Based Supercapacitors
- Author
-
Frédéric Favier, Laura Coustan, Institut Charles Gerhardt Montpellier - Institut de Chimie Moléculaire et des Matériaux de Montpellier (ICGM ICMMM), Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Université Montpellier 1 (UM1)-Université Montpellier 2 - Sciences et Techniques (UM2)-Institut de Chimie du CNRS (INC), Réseau sur le stockage électrochimique de l'énergie (RS2E), Université de Picardie Jules Verne (UPJV)-Institut de Chimie du CNRS (INC)-Aix Marseille Université (AMU)-Université de Pau et des Pays de l'Adour (UPPA)-Université de Nantes (UN)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Ecole Nationale Supérieure de Chimie de Paris - Chimie ParisTech-PSL (ENSCP), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Collège de France (CdF (institution))-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA)-Université Grenoble Alpes (UGA)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM), Institut Charles Gerhardt Montpellier - Institut de Chimie Moléculaire et des Matériaux de Montpellier (ICGM), Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Institut de Chimie du CNRS (INC)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), Université de Nantes (UN)-Aix Marseille Université (AMU)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Collège de France (CdF (institution))-Université de Picardie Jules Verne (UPJV)-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Ecole Nationale Supérieure de Chimie de Paris - Chimie ParisTech-PSL (ENSCP), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Pau et des Pays de l'Adour (UPPA)-Institut de Chimie du CNRS (INC)-Université de Montpellier (UM)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), and Université Grenoble Alpes (UGA)-Université Grenoble Alpes (UGA)
- Subjects
Supercapacitor ,Materials science ,Renewable Energy, Sustainability and the Environment ,chemistry.chemical_element ,02 engineering and technology ,Manganese ,[CHIM.MATE]Chemical Sciences/Material chemistry ,010402 general chemistry ,021001 nanoscience & nanotechnology ,Condensed Matter Physics ,01 natural sciences ,Microwave assisted ,0104 chemical sciences ,Surfaces, Coatings and Films ,Electronic, Optical and Magnetic Materials ,chemistry ,Chemical engineering ,Materials Chemistry ,Electrochemistry ,0210 nano-technology ,Carbon ,ComputingMilieux_MISCELLANEOUS - Abstract
International audience
- Published
- 2015
43. Investigating Mechanisms Underlying Elevated-Temperature-Induced Capacity Fading of Aqueous MnO2 Polymorph Supercapacitors: Cryptomelane and Birnessite
- Author
-
Jyh-Fu Lee, Hsiao-An Pan, Nae-Lih Wu, Yu-Ting Weng, Frédéric Favier, Ouassim Ghodbane, Hwo-Shuenn Sheu, Institut Charles Gerhardt Montpellier - Institut de Chimie Moléculaire et des Matériaux de Montpellier (ICGM ICMMM), Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Université Montpellier 1 (UM1)-Université Montpellier 2 - Sciences et Techniques (UM2)-Institut de Chimie du CNRS (INC), Réseau sur le stockage électrochimique de l'énergie (RS2E), Université de Picardie Jules Verne (UPJV)-Institut de Chimie du CNRS (INC)-Aix Marseille Université (AMU)-Université de Pau et des Pays de l'Adour (UPPA)-Université de Nantes (UN)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Ecole Nationale Supérieure de Chimie de Paris - Chimie ParisTech-PSL (ENSCP), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Collège de France (CdF (institution))-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA)-Université Grenoble Alpes (UGA)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM), Institut Charles Gerhardt Montpellier - Institut de Chimie Moléculaire et des Matériaux de Montpellier (ICGM), Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Institut de Chimie du CNRS (INC)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), Université de Nantes (UN)-Aix Marseille Université (AMU)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Collège de France (CdF (institution))-Université de Picardie Jules Verne (UPJV)-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Ecole Nationale Supérieure de Chimie de Paris - Chimie ParisTech-PSL (ENSCP), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Pau et des Pays de l'Adour (UPPA)-Institut de Chimie du CNRS (INC)-Université de Montpellier (UM)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), and Université Grenoble Alpes (UGA)-Université Grenoble Alpes (UGA)
- Subjects
Supercapacitor ,Materials science ,Birnessite ,Aqueous solution ,Renewable Energy, Sustainability and the Environment ,Inorganic chemistry ,[CHIM.MATE]Chemical Sciences/Material chemistry ,engineering.material ,Condensed Matter Physics ,Temperature induced ,Surfaces, Coatings and Films ,Electronic, Optical and Magnetic Materials ,Materials Chemistry ,Electrochemistry ,engineering ,Cryptomelane ,Fading ,ComputingMilieux_MISCELLANEOUS - Abstract
International audience
- Published
- 2015
44. Electrochemical preparation and characterization of Birnessite-type layered manganese oxide films
- Author
-
Thierry Brousse, Yingke Zhou, Daniel Bélanger, Frédéric Favier, and Mathieu Toupin
- Subjects
Birnessite ,Materials science ,Scanning electron microscope ,Analytical chemistry ,General Chemistry ,Condensed Matter Physics ,Microstructure ,Crystallinity ,X-ray photoelectron spectroscopy ,Chemical engineering ,Plating ,General Materials Science ,Cyclic voltammetry ,BET theory - Abstract
Birnessite-type layered manganese oxide films were deposited anodically from MnSO4 plating solutions at the surface of inexpensive stainless steel foil. X-ray diffraction, scanning electron microscopy, X-ray photoelectron spectroscopy and BET measurements were used to characterize and compare the material structure and surface morphologies. The capacitive characteristics of these oxides were investigated by cyclic voltammetry and discussed with respect to parameters such as BET surface area, crystallinity, and Mn3+ and Mn4+ contents.
- Published
- 2006
45. Electrochemical Lithium Insertion in Zn3P2 Zinc Phosphide
- Author
-
Frédéric Gillot, Frédéric Favier, Jean-Louis Pascal, and Marie-Pierre Bichat
- Subjects
Diffraction ,Materials science ,Rietveld refinement ,Annealing (metallurgy) ,Phosphide ,General Chemical Engineering ,General Chemistry ,Crystal structure ,Electrochemistry ,Zinc phosphide ,chemistry.chemical_compound ,Crystallography ,chemistry ,visual_art ,Materials Chemistry ,visual_art.visual_art_medium ,Ceramic - Abstract
Zn3P2 zinc phosphide was synthesized as powders by three different preparation routes: ball-milling, ball-milling followed by annealing, and ceramics at high temperature. Depending on the synthetic route, various powder morphologies (size and crystallinities) were obtained. The electrochemical reactivity toward lithium of these various Zn3P2 powders is shown to be unique despite some quantitative performance differences. The insertion mechanism is shown to involve two distinct but parallel reversible pathways for a large number of inserted lithiums (up to nine): one implies exclusively phosphide phases: Zn3P2, LiZnP, Li4ZnP2, and Li3P. The second one involves only Li−Zn alloys: Zn, LiZn4, and LiZn. Among these various phases two of them are described for the first time: Li4ZnP2 and LiZn4. Both crystal structures have been solved and refined by Rietveld analysis of X-ray diffraction patterns on powders to RB = 3.46 (RF = 2.73, Rp = 5.71, Rwp = 7.33) for Li4ZnP2 and to RB = 6.70 (RF = 5.23, Rp = 6.94, ...
- Published
- 2005
46. Progress in the lithium insertion mechanism in Cu3P
- Author
-
M. Morcrette, Marie-Liesse Doublet, Marie-Pierre Bichat, Laure Monconduit, Frédéric Favier, and B. Mauvernay
- Subjects
Phosphide ,General Chemical Engineering ,Inorganic chemistry ,Extraction (chemistry) ,General Engineering ,General Physics and Astronomy ,chemistry.chemical_element ,Electrochemistry ,Copper ,Redox ,chemistry.chemical_compound ,chemistry ,visual_art ,visual_art.visual_art_medium ,General Materials Science ,Lithium ,Ceramic ,Solid solution - Abstract
Copper phosphide, Cu3P has been synthesized using a ceramic route, and its electrochemical behaviour versus lithium has been studied studied galvanostatic and potentiodynamic measurements and in situ X-ray diffraction analysis. The insertion/extraction mechanism proceeds with the formation of at least three different LixCu3−xP (x=1, 2, 3) phases. The electrochemical behaviour of Cu3P samples obtained from ceramic and solvothermal syntheses are compared to further understanding of the complex redox mechanism occurring during insertion/extraction. First-principle electronic structure calculations show that discharge probably begins with the formation of a solid solution LixCu3−yP (x
- Published
- 2005
47. Anode materials for lithium ion batteries in the Li-Zn-P system
- Author
-
Marie-Pierre Bichat, Frédéric Favier, J. L. Pascal, and Laure Monconduit
- Subjects
Materials science ,Lithium vanadium phosphate battery ,Annealing (metallurgy) ,General Chemical Engineering ,Inorganic chemistry ,General Engineering ,General Physics and Astronomy ,Electrochemistry ,Lithium-ion battery ,Anode ,visual_art ,visual_art.visual_art_medium ,General Materials Science ,Ceramic ,Ternary operation ,Ball mill - Abstract
This paper presents an exhaustive study of the Li-Zn-P system through the synthesis and electrochemical characterisation of several binary and ternary phases: Li9ZnP4, LiZnP, Zn3P2 (α and β), ZnP2 (α and β), LiZn, and LiZn4. Three synthetic routes have been used to prepare these materials: ceramic synthesis and ball milling without and with annealing. Li-Zn-P system phases have been evaluated through X-ray diffraction and electrochemical reactivity towards lithium. Exhibiting high specific capacities at potentials close to 0.7 V vs. Li+/Li, some of these materials are promising as negative electrode materials for lithium ion battery.
- Published
- 2005
48. Cu3P as anode material for lithium ion battery: powder morphology and electrochemical performances
- Author
-
Frédéric Favier, Heriberto Pfeiffer, Tatiana Politova, Jean-Louis Pascal, Marie-Pierre Bichat, Franck Tancret, Thierry Brousse, and Laure Monconduit
- Subjects
Horizontal scan rate ,Materials science ,Renewable Energy, Sustainability and the Environment ,Energy Engineering and Power Technology ,Mineralogy ,Electrochemistry ,Lithium-ion battery ,Lithium battery ,Anode ,Crystallinity ,Chemical engineering ,visual_art ,visual_art.visual_art_medium ,Particle size ,Ceramic ,Electrical and Electronic Engineering ,Physical and Theoretical Chemistry - Abstract
Cu3P is studied as a potential material to be used as anode in a Li-ion battery. Depending on the synthetic route, solvothermal, ball-milling (with or without annealing), spray method or ceramic, used for its preparation, Cu3P shows various particle sizes and crystallinities. The electrochemical reactivity towards lithium of these various Cu3P powders is discussed through galvanostatic and potentiodynamic measurements, electron microscopy techniques, and X-ray diffraction on powder. Electrochemical performances, especially initial capacity and capacity retention, are shown to strongly correlate to the powder morphologies: small particle size favors high capacity values and the operation scan rate affects the capacity depending on the degree of crystallinity of the powder. On other hand, the battery capacity retention is better with microsized powders.
- Published
- 2004
49. The LixMPn4 phases (M/Pn = Ti/P, V/As): new negative electrode materials for lithium ion rechargeable batteries
- Author
-
M. Morcrette, Marie-Liesse Doublet, Marie-Pierre Bichat, Laure Monconduit, Frédéric Favier, and Frédéric Gillot
- Subjects
Diffraction ,General Chemical Engineering ,Inorganic chemistry ,Analytical chemistry ,chemistry.chemical_element ,Electrochemistry ,Lithium-ion battery ,Amorphous solid ,Ion ,chemistry.chemical_compound ,chemistry ,Ternary compound ,Lithium ,Ternary operation - Abstract
Li x TiP 4 ternary phases ( x =7 and 9) show very close electrochemical behaviors versus lithium compared to the previously reported Li 9 VAs 4 and Li 7 VP 4 . Up to seven lithium ions reversibly react with Li 9 TiP 4 , leading to specific and volumetric capacities of 970 mAh/g and 1650 mAh/cm 3 , respectively, at average potentials close to 1 V. Galvanostatic and potentiodynamic experiments reveal that lithium extraction/insertion follow different mechanisms: a two-phase process is evidenced on charge whereas a more complex process is achieved on discharge. Besides, in situ X-ray diffraction (XRD) patterns show that both Li 9 TiP 4 and Li 9 VAs 4 undergo a reversible crystalline to amorphous structural phase transition upon cycling.
- Published
- 2004
50. Air stable copper phosphide (Cu3P): a possible negative electrode material for lithium batteries
- Author
-
Marie-Pierre Bichat, Laure Monconduit, Franck Tancret, Thierry Brousse, Frédéric Favier, and Heriberto Pfeiffer
- Subjects
Chemistry ,Scanning electron microscope ,Phosphide ,Mineralogy ,chemistry.chemical_element ,Electrochemistry ,Copper ,lcsh:Chemistry ,chemistry.chemical_compound ,Chemical engineering ,lcsh:Industrial electrochemistry ,lcsh:QD1-999 ,Gravimetric analysis ,Lithium ,Graphite ,Layer (electronics) ,lcsh:TP250-261 - Abstract
Air stable copper phosphide was synthesized as a thick film over a copper foil by a very simple solid-state reaction at low temperature. X-ray diffraction confirms that the layer is pure Cu3P. Scanning electron microscopy reveals a porous microstructure consisting of agglomerated particles with 10 μm of diameter. Electrochemical reaction of Cu3P with lithium leads to an amorphisation of the thick film during the first discharge, and Cu3P does not seem to recover upon subsequent charge. Structural and microstructural analyses coupled with electrochemical tests emphasize a complex behavior of the copper phosphide material. An initial capacity of 415 mAh/g has been measured with a stable reversible capacity close to 200 mAh/g on subsequent cycles without the help of binder and/or conductive additives. Although the gravimetric capacity values obtained with Cu3P are slightly below the graphite capacity, the volumetric capacity of Cu3P (1473 Ah/L) is 80% higher than those of graphite (800 Ah/L). Keywords: Air stable phosphides, Copper phosphide, Lithium ion batteries, Solid-state reaction
- Published
- 2004
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.