182,790 results on '"Fowler, A."'
Search Results
2. The Role of Noncontiguous Attendance Zones in Shaping School Populations: A Case Study of Tucson, Arizona and Fort Bend, Texas
- Author
-
Sarah Asson, Ruth Krebs Buck, Hope Bodenschatz, Erica Frankenberg, and Christopher S. Fowler
- Abstract
Noncontiguous school attendance zone boundaries (AZBs) have a unique, relatively uncommon shape that assign two or more non-adjacent residential areas to the same school. Given their ability to shape school enrollments by taking advantage of residential sorting, noncontiguous AZBs have historically been linked to explicit efforts to both segregate and desegregate schools. In this paper, we use a novel, longitudinal dataset of AZBs and descriptive quantitative and geospatial methods to understand how the relationship between noncontiguous zones, school diversity, and neighborhood demographics changed from 1990-2020 in two southwestern school districts--Tucson Unified School District, Arizona and Fort Bend Independent School District, Texas. Each district has a unique legal history and demographic context that informs their use of noncontiguous AZBs. We find noncontiguous AZBs are more strongly associated with racially diverse schools and are more likely to bring together neighborhoods with different compositions in Tucson compared to Fort Bend. However, the association between Tucson's noncontiguous AZBs and racially diverse schools has waned since 1990, as the district has negotiated the end of its court-ordered desegregation plan. Our findings provide insight into when and how noncontiguous AZBs can effectively contribute to ethnoracially diverse schools.
- Published
- 2024
3. MOVEMENT OF A SESSILE CELL COLONY
- Author
-
Fowler, A.C. and Winstanley, H.F.
- Published
- 2022
- Full Text
- View/download PDF
4. Starvation kinetics of oscillating microbial populations
- Author
-
Fowler, A.C.
- Published
- 2022
- Full Text
- View/download PDF
5. Non-Markovian effects in long-range polariton-mediated energy transfer
- Author
-
Arnardottir, Kristin B., Fowler-Wright, Piper, Tserkezis, Christos, Lovett, Brendon W., and Keeling, Jonathan
- Subjects
Condensed Matter - Mesoscale and Nanoscale Physics ,Physics - Optics ,Quantum Physics - Abstract
Intramolecular energy transfer driven by near-field effects plays an important role in applications ranging from biophysics and chemistry to nano-optics and quantum communications. Advances in strong light-matter coupling in molecular systems have opened new possibilities to control energy transfer. In particular, long-distance energy transfer between molecules has been reported as the result of their mutual coupling to cavity photon modes, and the formation of hybrid polariton states. In addition to strong coupling to light, molecular systems also show strong interactions between electronic and vibrational modes. The latter can act as a reservoir for energy to facilitate off-resonant transitions, and thus energy relaxation between polaritonic states at different energies. However, the non-Markovian nature of those modes makes it challenging to accurately simulate these effects. Here we capture them via process tensor matrix product operator (PT-MPO) methods, to describe exactly the vibrational environment of the molecules combined with a mean-field treatment of the light-matter interaction. In particular, we study the emission dynamics of a system consisting of two spatially separated layers of different species of molecules coupled to a common photon mode, and show that the strength of coupling to the vibrational bath plays a crucial role in governing the dynamics of the energy of the emitted light; at strong vibrational coupling this dynamics shows strongly non-Markovian effects, eventually leading to polaron formation. Our results shed light on polaritonic long-range energy transfer, and provide further understanding of the role of vibrational modes of relevance to the growing field of molecular polaritonics., Comment: 9 pages, 5 figures
- Published
- 2024
6. Unsupervised Multimodal Fusion of In-process Sensor Data for Advanced Manufacturing Process Monitoring
- Author
-
McKinney, Matthew, Garland, Anthony, Cillessen, Dale, Adamczyk, Jesse, Bolintineanu, Dan, Heiden, Michael, Fowler, Elliott, and Boyce, Brad L.
- Subjects
Computer Science - Machine Learning ,Electrical Engineering and Systems Science - Signal Processing - Abstract
Effective monitoring of manufacturing processes is crucial for maintaining product quality and operational efficiency. Modern manufacturing environments generate vast amounts of multimodal data, including visual imagery from various perspectives and resolutions, hyperspectral data, and machine health monitoring information such as actuator positions, accelerometer readings, and temperature measurements. However, interpreting this complex, high-dimensional data presents significant challenges, particularly when labeled datasets are unavailable. This paper presents a novel approach to multimodal sensor data fusion in manufacturing processes, inspired by the Contrastive Language-Image Pre-training (CLIP) model. We leverage contrastive learning techniques to correlate different data modalities without the need for labeled data, developing encoders for five distinct modalities: visual imagery, audio signals, laser position (x and y coordinates), and laser power measurements. By compressing these high-dimensional datasets into low-dimensional representational spaces, our approach facilitates downstream tasks such as process control, anomaly detection, and quality assurance. We evaluate the effectiveness of our approach through experiments, demonstrating its potential to enhance process monitoring capabilities in advanced manufacturing systems. This research contributes to smart manufacturing by providing a flexible, scalable framework for multimodal data fusion that can adapt to diverse manufacturing environments and sensor configurations.
- Published
- 2024
7. Benchmarking Human and Automated Prompting in the Segment Anything Model
- Author
-
Quesada, Jorge, Fowler, Zoe, Alotaibi, Mohammad, Prabhushankar, Mohit, and AlRegib, Ghassan
- Subjects
Computer Science - Computer Vision and Pattern Recognition - Abstract
The remarkable capabilities of the Segment Anything Model (SAM) for tackling image segmentation tasks in an intuitive and interactive manner has sparked interest in the design of effective visual prompts. Such interest has led to the creation of automated point prompt selection strategies, typically motivated from a feature extraction perspective. However, there is still very little understanding of how appropriate these automated visual prompting strategies are, particularly when compared to humans, across diverse image domains. Additionally, the performance benefits of including such automated visual prompting strategies within the finetuning process of SAM also remains unexplored, as does the effect of interpretable factors like distance between the prompt points on segmentation performance. To bridge these gaps, we leverage a recently released visual prompting dataset, PointPrompt, and introduce a number of benchmarking tasks that provide an array of opportunities to improve the understanding of the way human prompts differ from automated ones and what underlying factors make for effective visual prompts. We demonstrate that the resulting segmentation scores obtained by humans are approximately 29% higher than those given by automated strategies and identify potential features that are indicative of prompting performance with $R^2$ scores over 0.5. Additionally, we demonstrate that performance when using automated methods can be improved by up to 68% via a finetuning approach. Overall, our experiments not only showcase the existing gap between human prompts and automated methods, but also highlight potential avenues through which this gap can be leveraged to improve effective visual prompt design. Further details along with the dataset links and codes are available at https://github.com/olivesgatech/PointPrompt
- Published
- 2024
8. On the degrees of regular nut graphs
- Author
-
Bašić, Nino, Damnjanović, Ivan, and Fowler, Patrick W.
- Subjects
Mathematics - Combinatorics ,05C25, 05C50 - Abstract
A nut graph is a simple graph for which the adjacency matrix has a single zero eigenvalue such that all non-zero kernel eigenvectors have no zero entry. It is known that infinitely many $d$-regular nut graphs exist for $3 \leq d \leq 12$ and for $d \geq 4$ such that $d \equiv 0 \pmod{4}$. Here it is shown that infinitely many $d$-regular nut graphs exist for each degree $d \geq 3$., Comment: 7 pages, 2 figures
- Published
- 2024
9. Movie Gen: A Cast of Media Foundation Models
- Author
-
Polyak, Adam, Zohar, Amit, Brown, Andrew, Tjandra, Andros, Sinha, Animesh, Lee, Ann, Vyas, Apoorv, Shi, Bowen, Ma, Chih-Yao, Chuang, Ching-Yao, Yan, David, Choudhary, Dhruv, Wang, Dingkang, Sethi, Geet, Pang, Guan, Ma, Haoyu, Misra, Ishan, Hou, Ji, Wang, Jialiang, Jagadeesh, Kiran, Li, Kunpeng, Zhang, Luxin, Singh, Mannat, Williamson, Mary, Le, Matt, Yu, Matthew, Singh, Mitesh Kumar, Zhang, Peizhao, Vajda, Peter, Duval, Quentin, Girdhar, Rohit, Sumbaly, Roshan, Rambhatla, Sai Saketh, Tsai, Sam, Azadi, Samaneh, Datta, Samyak, Chen, Sanyuan, Bell, Sean, Ramaswamy, Sharadh, Sheynin, Shelly, Bhattacharya, Siddharth, Motwani, Simran, Xu, Tao, Li, Tianhe, Hou, Tingbo, Hsu, Wei-Ning, Yin, Xi, Dai, Xiaoliang, Taigman, Yaniv, Luo, Yaqiao, Liu, Yen-Cheng, Wu, Yi-Chiao, Zhao, Yue, Kirstain, Yuval, He, Zecheng, He, Zijian, Pumarola, Albert, Thabet, Ali, Sanakoyeu, Artsiom, Mallya, Arun, Guo, Baishan, Araya, Boris, Kerr, Breena, Wood, Carleigh, Liu, Ce, Peng, Cen, Vengertsev, Dimitry, Schonfeld, Edgar, Blanchard, Elliot, Juefei-Xu, Felix, Nord, Fraylie, Liang, Jeff, Hoffman, John, Kohler, Jonas, Fire, Kaolin, Sivakumar, Karthik, Chen, Lawrence, Yu, Licheng, Gao, Luya, Georgopoulos, Markos, Moritz, Rashel, Sampson, Sara K., Li, Shikai, Parmeggiani, Simone, Fine, Steve, Fowler, Tara, Petrovic, Vladan, and Du, Yuming
- Subjects
Computer Science - Computer Vision and Pattern Recognition ,Computer Science - Artificial Intelligence ,Computer Science - Machine Learning ,Electrical Engineering and Systems Science - Image and Video Processing - Abstract
We present Movie Gen, a cast of foundation models that generates high-quality, 1080p HD videos with different aspect ratios and synchronized audio. We also show additional capabilities such as precise instruction-based video editing and generation of personalized videos based on a user's image. Our models set a new state-of-the-art on multiple tasks: text-to-video synthesis, video personalization, video editing, video-to-audio generation, and text-to-audio generation. Our largest video generation model is a 30B parameter transformer trained with a maximum context length of 73K video tokens, corresponding to a generated video of 16 seconds at 16 frames-per-second. We show multiple technical innovations and simplifications on the architecture, latent spaces, training objectives and recipes, data curation, evaluation protocols, parallelization techniques, and inference optimizations that allow us to reap the benefits of scaling pre-training data, model size, and training compute for training large scale media generation models. We hope this paper helps the research community to accelerate progress and innovation in media generation models. All videos from this paper are available at https://go.fb.me/MovieGenResearchVideos.
- Published
- 2024
10. Mining Hierarchies with Conviction: Constructing the CS1 Skill Hierarchy with Pairwise Comparisons over Skill Distributions
- Author
-
Newar, Dip Kiran Pradhan, Fowler, Max, Smith IV, David H., and Poulsen, Seth
- Subjects
Computer Science - Human-Computer Interaction - Abstract
The skills taught in introductory programming courses are categorized into 1) \textit{explaining} the purpose of code, 2) the ability to arrange lines of code in correct \textit{sequence }, and 3) the ability to \textit{trace} through the execution of a program, and 4) the ability to \textit{write} code from scratch. Knowing if a programming skill is a prerequisite to another would benefit students, particularly those new to programming, by allowing them to encounter new topics in the optimal skill sequence. In this study, we used the conviction measure from association rule mining to perform pair-wise comparisons of five skills: Write, Trace, Reverse trace, Sequence, and Explain code. We used the data from four exams with more than 600 participants in each exam from a public university in the United States, where students solved programming assignments of different skills for several programming topics. Our findings matched the previous finding that tracing is a prerequisite for students to learn to write code. But, contradicting the previous claims, our analysis showed that writing code is a prerequisite skill to explaining code and that sequencing code is not a prerequisite to writing code. Our research can help instructors by systematically arranging the skills students exercise when encountering a new topic. The goal is to reduce the difficulties students experience when learning that topic.
- Published
- 2024
11. Efficient line search for optimizing Area Under the ROC Curve in gradient descent
- Author
-
Fowler, Jadon and Hocking, Toby Dylan
- Subjects
Computer Science - Machine Learning ,Computer Science - Artificial Intelligence ,Statistics - Machine Learning - Abstract
Receiver Operating Characteristic (ROC) curves are useful for evaluation in binary classification and changepoint detection, but difficult to use for learning since the Area Under the Curve (AUC) is piecewise constant (gradient zero almost everywhere). Recently the Area Under Min (AUM) of false positive and false negative rates has been proposed as a differentiable surrogate for AUC. In this paper we study the piecewise linear/constant nature of the AUM/AUC, and propose new efficient path-following algorithms for choosing the learning rate which is optimal for each step of gradient descent (line search), when optimizing a linear model. Remarkably, our proposed line search algorithm has the same log-linear asymptotic time complexity as gradient descent with constant step size, but it computes a complete representation of the AUM/AUC as a function of step size. In our empirical study of binary classification problems, we verify that our proposed algorithm is fast and exact; in changepoint detection problems we show that the proposed algorithm is just as accurate as grid search, but faster.
- Published
- 2024
12. Observation of disorder-free localization and efficient disorder averaging on a quantum processor
- Author
-
Gyawali, Gaurav, Cochran, Tyler, Lensky, Yuri, Rosenberg, Eliott, Karamlou, Amir H., Kechedzhi, Kostyantyn, Berndtsson, Julia, Westerhout, Tom, Asfaw, Abraham, Abanin, Dmitry, Acharya, Rajeev, Beni, Laleh Aghababaie, Andersen, Trond I., Ansmann, Markus, Arute, Frank, Arya, Kunal, Astrakhantsev, Nikita, Atalaya, Juan, Babbush, Ryan, Ballard, Brian, Bardin, Joseph C., Bengtsson, Andreas, Bilmes, Alexander, Bortoli, Gina, Bourassa, Alexandre, Bovaird, Jenna, Brill, Leon, Broughton, Michael, Browne, David A., Buchea, Brett, Buckley, Bob B., Buell, David A., Burger, Tim, Burkett, Brian, Bushnell, Nicholas, Cabrera, Anthony, Campero, Juan, Chang, Hung-Shen, Chen, Zijun, Chiaro, Ben, Claes, Jahan, Cleland, Agnetta Y., Cogan, Josh, Collins, Roberto, Conner, Paul, Courtney, William, Crook, Alexander L., Das, Sayan, Debroy, Dripto M., De Lorenzo, Laura, Barba, Alexander Del Toro, Demura, Sean, Di Paolo, Agustin, Donohoe, Paul, Drozdov, Ilya, Dunsworth, Andrew, Earle, Clint, Eickbusch, Alec, Elbag, Aviv Moshe, Elzouka, Mahmoud, Erickson, Catherine, Faoro, Lara, Fatemi, Reza, Ferreira, Vinicius S., Burgos, Leslie Flores, Forati, Ebrahim, Fowler, Austin G., Foxen, Brooks, Ganjam, Suhas, Gasca, Robert, Giang, William, Gidney, Craig, Gilboa, Dar, Gosula, Raja, Dau, Alejandro Grajales, Graumann, Dietrich, Greene, Alex, Gross, Jonathan A., Habegger, Steve, Hamilton, Michael C., Hansen, Monica, Harrigan, Matthew P., Harrington, Sean D., Heslin, Stephen, Heu, Paula, Hill, Gordon, Hilton, Jeremy, Hoffmann, Markus R., Huang, Hsin-Yuan, Huff, Ashley, Huggins, William J., Ioffe, Lev B., Isakov, Sergei V., Jeffrey, Evan, Jiang, Zhang, Jones, Cody, Jordan, Stephen, Joshi, Chaitali, Juhas, Pavol, Kafri, Dvir, Kang, Hui, Khaire, Trupti, Khattar, Tanuj, Khezri, Mostafa, Kieferová, Mária, Kim, Seon, Klimov, Paul V., Klots, Andrey R., Kobrin, Bryce, Korotkov, Alexander N., Kostritsa, Fedor, Kreikebaum, John Mark, Kurilovich, Vladislav D., Landhuis, David, Lange-Dei, Tiano, Langley, Brandon W., Laptev, Pavel, Lau, Kim-Ming, Guevel, Loïck Le, Ledford, Justin, Lee, Joonho, Lee, Kenny, Lester, Brian J., Li, Wing Yan, Lill, Alexander T., Liu, Wayne, Livingston, William P., Locharla, Aditya, Lundahl, Daniel, Lunt, Aaron, Madhuk, Sid, Maloney, Ashley, Mandrà, Salvatore, Martin, Leigh S., Martin, Steven, Martin, Orion, Maxfield, Cameron, McClean, Jarrod R., McEwen, Matt, Meeks, Seneca, Megrant, Anthony, Mi, Xiao, Miao, Kevin C., Mieszala, Amanda, Molina, Sebastian, Montazeri, Shirin, Morvan, Alexis, Movassagh, Ramis, Neill, Charles, Nersisyan, Ani, Newman, Michael, Nguyen, Anthony, Nguyen, Murray, Ni, Chia-Hung, Niu, Murphy Yuezhen, Oliver, William D., Ottosson, Kristoffer, Pizzuto, Alex, Potter, Rebecca, Pritchard, Orion, Pryadko, Leonid P., Quintana, Chris, Reagor, Matthew J., Rhodes, David M., Roberts, Gabrielle, Rocque, Charles, Rubin, Nicholas C., Saei, Negar, Sankaragomathi, Kannan, Satzinger, Kevin J., Schurkus, Henry F., Schuster, Christopher, Shearn, Michael J., Shorter, Aaron, Shutty, Noah, Shvarts, Vladimir, Sivak, Volodymyr, Skruzny, Jindra, Small, Spencer, Smith, W. Clarke, Springer, Sofia, Sterling, George, Suchard, Jordan, Szalay, Marco, Szasz, Aaron, Sztein, Alex, Thor, Douglas, Torunbalci, M. Mert, Vaishnav, Abeer, Vdovichev, Sergey, Vidal, Guifré, Heidweiller, Catherine Vollgraff, Waltman, Steven, Wang, Shannon X., White, Theodore, Wong, Kristi, Woo, Bryan W. K., Xing, Cheng, Yao, Z. Jamie, Yeh, Ping, Ying, Bicheng, Yoo, Juhwan, Yosri, Noureldin, Young, Grayson, Zalcman, Adam, Zhang, Yaxing, Zhu, Ningfeng, Zobrist, Nicholas, Boixo, Sergio, Kelly, Julian, Lucero, Erik, Chen, Yu, Smelyanskiy, Vadim, Neven, Hartmut, Kovrizhin, Dmitry, Knolle, Johannes, Halimeh, Jad C., Aleiner, Igor, Moessner, Roderich, and Roushan, Pedram
- Subjects
Quantum Physics ,Condensed Matter - Disordered Systems and Neural Networks ,Condensed Matter - Strongly Correlated Electrons ,High Energy Physics - Lattice - Abstract
One of the most challenging problems in the computational study of localization in quantum manybody systems is to capture the effects of rare events, which requires sampling over exponentially many disorder realizations. We implement an efficient procedure on a quantum processor, leveraging quantum parallelism, to efficiently sample over all disorder realizations. We observe localization without disorder in quantum many-body dynamics in one and two dimensions: perturbations do not diffuse even though both the generator of evolution and the initial states are fully translationally invariant. The disorder strength as well as its density can be readily tuned using the initial state. Furthermore, we demonstrate the versatility of our platform by measuring Renyi entropies. Our method could also be extended to higher moments of the physical observables and disorder learning.
- Published
- 2024
13. A Generalized Tensor Formulation for Hyperspectral Image Super-Resolution Under General Spatial Blurring
- Author
-
Wang, Yinjian, Li, Wei, Gui, Yuanyuan, Du, Qian, and Fowler, James E.
- Subjects
Electrical Engineering and Systems Science - Image and Video Processing ,Computer Science - Computer Vision and Pattern Recognition - Abstract
Hyperspectral super-resolution is commonly accomplished by the fusing of a hyperspectral imaging of low spatial resolution with a multispectral image of high spatial resolution, and many tensor-based approaches to this task have been recently proposed. Yet, it is assumed in such tensor-based methods that the spatial-blurring operation that creates the observed hyperspectral image from the desired super-resolved image is separable into independent horizontal and vertical blurring. Recent work has argued that such separable spatial degradation is ill-equipped to model the operation of real sensors which may exhibit, for example, anisotropic blurring. To accommodate this fact, a generalized tensor formulation based on a Kronecker decomposition is proposed to handle any general spatial-degradation matrix, including those that are not separable as previously assumed. Analysis of the generalized formulation reveals conditions under which exact recovery of the desired super-resolved image is guaranteed, and a practical algorithm for such recovery, driven by a blockwise-group-sparsity regularization, is proposed. Extensive experimental results demonstrate that the proposed generalized tensor approach outperforms not only traditional matrix-based techniques but also state-of-the-art tensor-based methods; the gains with respect to the latter are especially significant in cases of anisotropic spatial blurring.
- Published
- 2024
14. The hypothetical track-length fitting algorithm for energy measurement in liquid argon TPCs
- Author
-
DUNE Collaboration, Abud, A. Abed, Abi, B., Acciarri, R., Acero, M. A., Adames, M. R., Adamov, G., Adamowski, M., Adams, D., Adinolfi, M., Adriano, C., Aduszkiewicz, A., Aguilar, J., Akbar, F., Alex, N. S., Allison, K., Monsalve, S. Alonso, Alrashed, M., Alton, A., Alvarez, R., Alves, T., Amar, H., Amedo, P., Anderson, J., Andreopoulos, C., Andreotti, M., Andrews, M. P., Andrianala, F., Andringa, S., Anfimov, N., Ankowski, A., Antic, D., Antoniassi, M., Antonova, M., Antoshkin, A., Aranda-Fernandez, A., Arellano, L., Diaz, E. Arrieta, Arroyave, M. A., Asaadi, J., Ashkenazi, A., Asner, D., Asquith, L., Atkin, E., Auguste, D., Aurisano, A., Aushev, V., Autiero, D., Azam, M. B., Azfar, F., Back, A., Back, H., Back, J. J., Bagaturia, I., Bagby, L., Balashov, N., Balasubramanian, S., Baldi, P., Baldini, W., Baldonedo, J., Baller, B., Bambah, B., Banerjee, R., Barao, F., Barbu, D., Barenboim, G., Alzás, P. Barham, Barker, G. J., Barkhouse, W., Barr, G., Monarca, J. Barranco, Barros, A., Barros, N., Barrow, D., Barrow, J. L., Basharina-Freshville, A., Bashyal, A., Basque, V., Batchelor, C., Bathe-Peters, L., Battat, J. B. R., Battisti, F., Bay, F., Bazetto, M. C. Q., Alba, J. L. L. Bazo, Beacom, J. F., Bechetoille, E., Behera, B., Belchior, E., Bell, G., Bellantoni, L., Bellettini, G., Bellini, V., Beltramello, O., Benekos, N., Montiel, C. Benitez, Benjamin, D., Neves, F. Bento, Berger, J., Berkman, S., Bernal, J., Bernardini, P., Bersani, A., Bertolucci, S., Betancourt, M., Rodríguez, A. Betancur, Bevan, A., Bezawada, Y., Bezerra, A. T., Bezerra, T. J., Bhat, A., Bhatnagar, V., Bhatt, J., Bhattacharjee, M., Bhattacharya, M., Bhuller, S., Bhuyan, B., Biagi, S., Bian, J., Biery, K., Bilki, B., Bishai, M., Bitadze, A., Blake, A., Blaszczyk, F. D., Blazey, G. C., Blucher, E., Bodek, A., Bogenschuetz, J., Boissevain, J., Bolognesi, S., Bolton, T., Bomben, L., Bonesini, M., Bonilla-Diaz, C., Bonini, F., Booth, A., Boran, F., Bordoni, S., Merlo, R. Borges, Borkum, A., Bostan, N., Bouet, R., Boza, J., Bracinik, J., Brahma, B., Brailsford, D., Bramati, F., Branca, A., Brandt, A., Bremer, J., Brew, C., Brice, S. J., Brio, V., Brizzolari, C., Bromberg, C., Brooke, J., Bross, A., Brunetti, G., Brunetti, M., Buchanan, N., Budd, H., Buergi, J., Bundock, A., Burgardt, D., Butchart, S., V., G. Caceres, Cagnoli, I., Cai, T., Calabrese, R., Calcutt, J., Calivers, L., Calvo, E., Caminata, A., Camino, A. F., Campanelli, W., Campani, A., Benitez, A. Campos, Canci, N., Capó, J., Caracas, I., Caratelli, D., Carber, D., Carceller, J. M., Carini, G., Carlus, B., Carneiro, M. F., Carniti, P., Terrazas, I. Caro, Carranza, H., Carrara, N., Carroll, L., Carroll, T., Carter, A., Casarejos, E., Casazza, D., Forero, J. F. Castaño, Castaño, F. A., Castillo, A., Castromonte, C., Catano-Mur, E., Cattadori, C., Cavalier, F., Cavanna, F., Centro, S., Cerati, G., Cerna, C., Cervelli, A., Villanueva, A. Cervera, Chakraborty, K., Chalifour, M., Chappell, A., Charitonidis, N., Chatterjee, A., Chen, H., Chen, M., Chen, W. C., Chen, Y., Chen-Wishart, Z., Cherdack, D., Chi, C., Chiapponi, F., Chirco, R., Chitirasreemadam, N., Cho, K., Choate, S., Choi, G., Chokheli, D., Chong, P. S., Chowdhury, B., Christian, D., Chukanov, A., Chung, M., Church, E., Cicala, M. F., Cicerchia, M., Cicero, V., Ciolini, R., Clarke, P., Cline, G., Coan, T. E., Cocco, A. G., Coelho, J. A. B., Cohen, A., Collazo, J., Collot, J., Conley, E., Conrad, J. M., Convery, M., Copello, S., Cova, P., Cox, C., Cremaldi, L., Cremonesi, L., Crespo-Anadón, J. I., Crisler, M., Cristaldo, E., Crnkovic, J., Crone, G., Cross, R., Cudd, A., Cuesta, C., Cui, Y., Curciarello, F., Cussans, D., Dai, J., Dalager, O., Dallavalle, R., Dallaway, W., D'Amico, R., da Motta, H., Dar, Z. A., Darby, R., Peres, L. Da Silva, David, Q., Davies, G. S., Davini, S., Dawson, J., De Aguiar, R., De Almeida, P., Debbins, P., De Bonis, I., Decowski, M. P., de Gouvêa, A., De Holanda, P. C., Astiz, I. L. De Icaza, De Jong, P., Sanchez, P. Del Amo, De la Torre, A., De Lauretis, G., Delbart, A., Delepine, D., Delgado, M., Dell'Acqua, A., Monache, G. Delle, Delmonte, N., De Lurgio, P., Demario, R., De Matteis, G., Neto, J. R. T. de Mello, DeMuth, D. M., Dennis, S., Densham, C., Denton, P., Deptuch, G. W., De Roeck, A., De Romeri, V., Detje, J. P., Devine, J., Dharmapalan, R., Dias, M., Diaz, A., Díaz, J. S., Díaz, F., Di Capua, F., Di Domenico, A., Di Domizio, S., Di Falco, S., Di Giulio, L., Ding, P., Di Noto, L., Diociaiuti, E., Distefano, C., Diurba, R., Diwan, M., Djurcic, Z., Doering, D., Dolan, S., Dolek, F., Dolinski, M. J., Domenici, D., Domine, L., Donati, S., Donon, Y., Doran, S., Douglas, D., Doyle, T. A., Dragone, A., Drielsma, F., Duarte, L., Duchesneau, D., Duffy, K., Dugas, K., Dunne, P., Dutta, B., Duyang, H., Dwyer, D. A., Dyshkant, A. S., Dytman, S., Eads, M., Earle, A., Edayath, S., Edmunds, D., Eisch, J., Englezos, P., Ereditato, A., Erjavec, T., Escobar, C. O., Evans, J. J., Ewart, E., Ezeribe, A. C., Fahey, K., Fajt, L., Falcone, A., Fani', M., Farnese, C., Farrell, S., Farzan, Y., Fedoseev, D., Felix, J., Feng, Y., Fernandez-Martinez, E., Ferry, G., Fialova, E., Fields, L., Filip, P., Filkins, A., Filthaut, F., Fine, R., Fiorillo, G., Fiorini, M., Fogarty, S., Foreman, W., Fowler, J., Franc, J., Francis, K., Franco, D., Franklin, J., Freeman, J., Fried, J., Friedland, A., Fuess, S., Furic, I. K., Furman, K., Furmanski, A. P., Gaba, R., Gabrielli, A., Gago, A. M., Galizzi, F., Gallagher, H., Gallice, N., Galymov, V., Gamberini, E., Gamble, T., Ganacim, F., Gandhi, R., Ganguly, S., Gao, F., Gao, S., Garcia-Gamez, D., García-Peris, M. Á., Gardim, F., Gardiner, S., Gastler, D., Gauch, A., Gauvreau, J., Gauzzi, P., Gazzana, S., Ge, G., Geffroy, N., Gelli, B., Gent, S., Gerlach, L., Ghorbani-Moghaddam, Z., Giammaria, T., Gibin, D., Gil-Botella, I., Gilligan, S., Gioiosa, A., Giovannella, S., Girerd, C., Giri, A. K., Giugliano, C., Giusti, V., Gnani, D., Gogota, O., Gollapinni, S., Gollwitzer, K., Gomes, R. A., Bermeo, L. V. Gomez, Fajardo, L. S. Gomez, Gonnella, F., Gonzalez-Diaz, D., Gonzalez-Lopez, M., Goodman, M. C., Goswami, S., Gotti, C., Goudeau, J., Goudzovski, E., Grace, C., Gramellini, E., Gran, R., Granados, E., Granger, P., Grant, C., Gratieri, D. R., Grauso, G., Green, P., Greenberg, S., Greer, J., Griffith, W. C., Groetschla, F. T., Grzelak, K., Gu, L., Gu, W., Guarino, V., Guarise, M., Guenette, R., Guerzoni, M., Guffanti, D., Guglielmi, A., Guo, B., Guo, F. Y., Gupta, A., Gupta, V., Gurung, G., Gutierrez, D., Guzowski, P., Guzzo, M. M., Gwon, S., Habig, A., Hadavand, H., Haegel, L., Haenni, R., Hagaman, L., Hahn, A., Haiston, J., Hakenmüller, J., Hamernik, T., Hamilton, P., Hancock, J., Happacher, F., Harris, D. A., Hart, A. L., Hartnell, J., Hartnett, T., Harton, J., Hasegawa, T., Hasnip, C. M., Hatcher, R., Hayrapetyan, K., Hays, J., Hazen, E., He, M., Heavey, A., Heeger, K. M., Heise, J., Hellmuth, P., Henry, S., Herner, K., Hewes, V., Higuera, A., Hilgenberg, C., Hillier, S. J., Himmel, A., Hinkle, E., Hirsch, L. R., Ho, J., Hoff, J., Holin, A., Holvey, T., Hoppe, E., Horiuchi, S., Horton-Smith, G. A., Houdy, T., Howard, B., Howell, R., Hristova, I., Hronek, M. S., Huang, J., Huang, R. G., Hulcher, Z., Ibrahim, M., Iles, G., Ilic, N., Iliescu, A. M., Illingworth, R., Ingratta, G., Ioannisian, A., Irwin, B., Isenhower, L., Oliveira, M. Ismerio, Itay, R., Jackson, C. M., Jain, V., James, E., Jang, W., Jargowsky, B., Jena, D., Jentz, I., Ji, X., Jiang, C., Jiang, J., Jiang, L., Jipa, A., Jo, J. H., Joaquim, F. R., Johnson, W., Jollet, C., Jones, B., Jones, R., Jovancevic, N., Judah, M., Jung, C. K., Jung, K. Y., Junk, T., Jwa, Y., Kabirnezhad, M., Kaboth, A. C., Kadenko, I., Kakorin, I., Kalitkina, A., Kalra, D., Kandemir, M., Kaplan, D. M., Karagiorgi, G., Karaman, G., Karcher, A., Karyotakis, Y., Kasai, S., Kasetti, S. P., Kashur, L., Katsioulas, I., Kauther, A., Kazaryan, N., Ke, L., Kearns, E., Keener, P. T., Kelly, K. J., Kemp, E., Kemularia, O., Kermaidic, Y., Ketchum, W., Kettell, S. H., Khabibullin, M., Khan, N., Khvedelidze, A., Kim, D., Kim, J., Kim, M. J., King, B., Kirby, B., Kirby, M., Kish, A., Klein, J., Kleykamp, J., Klustova, A., Kobilarcik, T., Koch, L., Koehler, K., Koerner, L. W., Koh, D. H., Kolupaeva, L., Korablev, D., Kordosky, M., Kosc, T., Kose, U., Kostelecký, V. A., Kothekar, K., Kotler, I., Kovalcuk, M., Kozhukalov, V., Krah, W., Kralik, R., Kramer, M., Kreczko, L., Krennrich, F., Kreslo, I., Kroupova, T., Kubota, S., Kubu, M., Kudenko, Y., Kudryavtsev, V. A., Kufatty, G., Kuhlmann, S., Kulagin, S., Kumar, J., Kumar, P., Kumaran, S., Kunzmann, J., Kuravi, R., Kurita, N., Kuruppu, C., Kus, V., Kutter, T., Kvasnicka, J., Labree, T., Lackey, T., Lalău, I., Lambert, A., Land, B. J., Lane, C. E., Lane, N., Lang, K., Langford, T., Langstaff, M., Lanni, F., Lantwin, O., Larkin, J., Lasorak, P., Last, D., Laudrain, A., Laundrie, A., Laurenti, G., Lavaut, E., Laycock, P., Lazanu, I., LaZur, R., Lazzaroni, M., Le, T., Leardini, S., Learned, J., LeCompte, T., Legin, V., Miotto, G. Lehmann, Lehnert, R., de Oliveira, M. A. Leigui, Leitner, M., Silverio, D. Leon, Lepin, L. M., Li, J. -Y, Li, S. W., Li, Y., Liao, H., Lin, C. S., Lindebaum, D., Linden, S., Lineros, R. A., Lister, A., Littlejohn, B. R., Liu, H., Liu, J., Liu, Y., Lockwitz, S., Lokajicek, M., Lomidze, I., Long, K., Lopes, T. V., Lopez, J., de Rego, I. López, López-March, N., Lord, T., LoSecco, J. M., Louis, W. C., Sanchez, A. Lozano, Lu, X. -G., Luk, K. B., Lunday, B., Luo, X., Luppi, E., MacFarlane, D., Machado, A. A., Machado, P., Macias, C. T., Macier, J. R., MacMahon, M., Maddalena, A., Madera, A., Madigan, P., Magill, S., Magueur, C., Mahn, K., Maio, A., Major, A., Majumdar, K., Mameli, S., Man, M., Mandujano, R. C., Maneira, J., Manly, S., Mann, A., Manolopoulos, K., Plata, M. Manrique, Corchado, S. Manthey, Manyam, V. N., Marchan, M., Marchionni, A., Marciano, W., Marfatia, D., Mariani, C., Maricic, J., Marinho, F., Marino, A. D., Markiewicz, T., Marques, F. Das Chagas, Marquet, C., Marshak, M., Marshall, C. M., Marshall, J., Martina, L., Martín-Albo, J., Martinez, N., Caicedo, D. A. Martinez, López, F. Martínez, Miravé, P. Martínez, Martynenko, S., Mascagna, V., Massari, C., Mastbaum, A., Matichard, F., Matsuno, S., Matteucci, G., Matthews, J., Mauger, C., Mauri, N., Mavrokoridis, K., Mawby, I., Mazza, R., McAskill, T., McConkey, N., McFarland, K. S., McGrew, C., McNab, A., Meazza, L., Meddage, V. C. N., Mefodiev, A., Mehta, B., Mehta, P., Melas, P., Mena, O., Mendez, H., Mendez, P., Méndez, D. P., Menegolli, A., Meng, G., Mercuri, A. C. E. A., Meregaglia, A., Messier, M. D., Metallo, S., Metcalf, W., Mewes, M., Meyer, H., Miao, T., Micallef, J., Miccoli, A., Michna, G., Milincic, R., Miller, F., Miller, G., Miller, W., Mineev, O., Minotti, A., Miralles, L., Mironov, C., Miryala, S., Miscetti, S., Mishra, C. S., Mishra, P., Mishra, S. R., Mislivec, A., Mitchell, M., Mladenov, D., Mocioiu, I., Mogan, A., Moggi, N., Mohanta, R., Mohayai, T. A., Mokhov, N., Molina, J., Bueno, L. Molina, Montagna, E., Montanari, A., Montanari, C., Montanari, D., Montanino, D., Zetina, L. M. Montaño, Mooney, M., Moor, A. F., Moore, Z., Moreno, D., Moreno-Palacios, O., Morescalchi, L., Moretti, D., Moretti, R., Morris, C., Mossey, C., Moura, C. A., Mouster, G., Mu, W., Mualem, L., Mueller, J., Muether, M., Muheim, F., Muir, A., Mukhamejanov, Y., Mulhearn, M., Munford, D., Munteanu, L. J., Muramatsu, H., Muraz, J., Murphy, M., Murphy, T., Muse, J., Mytilinaki, A., Nachtman, J., Nagai, Y., Nagu, S., Nandakumar, R., Naples, D., Narita, S., Navrer-Agasson, A., Nayak, N., Nebot-Guinot, M., Nehm, A., Nelson, J. K., Neogi, O., Nesbit, J., Nessi, M., Newbold, D., Newcomer, M., Nichol, R., Nicolas-Arnaldos, F., Nikolica, A., Nikolov, J., Niner, E., Nishimura, K., Norman, A., Norrick, A., Novella, P., Nowak, A., Nowak, J. A., Oberling, M., Ochoa-Ricoux, J. P., Oh, S., Oh, S. B., Olivier, A., Olshevskiy, A., Olson, T., Onel, Y., Onishchuk, Y., Oranday, A., Osbiston, M., Vélez, J. A. Osorio, O'Sullivan, L., Ormachea, L. Otiniano, Ott, J., Pagani, L., Palacio, G., Palamara, O., Palestini, S., Paley, J. M., Pallavicini, M., Palomares, C., Pan, S., Panda, P., Vazquez, W. Panduro, Pantic, E., Paolone, V., Papaleo, R., Papanestis, A., Papoulias, D., Paramesvaran, S., Paris, A., Parke, S., Parozzi, E., Parsa, S., Parsa, Z., Parveen, S., Parvu, M., Pasciuto, D., Pascoli, S., Pasqualini, L., Pasternak, J., Patrick, C., Patrizii, L., Patterson, R. B., Patzak, T., Paudel, A., Paulucci, L., Pavlovic, Z., Pawloski, G., Payne, D., Pec, V., Pedreschi, E., Peeters, S. J. M., Pellico, W., Perez, A. Pena, Pennacchio, E., Penzo, A., Peres, O. L. G., Gonzalez, Y. F. Perez, Pérez-Molina, L., Pernas, C., Perry, J., Pershey, D., Pessina, G., Petrillo, G., Petta, C., Petti, R., Pfaff, M., Pia, V., Pickering, L., Pietropaolo, F., Pimentel, V. L., Pinaroli, G., Pincha, S., Pinchault, J., Pitts, K., Plows, K., Pollack, C., Pollman, T., Pompa, F., Pons, X., Poonthottathil, N., Popov, V., Poppi, F., Porter, J., Paixão, L. G. Porto, Potekhin, M., Potenza, R., Pozzato, M., Prakash, T., Pratt, C., Prest, M., Psihas, F., Pugnere, D., Qian, X., Queen, J., Raaf, J. L., Radeka, V., Rademacker, J., Radics, B., Raffaelli, F., Rafique, A., Raguzin, E., Rahaman, U., Rai, M., Rajagopalan, S., Rajaoalisoa, M., Rakhno, I., Rakotondravohitra, L., Ralte, L., Delgado, M. A. Ramirez, Ramson, B., Rappoldi, A., Raselli, G., Ratoff, P., Ray, R., Razafinime, H., Razakamiandra, R. F., Rea, E. M., Real, J. S., Rebel, B., Rechenmacher, R., Reichenbacher, J., Reitzner, S. D., Sfar, H. Rejeb, Renner, E., Renshaw, A., Rescia, S., Resnati, F., Restrepo, Diego, Reynolds, C., Ribas, M., Riboldi, S., Riccio, C., Riccobene, G., Ricol, J. S., Rigan, M., Rincón, E. V., Ritchie-Yates, A., Ritter, S., Rivera, D., Rivera, R., Robert, A., Rocha, J. L. Rocabado, Rochester, L., Roda, M., Rodrigues, P., Alonso, M. J. Rodriguez, Rondon, J. Rodriguez, Rosauro-Alcaraz, S., Rosier, P., Ross, D., Rossella, M., Rossi, M., Ross-Lonergan, M., Roy, N., Roy, P., Rubbia, C., Ruggeri, A., Ferreira, G. Ruiz, Russell, B., Ruterbories, D., Rybnikov, A., Sacerdoti, S., Saha, S., Sahoo, S. K., Sahu, N., Sala, P., Samios, N., Samoylov, O., Sanchez, M. C., Bravo, A. Sánchez, Sánchez-Castillo, A., Sanchez-Lucas, P., Sandberg, V., Sanders, D. A., Sanfilippo, S., Sankey, D., Santoro, D., Saoulidou, N., Sapienza, P., Sarasty, C., Sarcevic, I., Sarra, I., Savage, G., Savinov, V., Scanavini, G., Scaramelli, A., Scarff, A., Schefke, T., Schellman, H., Schifano, S., Schlabach, P., Schmitz, D., Schneider, A. W., Scholberg, K., Schukraft, A., Schuld, B., Segade, A., Segreto, E., Selyunin, A., Senadheera, D., Senise, C. R., Sensenig, J., Shaevitz, M. H., Shanahan, P., Sharma, P., Kumar, R., Poudel, S. Sharma, Shaw, K., Shaw, T., Shchablo, K., Shen, J., Shepherd-Themistocleous, C., Sheshukov, A., Shi, J., Shi, W., Shin, S., Shivakoti, S., Shoemaker, I., Shooltz, D., Shrock, R., Siddi, B., Siden, M., Silber, J., Simard, L., Sinclair, J., Sinev, G., Singh, Jaydip, Singh, J., Singh, L., Singh, P., Singh, V., Chauhan, S. Singh, Sipos, R., Sironneau, C., Sirri, G., Siyeon, K., Skarpaas, K., Smedley, J., Smith, E., Smith, J., Smith, P., Smolik, J., Smy, M., Snape, M., Snider, E. L., Snopok, P., Snowden-Ifft, D., Nunes, M. Soares, Sobel, H., Soderberg, M., Sokolov, S., Salinas, C. J. Solano, Söldner-Rembold, S., Solomey, N., Solovov, V., Sondheim, W. E., Sorel, M., Sotnikov, A., Soto-Oton, J., Sousa, A., Soustruznik, K., Spinella, F., Spitz, J., Spooner, N. J. C., Spurgeon, K., Stalder, D., Stancari, M., Stanco, L., Steenis, J., Stein, R., Steiner, H. M., Lisbôa, A. F. Steklain, Stepanova, A., Stewart, J., Stillwell, B., Stock, J., Stocker, F., Stokes, T., Strait, M., Strauss, T., Strigari, L., Stuart, A., Suarez, J. G., Subash, J., Surdo, A., Suter, L., Sutera, C. M., Sutton, K., Suvorov, Y., Svoboda, R., Swain, S. K., Szczerbinska, B., Szelc, A. M., Sztuc, A., Taffara, A., Talukdar, N., Tamara, J., Tanaka, H. A., Tang, S., Taniuchi, N., Casanova, A. M. Tapia, Oregui, B. Tapia, Tapper, A., Tariq, S., Tarpara, E., Tatar, E., Tayloe, R., Tedeschi, D., Teklu, A. M., Vidal, J. Tena, Tennessen, P., Tenti, M., Terao, K., Terranova, F., Testera, G., Thakore, T., Thea, A., Thomas, S., Thompson, A., Thorn, C., Timm, S. C., Tiras, E., Tishchenko, V., Tiwari, S., Todorović, N., Tomassetti, L., Tonazzo, A., Torbunov, D., Torti, M., Tortola, M., Tortorici, F., Tosi, N., Totani, D., Toups, M., Touramanis, C., Tran, D., Travaglini, R., Trevor, J., Triller, E., Trilov, S., Truchon, J., Truncali, D., Trzaska, W. H., Tsai, Y., Tsai, Y. -T., Tsamalaidze, Z., Tsang, K. V., Tsverava, N., Tu, S. Z., Tufanli, S., Tunnell, C., Turnberg, S., Turner, J., Tuzi, M., Tyler, J., Tyley, E., Tzanov, M., Uchida, M. A., González, J. Ureña, Urheim, J., Usher, T., Utaegbulam, H., Uzunyan, S., Vagins, M. R., Vahle, P., Valder, S., Valdiviesso, G. A., Valencia, E., Valentim, R., Vallari, Z., Vallazza, E., Valle, J. W. F., Van Berg, R., Van de Water, R. G., Forero, D. V., Vannozzi, A., Van Nuland-Troost, M., Varanini, F., Oliva, D. Vargas, Vasina, S., Vaughan, N., Vaziri, K., Vázquez-Ramos, A., Vega, J., Ventura, S., Verdugo, A., Vergani, S., Verzocchi, M., Vetter, K., Vicenzi, M., de Souza, H. Vieira, Vignoli, C., Vilela, C., Villa, E., Viola, S., Viren, B., Vizarreta, R., Hernandez, A. P. Vizcaya, Vuong, Q., Waldron, A. V., Wallbank, M., Walsh, J., Walton, T., Wang, H., Wang, J., Wang, L., Wang, M. H. L. S., Wang, X., Wang, Y., Warburton, K., Warner, D., Warsame, L., Wascko, M. O., Waters, D., Watson, A., Wawrowska, K., Weber, A., Weber, C. M., Weber, M., Wei, H., Weinstein, A., Westerdale, S., Wetstein, M., Whalen, K., White, A., Whitehead, L. H., Whittington, D., Wilhlemi, J., Wilking, M. J., Wilkinson, A., Wilkinson, C., Wilson, F., Wilson, R. J., Winter, P., Wisniewski, W., Wolcott, J., Wolfs, J., Wongjirad, T., Wood, A., Wood, K., Worcester, E., Worcester, M., Wospakrik, M., Wresilo, K., Wret, C., Wu, S., Wu, W., Wurm, M., Wyenberg, J., Xiao, Y., Xiotidis, I., Yaeggy, B., Yahlali, N., Yandel, E., Yang, J., Yang, K., Yang, T., Yankelevich, A., Yershov, N., Yonehara, K., Young, T., Yu, B., Yu, H., Yu, J., Yu, Y., Yuan, W., Zaki, R., Zalesak, J., Zambelli, L., Zamorano, B., Zani, A., Zapata, O., Zazueta, L., Zeller, G. P., Zennamo, J., Zeug, K., Zhang, C., Zhang, S., Zhao, M., Zhivun, E., Zimmerman, E. D., Zucchelli, S., Zuklin, J., Zutshi, V., and Zwaska, R.
- Subjects
Physics - Instrumentation and Detectors ,High Energy Physics - Experiment - Abstract
This paper introduces the hypothetical track-length fitting algorithm, a novel method for measuring the kinetic energies of ionizing particles in liquid argon time projection chambers (LArTPCs). The algorithm finds the most probable offset in track length for a track-like object by comparing the measured ionization density as a function of position with a theoretical prediction of the energy loss as a function of the energy, including models of electron recombination and detector response. The algorithm can be used to measure the energies of particles that interact before they stop, such as charged pions that are absorbed by argon nuclei. The algorithm's energy measurement resolutions and fractional biases are presented as functions of particle kinetic energy and number of track hits using samples of stopping secondary charged pions in data collected by the ProtoDUNE-SP detector, and also in a detailed simulation. Additional studies describe impact of the dE/dx model on energy measurement performance. The method described in this paper to characterize the energy measurement performance can be repeated in any LArTPC experiment using stopping secondary charged pions.
- Published
- 2024
15. Visualizing Dynamics of Charges and Strings in (2+1)D Lattice Gauge Theories
- Author
-
Cochran, Tyler A., Jobst, Bernhard, Rosenberg, Eliott, Lensky, Yuri D., Gyawali, Gaurav, Eassa, Norhan, Will, Melissa, Abanin, Dmitry, Acharya, Rajeev, Beni, Laleh Aghababaie, Andersen, Trond I., Ansmann, Markus, Arute, Frank, Arya, Kunal, Asfaw, Abraham, Atalaya, Juan, Babbush, Ryan, Ballard, Brian, Bardin, Joseph C., Bengtsson, Andreas, Bilmes, Alexander, Bourassa, Alexandre, Bovaird, Jenna, Broughton, Michael, Browne, David A., Buchea, Brett, Buckley, Bob B., Burger, Tim, Burkett, Brian, Bushnell, Nicholas, Cabrera, Anthony, Campero, Juan, Chang, Hung-Shen, Chen, Zijun, Chiaro, Ben, Claes, Jahan, Cleland, Agnetta Y., Cogan, Josh, Collins, Roberto, Conner, Paul, Courtney, William, Crook, Alexander L., Curtin, Ben, Das, Sayan, Demura, Sean, De Lorenzo, Laura, Di Paolo, Agustin, Donohoe, Paul, Drozdov, Ilya, Dunsworth, Andrew, Eickbusch, Alec, Elbag, Aviv Moshe, Elzouka, Mahmoud, Erickson, Catherine, Ferreira, Vinicius S., Burgos, Leslie Flores, Forati, Ebrahim, Fowler, Austin G., Foxen, Brooks, Ganjam, Suhas, Gasca, Robert, Genois, Élie, Giang, William, Gilboa, Dar, Gosula, Raja, Dau, Alejandro Grajales, Graumann, Dietrich, Greene, Alex, Gross, Jonathan A., Habegger, Steve, Hansen, Monica, Harrigan, Matthew P., Harrington, Sean D., Heu, Paula, Higgott, Oscar, Hilton, Jeremy, Huang, Hsin-Yuan, Huff, Ashley, Huggins, William J., Jeffrey, Evan, Jiang, Zhang, Jones, Cody, Joshi, Chaitali, Juhas, Pavol, Kafri, Dvir, Kang, Hui, Karamlou, Amir H., Kechedzhi, Kostyantyn, Khaire, Trupti, Khattar, Tanuj, Khezri, Mostafa, Kim, Seon, Klimov, Paul V., Kobrin, Bryce, Korotkov, Alexander N., Kostritsa, Fedor, Kreikebaum, John Mark, Kurilovich, Vladislav D., Landhuis, David, Lange-Dei, Tiano, Langley, Brandon W., Lau, Kim-Ming, Ledford, Justin, Lee, Kenny, Lester, Brian J., Guevel, Loïck Le, Li, Wing Yan, Lill, Alexander T., Livingston, William P., Locharla, Aditya, Lundahl, Daniel, Lunt, Aaron, Madhuk, Sid, Maloney, Ashley, Mandrà, Salvatore, Martin, Leigh S., Martin, Orion, Maxfield, Cameron, McClean, Jarrod R., McEwen, Matt, Meeks, Seneca, Megrant, Anthony, Miao, Kevin C., Molavi, Reza, Molina, Sebastian, Montazeri, Shirin, Movassagh, Ramis, Neill, Charles, Newman, Michael, Nguyen, Anthony, Nguyen, Murray, Ni, Chia-Hung, Niu, Murphy Yuezhen, Oliver, William D., Ottosson, Kristoffer, Pizzuto, Alex, Potter, Rebecca, Pritchard, Orion, Quintana, Chris, Ramachandran, Ganesh, Reagor, Matthew J., Rhodes, David M., Roberts, Gabrielle, Sankaragomathi, Kannan, Satzinger, Kevin J., Schurkus, Henry F., Shearn, Michael J., Shorter, Aaron, Shutty, Noah, Shvarts, Vladimir, Sivak, Volodymyr, Small, Spencer, Smith, W. Clarke, Springer, Sofia, Sterling, George, Suchard, Jordan, Szasz, Aaron, Sztein, Alex, Thor, Douglas, Torunbalci, M. Mert, Vaishnav, Abeer, Vargas, Justin, Vdovichev, Sergey, Vidal, Guifre, Heidweiller, Catherine Vollgraff, Waltman, Steven, Wang, Shannon X., Ware, Brayden, White, Theodore, Wong, Kristi, Woo, Bryan W. K., Xing, Cheng, Yao, Z. Jamie, Yeh, Ping, Ying, Bicheng, Yoo, Juhwan, Yosri, Noureldin, Young, Grayson, Zalcman, Adam, Zhang, Yaxing, Zhu, Ningfeng, Zobris, Nicholas, Boixo, Sergio, Kelly, Julian, Lucero, Erik, Chen, Yu, Smelyanskiy, Vadim, Neven, Hartmut, Gammon-Smith, Adam, Pollmann, Frank, Knap, Michael, and Roushan, Pedram
- Subjects
Quantum Physics ,Condensed Matter - Strongly Correlated Electrons ,High Energy Physics - Lattice - Abstract
Lattice gauge theories (LGTs) can be employed to understand a wide range of phenomena, from elementary particle scattering in high-energy physics to effective descriptions of many-body interactions in materials. Studying dynamical properties of emergent phases can be challenging as it requires solving many-body problems that are generally beyond perturbative limits. We investigate the dynamics of local excitations in a $\mathbb{Z}_2$ LGT using a two-dimensional lattice of superconducting qubits. We first construct a simple variational circuit which prepares low-energy states that have a large overlap with the ground state; then we create particles with local gates and simulate their quantum dynamics via a discretized time evolution. As the effective magnetic field is increased, our measurements show signatures of transitioning from deconfined to confined dynamics. For confined excitations, the magnetic field induces a tension in the string connecting them. Our method allows us to experimentally image string dynamics in a (2+1)D LGT from which we uncover two distinct regimes inside the confining phase: for weak confinement the string fluctuates strongly in the transverse direction, while for strong confinement transverse fluctuations are effectively frozen. In addition, we demonstrate a resonance condition at which dynamical string breaking is facilitated. Our LGT implementation on a quantum processor presents a novel set of techniques for investigating emergent particle and string dynamics.
- Published
- 2024
16. On graphs isomorphic with their conduction graph
- Author
-
Birkinshaw, Aidan, Fowler, Patrick W., Goedgebeur, Jan, and Jooken, Jorik
- Subjects
Mathematics - Combinatorics - Abstract
Conduction graphs are defined here in order to elucidate at a glance the often complicated conduction behaviour of molecular graphs as ballistic molecular conductors. The graph $G^{\mathrm C}$ describes all possible conducting devices associated with a given base graph $G$ within the context of the Source-and-Sink-Potential model of ballistic conduction. The graphs $G^{\mathrm C}$ and $G$ have the same vertex set, and each edge $xy$ in $G^{\mathrm C}$ represents a conducting device with graph $G$ and connections $x$ and $y$ that conducts at the Fermi level. If $G^{\mathrm C}$ is isomorphic with the simple graph $G$ (in which case we call $G$ conduction-isomorphic), then $G$ has nullity $\eta(G)=0$ and is an ipso omni-insulator. Motivated by this, examples are provided of ipso omni-insulators of odd order, thereby answering a recent question. For $\eta(G)=0$, $G^{\mathrm C}$ is obtained by 'booleanising' the inverse adjacency matrix $A^{-1}(G)$, to form $A(G^{\mathrm C})$, i.e. by replacing all non-zero entries $(A(G)^{-1})_{xy}$ in the inverse by $1+\delta_{xy}$ where $\delta_{xy}$ is the Kronecker delta function. Constructions of conduction-isomorphic graphs are given for the cases of $G$ with minimum degree equal to two or any odd integer. Moreover, it is shown that given any connected non-bipartite conduction-isomorphic graph $G$, a larger conduction-isomorphic graph $G'$ with twice as many vertices and edges can be constructed. It is also shown that there are no 3-regular conduction-isomorphic graphs. A census of small (order $\leq 11$) connected conduction-isomorphic graphs and small (order $\leq 22$) connected conduction-isomorphic graphs with maximum degree at most three is given. For $\eta(G)=1$, it is shown that $G^{\mathrm C}$ is connected if and only if $G$ is a nut graph (a singular graph of nullity one that has a full kernel vector)., Comment: Paper accepted for publication in MATCH Commun. Math. Comput. Chem.: https://doi.org/10.46793/match.93-2.379B
- Published
- 2024
- Full Text
- View/download PDF
17. Real-time control and data standardization on various telescopes and benches
- Author
-
Skaf, Nour, Jensen-Clem, Rebecca, Hunter, Aaron, Guyon, Olivier, Deo, Vincent, Hinz, Phil, Cetre, Sylvain, Chambouleyron, Vincent, Fowler, J., Sengupa, Aditya, Salama, Maissa, Males, Jared, McEwen, Eden, Douglas, Ewan S., Van Gorkom, Kyle, Por, Emiel, Lucas, Miles, Ferreira, Florian, Sevin, Arnaud, Bowens-Rubin, Rachel, Cranney, Jesse, and Calvin, Ben
- Subjects
Astrophysics - Instrumentation and Methods for Astrophysics - Abstract
Real-time control (RTC) is pivotal for any Adaptive Optics (AO) system, including high-contrast imaging of exoplanets and circumstellar environments. It is the brain of the AO system, and what wavefront sensing and control (WFS\&C) techniques need to work with to achieve unprecedented image quality and contrast, ultimately advancing our understanding of exoplanetary systems in the context of high contrast imaging (HCI). Developing WFS\&C algorithms first happens in simulation or a lab before deployment on-sky. The transition to on-sky testing is often challenging due to the different RTCs used. Sharing common RTC standards across labs and telescope instruments would considerably simplify this process. A data architecture based on the interprocess communication method known as shared memory is ideally suited for this purpose. The CACAO package, an example of RTC based on shared memory, was initially developed for the Subaru-SCExAO instrument and now deployed on several benches and instruments. This proceeding discusses the challenges, requirements, implementation strategies, and performance evaluations associated with integrating a shared memory-based RTC. The Santa Cruz Extreme AO Laboratory (SEAL) bench is a platform for WFS\&C development for large ground-based segmented telescopes. Currently, SEAL offers the user a non-real-time version of CACAO, a shared-memory based RTC package initially developed for the Subaru-SCExAO instrument, and now deployed on several benches and instruments. We show here the example of the SEAL RTC upgrade as a precursor to both RTC upgrade at the 3-m Shane telescopes at Lick Observatory (Shane-AO) and a future development platform for the Keck II AO. This paper is aimed at specialists in AO, astronomers, and WFS\&C scientists seeking a deeper introduction to the world of RTCs., Comment: SPIE Astronomical Telescope and Intrumentation 2024
- Published
- 2024
18. High-contrast imager for complex aperture telescopes (HiCAT): 11. System-level demonstration of the Apodized Pupil Lyot Coronagraph with a segmented aperture in air
- Author
-
Soummer, Rémi, Pourcelot, Raphaël, Por, Emiel H., Steiger, Sarah, Laginja, Iva, Buralli, Benjamin, Redmond, Susan, Pueyo, Laurent, Perrin, Marshall D., Ferrari, Marc, Fowler, Jules, Hagopian, John, N'Diaye, Mamadou, Nguyen, Meiji, Nickson, Bryony, Petrone, Peter, Sahoo, Ananya, Sivaramakrishnan, Anand, and Will, Scott D.
- Subjects
Astrophysics - Instrumentation and Methods for Astrophysics - Abstract
We present the final results of the Apodized Pupil Lyot Coronagraph (APLC) on the High-contrast imager for Complex Aperture Telescopes (HiCAT) testbed, under NASA's Strategic Astrophysics Technology program. The HiCAT testbed was developed over the past decade to enable a system-level demonstration of coronagraphy for exoplanet direct imaging with the future Habitable Wolds Observatory. HiCAT includes an active, segmented telescope simulator, a coronagraph, and metrology systems (Low-order and Mid-Order Zernike Wavefront Sensors, and Phase Retrieval camera). These results correspond to an off-axis (un-obscured) configuration, as was envisioned in the 2020 Decadal Survey Recommendations. Narrowband and broadband dark holes are generated using two continuous deformable mirrors (DM) to control high order wavefront aberrations, and low-order drifts can be further stabilized using the LOWFS loop. The APLC apodizers, manufactured using carbon nanotubes, were optimized for broadband performance and include the calibrated geometric aperture. HiCAT is, to this date, the only testbed facility able to demonstrate high-contrast coronagraphy with a truly segmented aperture, as is required for the Habitable World Observatory, albeit limited to ambient conditions. Results presented here include $6\times 10^{-8}$ (90% CI) contrast in 9% bandpass in a 360 deg dark hole with inner and outer working angles of $4.4 \lambda/D_{pupil}$ and $11 \lambda/D_{pupil}$ . Narrowband contrast (3% bandpass) reaches $2.4\times 10^{-8}$ (90% confidence interval)., Comment: 17 pages, 16 figures, SPIE Astronomical Telescopes + Instrumentation, 2024, Yokohama, Japan
- Published
- 2024
- Full Text
- View/download PDF
19. A Content Analysis of Peer-Reviewed Journal Articles over the Last 20 Years: To What Extent Does Contemporary Research Focus on the Effects of Frequent Relocation on the Academic Performance of Military-Connected Students?
- Author
-
Tyler J. Fowler
- Abstract
This article is a content analysis of peer-reviewed research publications from the years 2001 to 2022 to find the extent to which frequent relocation may affect the academic performance of military-connected students. There are many articles with a focus on civilian students that experience frequent residential and school mobility. However, to what extent has the extant literature focused on the military-connected student that also experiences frequent residential and school mobility? This article pays special attention to the current literature surrounding elementary-aged military-connected students. This article also examines areas of future research surrounding this group of students.
- Published
- 2024
20. Arkansas Summer Research Institute: The Evolution of an Engaging Online Training Program in Data Analytics and Research Targeting Underrepresented Students in STEM
- Author
-
Whitney M. Holden, Patrycja A. Krakowiak, K. Maja Krakowiak, and Jennifer Fowler
- Abstract
Shortage of highly-skilled STEM workers, lack of critical technical skills, and persistence of underrepresentation are key problems for our nation's future. The Arkansas Summer Research Institute (ASRI) incorporates novel approaches to broaden participation in STEM, research, and data analytics, especially among URM students (over 50% of ASRI participants). The ASRI has evolved from in-person to a virtual model that includes innovations in organization, engagement technologies, personalization, gamification, mentoring, and networking. Students conduct independent research projects and present their findings. Student confidence in coding, research, statistics, and visualization skills improved significantly (p<0.001) during this two-week summer program. Furthermore, the use of continuous communication, ongoing help, extremely low student-to-mentor ratios, and one-on-one coaching led to excellent overall satisfaction scores on a 5-point scale, which were surprisingly higher in a virtual environment (N = 148, M = 4.73, SD = 0.53) than an in-person one (N = 133, M = 4.11, SD = 0.87, p < 0.001). The ASRI has trained over 300 students and involved over 130 STEM professors and professionals from across Arkansas in the pursuit of equitable and productive training and can serve as a model for other groups seeking to develop similar programs in the future.
- Published
- 2024
21. Collaborative Assessment Guide for Transition Planning
- Author
-
National Technical Assistance Center on Transition (NTACT), M. Stoehr, M. Diehl, M. Morningstar, D. Rowe, B. K. Simmons, C. Fowler, D. Lattin, J. Vicchio, and E. Wall
- Abstract
The National Technical Assistance Center on Transition: the Collaborative (NTACT:C) Collaborative Assessment Guide for Transition Planning (CAG) is intended to help students, family members, educators, vocational rehabilitation counselors, human services and health agency staff, and other partners develop a coordinated assessment approach for transition planning and service delivery. The set of resources which make up the CAG includes sections designed for students and families. It also includes a supplement to highlight the assessment requirements of the Individuals with Disabilities Education Act (IDEA, 2004) and the Rehabilitation Act of 1973 (Rehab Act), as amended by title IV of the Workforce Innovation and Opportunity Act (WIOA) as well as a supplement of Definitions referenced throughout. Finally, it includes a supplement of sample assessment tools. The assessment process for identifying post-school goals and relevant transition services for students and youth consists of six separate but interconnected processes: (1) Determining What to Assess; (2) Determining Stakeholders; (3) Selecting Appropriate Assessments; (4) Conducting Assessments; (5) Reviewing Assessment Results; and (6) Using Assessment Data.
- Published
- 2024
22. Identifying Standardized Instruments for Measuring Play's Effect on Child Development: Findings from an Extension of a Systematic Review
- Author
-
Farahiyah Wan Yunus, Sakinah Idris, Siti Noraini Asmuri, Bess Fowler, and Muhammad Hibatullah Romli
- Abstract
The authors contend that children benefit from play as a form of intervention and as a means of fostering their cognitive, social, and physical growth. They review several standardized instruments developed over the last fifty years to assess this benefit of play on child development. They identify twenty-one such play measures, the majority of them applicable to children under twelve. Some of the measurements can be conducted by children, but most are proxy rated and employ some form of observation. Over half require no or minimal training. Others can be completed in less than thirty minutes. More evaluations exist for the earlier instruments, but these measurements lacked psychometric evidence to back them up. The authors note they based their selections on the distinct characteristics and features of the measures, and they offer their conclusions to assist users in choosing the best systematic instruments for their specific needs.
- Published
- 2024
23. Context-Dependent Social Comparison and Imposter Phenomenon: An Experimental Vignette Approach
- Author
-
Kate E. Snyder, Maxwell I. Bartley, and Allison Fowler
- Abstract
Recent research into imposter phenomenon, or internal feelings of questioning competence, has shifted away from conceptualizing the feeling as an individual characteristic that requires an individual solution toward instead examining the role of context. We used a 2 (Generational Status: First Generation vs. Continuing Generation) × 3 (Environment: Classroom vs. Peer vs. Administration) × 2 (Social Comparison: Present vs. Absent) experimental vignette design. Overall, we found that, for both first- and continuing-generation students, social comparison messages differentially impacted imposter feelings depending on context, with the most elevated levels in social comparison messages from administrators and peers. Findings contribute to a better understanding of structural conditions that exacerbate or lessen imposter feelings at highly selective post-secondary institutions.
- Published
- 2024
- Full Text
- View/download PDF
24. Mammals show faster recovery from capture and tagging in human-disturbed landscapes.
- Author
-
Stiegler, Jonas, Gallagher, Cara, Hering, Robert, Müller, Thomas, Tucker, Marlee, Apollonio, Marco, Arnold, Janosch, Barker, Nancy, Barthel, Leon, Bassano, Bruno, Beest, Floris, Belant, Jerrold, Berger, Anne, Beyer, Dean, Bidner, Laura, Blake, Stephen, Börner, Konstantin, Brivio, Francesca, Brogi, Rudy, Buuveibaatar, Bayarbaatar, Cagnacci, Francesca, Dekker, Jasja, Dentinger, Jane, Duľa, Martin, Duquette, Jarred, Eccard, Jana, Evans, Meaghan, Ferguson, Adam, Fichtel, Claudia, Ford, Adam, Fowler, Nicholas, Gehr, Benedikt, Getz, Wayne, Goheen, Jacob, Goossens, Benoit, Grignolio, Stefano, Haugaard, Lars, Hauptfleisch, Morgan, Heim, Morten, Heurich, Marco, Hewison, Mark, Isbell, Lynne, Janssen, René, Jarnemo, Anders, Jeltsch, Florian, Miloš, Jezek, Kaczensky, Petra, Kamiński, Tomasz, Kappeler, Peter, Kasper, Katharina, Kautz, Todd, Kimmig, Sophia, Kjellander, Petter, Kowalczyk, Rafał, Kramer-Schadt, Stephanie, Kröschel, Max, Krop-Benesch, Anette, Linderoth, Peter, Lobas, Christoph, Lokeny, Peter, Lührs, Mia-Lana, Matsushima, Stephanie, McDonough, Molly, Melzheimer, Jörg, Morellet, Nicolas, Ngatia, Dedan, Obermair, Leopold, Olson, Kirk, Patanant, Kidan, Payne, John, Petroelje, Tyler, Pina, Manuel, Piqué, Josep, Premier, Joseph, Pufelski, Jan, Pyritz, Lennart, Ramanzin, Maurizio, Roeleke, Manuel, Rolandsen, Christer, Saïd, Sonia, Sandfort, Robin, Schmidt, Krzysztof, Schmidt, Niels, Scholz, Carolin, Schubert, Nadine, Selva, Nuria, Sergiel, Agnieszka, Serieys, Laurel, Silovský, Václav, Slotow, Rob, Sönnichsen, Leif, Solberg, Erling, Stelvig, Mikkel, Street, Garrett, Sunde, Peter, Svoboda, Nathan, Thaker, Maria, Tomowski, Maxi, Ullmann, Wiebke, and Vanak, Abi
- Subjects
Animals ,Humans ,Mammals ,Ecosystem ,Male ,Female ,Locomotion ,Herbivory ,Animals ,Wild ,Behavior ,Animal ,Species Specificity - Abstract
Wildlife tagging provides critical insights into animal movement ecology, physiology, and behavior amid global ecosystem changes. However, the stress induced by capture, handling, and tagging can impact post-release locomotion and activity and, consequently, the interpretation of study results. Here, we analyze post-tagging effects on 1585 individuals of 42 terrestrial mammal species using collar-collected GPS and accelerometer data. Species-specific displacements and overall dynamic body acceleration, as a proxy for activity, were assessed over 20 days post-release to quantify disturbance intensity, recovery duration, and speed. Differences were evaluated, considering species-specific traits and the human footprint of the study region. Over 70% of the analyzed species exhibited significant behavioral changes following collaring events. Herbivores traveled farther with variable activity reactions, while omnivores and carnivores were initially less active and mobile. Recovery duration proved brief, with alterations diminishing within 4-7 tracking days for most species. Herbivores, particularly males, showed quicker displacement recovery (4 days) but slower activity recovery (7 days). Individuals in high human footprint areas displayed faster recovery, indicating adaptation to human disturbance. Our findings emphasize the necessity of extending tracking periods beyond 1 week and particular caution in remote study areas or herbivore-focused research, specifically in smaller mammals.
- Published
- 2024
25. Collagen VI deposition primes the glioblastoma microenvironment for invasion through mechanostimulation of β-catenin signaling.
- Author
-
Cha, Junghwa, Ding, Erika, Carvalho, Emily, Fowler, Annabelle, Aghi, Manish, and Kumar, Sanjay
- Subjects
ECM remodeling ,ECM stiffening ,collagen VI ,glioblastoma ,hyaluronic acid - Abstract
While glioblastoma (GBM) progression is associated with extensive extracellular matrix (ECM) secretion, the causal contributions of ECM secretion to invasion remain unclear. Here we investigate these contributions by combining engineered materials, proteomics, analysis of patient data, and a model of bevacizumab-resistant GBM. We find that GBM cells cultured in engineered 3D hyaluronic acid hydrogels secrete ECM prior to invasion, particularly in the absence of exogenous ECM ligands. Proteomic measurements reveal extensive secretion of collagen VI, and collagen VI-associated transcripts are correspondingly enriched in microvascular proliferation regions of human GBMs. We further show that bevacizumab-resistant GBM cells deposit more collagen VI than their responsive counterparts, which is associated with marked cell-ECM stiffening. COL6A3 deletion in GBM cells reduces invasion, β-catenin signaling, and expression of mesenchymal markers, and these effects are amplified in hypoxia. Our studies strongly implicate GBM cell-derived collagen VI in microenvironmental remodeling to facilitate invasion.
- Published
- 2024
26. Modelling multiplex testing for outbreak Control
- Author
-
Fyles, Martyn, Overton, Christopher E., Ward, Tom, Bennett, Emma, Fowler, Tom, and Hall, Ian
- Subjects
Statistics - Applications - Abstract
During the SARS-CoV-2 pandemic, polymerase chain reaction (PCR) and lateral flow device (LFD) tests were frequently deployed to detect the presence of SARS-CoV-2. Many of these tests were singleplex, and only tested for the presence of a single pathogen. Multiplex tests can test for the presence of several pathogens using only a single swab, which can allow for: surveillance of more pathogens, targeting of antiviral interventions, a reduced burden of testing, and lower costs. Test sensitivity however, particularly in LFD tests, is highly conditional on the viral concentration dynamics of individuals. To inform the use of multiplex testing in outbreak detection it is therefore necessary to investigate the interactions between outbreak detection strategies and the differing viral concentration trajectories of key pathogens. Viral concentration trajectories are estimated for SARS-CoV-2, and Influenza A/B. Testing strategies for the first five symptomatic cases in an outbreak are then simulated and used to evaluate key performance indicators. Strategies that use a combination of multiplex LFD and PCR tests achieve; high levels of detection, detect outbreaks rapidly, and have the lowest burden of testing across multiple pathogens. Influenza B was estimated to have lower rates of detection due to its modelled viral concentration dynamics., Comment: 29 pages, 17 Figures
- Published
- 2024
27. Quantum error correction below the surface code threshold
- Author
-
Acharya, Rajeev, Aghababaie-Beni, Laleh, Aleiner, Igor, Andersen, Trond I., Ansmann, Markus, Arute, Frank, Arya, Kunal, Asfaw, Abraham, Astrakhantsev, Nikita, Atalaya, Juan, Babbush, Ryan, Bacon, Dave, Ballard, Brian, Bardin, Joseph C., Bausch, Johannes, Bengtsson, Andreas, Bilmes, Alexander, Blackwell, Sam, Boixo, Sergio, Bortoli, Gina, Bourassa, Alexandre, Bovaird, Jenna, Brill, Leon, Broughton, Michael, Browne, David A., Buchea, Brett, Buckley, Bob B., Buell, David A., Burger, Tim, Burkett, Brian, Bushnell, Nicholas, Cabrera, Anthony, Campero, Juan, Chang, Hung-Shen, Chen, Yu, Chen, Zijun, Chiaro, Ben, Chik, Desmond, Chou, Charina, Claes, Jahan, Cleland, Agnetta Y., Cogan, Josh, Collins, Roberto, Conner, Paul, Courtney, William, Crook, Alexander L., Curtin, Ben, Das, Sayan, Davies, Alex, De Lorenzo, Laura, Debroy, Dripto M., Demura, Sean, Devoret, Michel, Di Paolo, Agustin, Donohoe, Paul, Drozdov, Ilya, Dunsworth, Andrew, Earle, Clint, Edlich, Thomas, Eickbusch, Alec, Elbag, Aviv Moshe, Elzouka, Mahmoud, Erickson, Catherine, Faoro, Lara, Farhi, Edward, Ferreira, Vinicius S., Burgos, Leslie Flores, Forati, Ebrahim, Fowler, Austin G., Foxen, Brooks, Ganjam, Suhas, Garcia, Gonzalo, Gasca, Robert, Genois, Élie, Giang, William, Gidney, Craig, Gilboa, Dar, Gosula, Raja, Dau, Alejandro Grajales, Graumann, Dietrich, Greene, Alex, Gross, Jonathan A., Habegger, Steve, Hall, John, Hamilton, Michael C., Hansen, Monica, Harrigan, Matthew P., Harrington, Sean D., Heras, Francisco J. H., Heslin, Stephen, Heu, Paula, Higgott, Oscar, Hill, Gordon, Hilton, Jeremy, Holland, George, Hong, Sabrina, Huang, Hsin-Yuan, Huff, Ashley, Huggins, William J., Ioffe, Lev B., Isakov, Sergei V., Iveland, Justin, Jeffrey, Evan, Jiang, Zhang, Jones, Cody, Jordan, Stephen, Joshi, Chaitali, Juhas, Pavol, Kafri, Dvir, Kang, Hui, Karamlou, Amir H., Kechedzhi, Kostyantyn, Kelly, Julian, Khaire, Trupti, Khattar, Tanuj, Khezri, Mostafa, Kim, Seon, Klimov, Paul V., Klots, Andrey R., Kobrin, Bryce, Kohli, Pushmeet, Korotkov, Alexander N., Kostritsa, Fedor, Kothari, Robin, Kozlovskii, Borislav, Kreikebaum, John Mark, Kurilovich, Vladislav D., Lacroix, Nathan, Landhuis, David, Lange-Dei, Tiano, Langley, Brandon W., Laptev, Pavel, Lau, Kim-Ming, Guevel, Loïck Le, Ledford, Justin, Lee, Kenny, Lensky, Yuri D., Leon, Shannon, Lester, Brian J., Li, Wing Yan, Li, Yin, Lill, Alexander T., Liu, Wayne, Livingston, William P., Locharla, Aditya, Lucero, Erik, Lundahl, Daniel, Lunt, Aaron, Madhuk, Sid, Malone, Fionn D., Maloney, Ashley, Mandrá, Salvatore, Martin, Leigh S., Martin, Steven, Martin, Orion, Maxfield, Cameron, McClean, Jarrod R., McEwen, Matt, Meeks, Seneca, Megrant, Anthony, Mi, Xiao, Miao, Kevin C., Mieszala, Amanda, Molavi, Reza, Molina, Sebastian, Montazeri, Shirin, Morvan, Alexis, Movassagh, Ramis, Mruczkiewicz, Wojciech, Naaman, Ofer, Neeley, Matthew, Neill, Charles, Nersisyan, Ani, Neven, Hartmut, Newman, Michael, Ng, Jiun How, Nguyen, Anthony, Nguyen, Murray, Ni, Chia-Hung, O'Brien, Thomas E., Oliver, William D., Opremcak, Alex, Ottosson, Kristoffer, Petukhov, Andre, Pizzuto, Alex, Platt, John, Potter, Rebecca, Pritchard, Orion, Pryadko, Leonid P., Quintana, Chris, Ramachandran, Ganesh, Reagor, Matthew J., Rhodes, David M., Roberts, Gabrielle, Rosenberg, Eliott, Rosenfeld, Emma, Roushan, Pedram, Rubin, Nicholas C., Saei, Negar, Sank, Daniel, Sankaragomathi, Kannan, Satzinger, Kevin J., Schurkus, Henry F., Schuster, Christopher, Senior, Andrew W., Shearn, Michael J., Shorter, Aaron, Shutty, Noah, Shvarts, Vladimir, Singh, Shraddha, Sivak, Volodymyr, Skruzny, Jindra, Small, Spencer, Smelyanskiy, Vadim, Smith, W. Clarke, Somma, Rolando D., Springer, Sofia, Sterling, George, Strain, Doug, Suchard, Jordan, Szasz, Aaron, Sztein, Alex, Thor, Douglas, Torres, Alfredo, Torunbalci, M. Mert, Vaishnav, Abeer, Vargas, Justin, Vdovichev, Sergey, Vidal, Guifre, Villalonga, Benjamin, Heidweiller, Catherine Vollgraff, Waltman, Steven, Wang, Shannon X., Ware, Brayden, Weber, Kate, White, Theodore, Wong, Kristi, Woo, Bryan W. K., Xing, Cheng, Yao, Z. Jamie, Yeh, Ping, Ying, Bicheng, Yoo, Juhwan, Yosri, Noureldin, Young, Grayson, Zalcman, Adam, Zhang, Yaxing, Zhu, Ningfeng, and Zobrist, Nicholas
- Subjects
Quantum Physics - Abstract
Quantum error correction provides a path to reach practical quantum computing by combining multiple physical qubits into a logical qubit, where the logical error rate is suppressed exponentially as more qubits are added. However, this exponential suppression only occurs if the physical error rate is below a critical threshold. In this work, we present two surface code memories operating below this threshold: a distance-7 code and a distance-5 code integrated with a real-time decoder. The logical error rate of our larger quantum memory is suppressed by a factor of $\Lambda$ = 2.14 $\pm$ 0.02 when increasing the code distance by two, culminating in a 101-qubit distance-7 code with 0.143% $\pm$ 0.003% error per cycle of error correction. This logical memory is also beyond break-even, exceeding its best physical qubit's lifetime by a factor of 2.4 $\pm$ 0.3. We maintain below-threshold performance when decoding in real time, achieving an average decoder latency of 63 $\mu$s at distance-5 up to a million cycles, with a cycle time of 1.1 $\mu$s. To probe the limits of our error-correction performance, we run repetition codes up to distance-29 and find that logical performance is limited by rare correlated error events occurring approximately once every hour, or 3 $\times$ 10$^9$ cycles. Our results present device performance that, if scaled, could realize the operational requirements of large scale fault-tolerant quantum algorithms., Comment: 10 pages, 4 figures, Supplementary Information
- Published
- 2024
28. DUNE Phase II: Scientific Opportunities, Detector Concepts, Technological Solutions
- Author
-
DUNE Collaboration, Abud, A. Abed, Abi, B., Acciarri, R., Acero, M. A., Adames, M. R., Adamov, G., Adamowski, M., Adams, D., Adinolfi, M., Adriano, C., Aduszkiewicz, A., Aguilar, J., Akbar, F., Allison, K., Monsalve, S. Alonso, Alrashed, M., Alton, A., Alvarez, R., Alves, T., Amar, H., Amedo, P., Anderson, J., Andreopoulos, C., Andreotti, M., Andrews, M. P., Andrianala, F., Andringa, S., Anfimov, N., Ankowski, A., Antic, D., Antoniassi, M., Antonova, M., Antoshkin, A., Aranda-Fernandez, A., Arellano, L., Diaz, E. Arrieta, Arroyave, M. A., Asaadi, J., Ashkenazi, A., Asner, D. M., Asquith, L., Atkin, E., Auguste, D., Aurisano, A., Aushev, V., Autiero, D., Azam, M. B., Azfar, F., Back, A., Back, H., Back, J. J., Bagaturia, I., Bagby, L., Balashov, N., Balasubramanian, S., Baldi, P., Baldini, W., Baldonedo, J., Baller, B., Bambah, B., Banerjee, R., Barao, F., Barbu, D., Barenboim, G., Barham~Alzás, P., Barker, G. J., Barkhouse, W., Barr, G., Monarca, J. Barranco, Barros, A., Barros, N., Barrow, D., Barrow, J. L., Basharina-Freshville, A., Bashyal, A., Basque, V., Batchelor, C., Bathe-Peters, L., Battat, J. B. R., Battisti, F., Bay, F., Bazetto, M. C. Q., Alba, J. L. L. Bazo, Beacom, J. F., Bechetoille, E., Behera, B., Belchior, E., Bell, G., Bellantoni, L., Bellettini, G., Bellini, V., Beltramello, O., Benekos, N., Montiel, C. Benitez, Benjamin, D., Neves, F. Bento, Berger, J., Berkman, S., Bernal, J., Bernardini, P., Bersani, A., Bertolucci, S., Betancourt, M., Rodríguez, A. Betancur, Bevan, A., Bezawada, Y., Bezerra, A. T., Bezerra, T. J., Bhat, A., Bhatnagar, V., Bhatt, J., Bhattacharjee, M., Bhattacharya, M., Bhuller, S., Bhuyan, B., Biagi, S., Bian, J., Biery, K., Bilki, B., Bishai, M., Bitadze, A., Blake, A., Blaszczyk, F. D., Blazey, G. C., Blucher, E., Bodek, A., Bogenschuetz, J., Boissevain, J., Bolognesi, S., Bolton, T., Bomben, L., Bonesini, M., Bonilla-Diaz, C., Bonini, F., Booth, A., Boran, F., Bordoni, S., Merlo, R. Borges, Borkum, A., Bostan, N., Bouet, R., Boza, J., Bracinik, J., Brahma, B., Brailsford, D., Bramati, F., Branca, A., Brandt, A., Bremer, J., Brew, C., Brice, S. J., Brio, V., Brizzolari, C., Bromberg, C., Brooke, J., Bross, A., Brunetti, G., Brunetti, M., Buchanan, N., Budd, H., Buergi, J., Bundock, A., Burgardt, D., Butchart, S., V., G. Caceres, Cagnoli, I., Cai, T., Calabrese, R., Calcutt, J., Calivers, L., Calvo, E., Caminata, A., Camino, A. F., Campanelli, W., Campani, A., Benitez, A. Campos, Canci, N., Capó, J., Caracas, I., Caratelli, D., Carber, D., Carceller, J. M., Carini, G., Carlus, B., Carneiro, M. F., Carniti, P., Terrazas, I. Caro, Carranza, H., Carrara, N., Carroll, L., Carroll, T., Carter, A., Casarejos, E., Casazza, D., Forero, J. F. Castaño, Castaño, F. A., Castillo, A., Castromonte, C., Catano-Mur, E., Cattadori, C., Cavalier, F., Cavanna, F., Centro, S., Cerati, G., Cerna, C., Cervelli, A., Villanueva, A. Cervera, Chakraborty, K., Chakraborty, S., Chalifour, M., Chappell, A., Charitonidis, N., Chatterjee, A., Chen, H., Chen, M., Chen, W. C., Chen, Y., Chen-Wishart, Z., Cherdack, D., Chi, C., Chiapponi, F., Chirco, R., Chitirasreemadam, N., Cho, K., Choate, S., Chokheli, D., Chong, P. S., Chowdhury, B., Christian, D., Chukanov, A., Chung, M., Church, E., Cicala, M. F., Cicerchia, M., Cicero, V., Ciolini, R., Clarke, P., Cline, G., Coan, T. E., Cocco, A. G., Coelho, J. A. B., Cohen, A., Collazo, J., Collot, J., Conley, E., Conrad, J. M., Convery, M., Copello, S., Cortez, A. F. V., Cova, P., Cox, C., Cremaldi, L., Cremonesi, L., Crespo-Anadón, J. I., Crisler, M., Cristaldo, E., Crnkovic, J., Crone, G., Cross, R., Cudd, A., Cuesta, C., Cui, Y., Curciarello, F., Cussans, D., Dai, J., Dalager, O., Dallavalle, R., Dallaway, W., D'Amico, R., da Motta, H., Dar, Z. A., Darby, R., Peres, L. Da Silva, David, Q., Davies, G. S., Davini, S., Dawson, J., De Aguiar, R., De Almeida, P., Debbins, P., De Bonis, I., Decowski, M. P., de Gouvêa, A., De Holanda, P. C., Astiz, I. L. De Icaza, De Jong, P., Sanchez, P. Del Amo, De la Torre, A., De Lauretis, G., Delbart, A., Delepine, D., Delgado, M., Dell'Acqua, A., Monache, G. Delle, Delmonte, N., De Lurgio, P., Demario, R., De Matteis, G., Neto, J. R. T. de Mello, DeMuth, D. M., Dennis, S., Densham, C., Denton, P., Deptuch, G. W., De Roeck, A., De Romeri, V., Detje, J. P., Devine, J., Dharmapalan, R., Dias, M., Diaz, A., Díaz, J. S., Díaz, F., Di Capua, F., Di Domenico, A., Di Domizio, S., Di Falco, S., Di Giulio, L., Ding, P., Di Noto, L., Diociaiuti, E., Distefano, C., Diurba, R., Diwan, M., Djurcic, Z., Doering, D., Dolan, S., Dolek, F., Dolinski, M. J., Domenici, D., Domine, L., Donati, S., Donon, Y., Doran, S., Douglas, D., Doyle, T. A., Dragone, A., Drielsma, F., Duarte, L., Duchesneau, D., Duffy, K., Dugas, K., Dunne, P., Dutta, B., Duyang, H., Dwyer, D. A., Dyshkant, A. S., Dytman, S., Eads, M., Earle, A., Edayath, S., Edmunds, D., Eisch, J., Englezos, P., Ereditato, A., Erjavec, T., Escobar, C. O., Evans, J. J., Ewart, E., Ezeribe, A. C., Fahey, K., Fajt, L., Falcone, A., Fani', M., Farnese, C., Farrell, S., Farzan, Y., Fedoseev, D., Felix, J., Feng, Y., Fernandez-Martinez, E., Fernández-Posada, D., Ferry, G., Fialova, E., Fields, L., Filip, P., Filkins, A., Filthaut, F., Fine, R., Fiorillo, G., Fiorini, M., Fogarty, S., Foreman, W., Fowler, J., Franc, J., Francis, K., Franco, D., Franklin, J., Freeman, J., Fried, J., Friedland, A., Fuess, S., Furic, I. K., Furman, K., Furmanski, A. P., Gaba, R., Gabrielli, A., M~Gago, A., Galizzi, F., Gallagher, H., Gallice, N., Galymov, V., Gamberini, E., Gamble, T., Ganacim, F., Gandhi, R., Ganguly, S., Gao, F., Gao, S., Garcia-Gamez, D., García-Peris, M. Á., Gardim, F., Gardiner, S., Gastler, D., Gauch, A., Gauvreau, J., Gauzzi, P., Gazzana, S., Ge, G., Geffroy, N., Gelli, B., Gent, S., Gerlach, L., Ghorbani-Moghaddam, Z., Giammaria, T., Gibin, D., Gil-Botella, I., Gilligan, S., Gioiosa, A., Giovannella, S., Girerd, C., Giri, A. K., Giugliano, C., Giusti, V., Gnani, D., Gogota, O., Gollapinni, S., Gollwitzer, K., Gomes, R. A., Bermeo, L. V. Gomez, Fajardo, L. S. Gomez, Gonnella, F., Gonzalez-Diaz, D., Gonzalez-Lopez, M., Goodman, M. C., Goswami, S., Gotti, C., Goudeau, J., Goudzovski, E., Grace, C., Gramellini, E., Gran, R., Granados, E., Granger, P., Grant, C., Gratieri, D. R., Grauso, G., Green, P., Greenberg, S., Greer, J., Griffith, W. C., Groetschla, F. T., Grzelak, K., Gu, L., Gu, W., Guarino, V., Guarise, M., Guenette, R., Guerzoni, M., Guffanti, D., Guglielmi, A., Guo, B., Guo, F. Y., Gupta, A., Gupta, V., Gurung, G., Gutierrez, D., Guzowski, P., Guzzo, M. M., Gwon, S., Habig, A., Hadavand, H., Haegel, L., Haenni, R., Hagaman, L., Hahn, A., Haiston, J., Hakenmüller, J., Hamernik, T., Hamilton, P., Hancock, J., Happacher, F., Harris, D. A., Hart, A., Hartnell, J., Hartnett, T., Harton, J., Hasegawa, T., Hasnip, C. M., Hatcher, R., Hayrapetyan, K., Hays, J., Hazen, E., He, M., Heavey, A., Heeger, K. M., Heise, J., Hellmuth, P., Henry, S., Hernández-García, J., Herner, K., Hewes, V., Higuera, A., Hilgenberg, C., Hillier, S. J., Himmel, A., Hinkle, E., Hirsch, L. R., Ho, J., Hoff, J., Holin, A., Holvey, T., Hoppe, E., Horiuchi, S., Horton-Smith, G. A., Houdy, T., Howard, B., Howell, R., Hristova, I., Hronek, M. S., Huang, J., Huang, R. G., Hulcher, Z., Ibrahim, M., Iles, G., Ilic, N., Iliescu, A. M., Illingworth, R., Ingratta, G., Ioannisian, A., Irwin, B., Isenhower, L., Oliveira, M. Ismerio, Itay, R., Jackson, C. M., Jain, V., James, E., Jang, W., Jargowsky, B., Jena, D., Jentz, I., Ji, X., Jiang, C., Jiang, J., Jiang, L., Jipa, A., Jo, J. H., Joaquim, F. R., Johnson, W., Jollet, C., Jones, B., Jones, R., Jovancevic, N., Judah, M., Jung, C. K., Junk, T., Jwa, Y., Kabirnezhad, M., Kaboth, A. C., Kadenko, I., Kakorin, I., Kalitkina, A., Kalra, D., Kandemir, M., Kaplan, D. M., Karagiorgi, G., Karaman, G., Karcher, A., Karyotakis, Y., Kasai, S., Kasetti, S. P., Kashur, L., Katsioulas, I., Kauther, A., Kazaryan, N., Ke, L., Kearns, E., Keener, P. T., Kelly, K. J., Kemp, E., Kemularia, O., Kermaidic, Y., Ketchum, W., Kettell, S. H., Khabibullin, M., Khan, N., Khvedelidze, A., Kim, D., Kim, J., Kim, M. J., King, B., Kirby, B., Kirby, M., Kish, A., Klein, J., Kleykamp, J., Klustova, A., Kobilarcik, T., Koch, L., Koehler, K., Koerner, L. W., Koh, D. H., Kolupaeva, L., Korablev, D., Kordosky, M., Kosc, T., Kose, U., Kostelecký, V. A., Kothekar, K., Kotler, I., Kovalcuk, M., Kozhukalov, V., Krah, W., Kralik, R., Kramer, M., Kreczko, L., Krennrich, F., Kreslo, I., Kroupova, T., Kubota, S., Kubu, M., Kudenko, Y., Kudryavtsev, V. A., Kufatty, G., Kuhlmann, S., Kulagin, S., Kumar, J., Kumar, P., Kumaran, S., Kunzmann, J., Kuravi, R., Kurita, N., Kuruppu, C., Kus, V., Kutter, T., Kuźniak, M., Kvasnicka, J., Labree, T., Lackey, T., Lalău, I., Lambert, A., Land, B. J., Lane, C. E., Lane, N., Lang, K., Langford, T., Langstaff, M., Lanni, F., Lantwin, O., Larkin, J., Lasorak, P., Last, D., Laudrain, A., Laundrie, A., Laurenti, G., Lavaut, E., Laycock, P., Lazanu, I., LaZur, R., Lazzaroni, M., Le, T., Leardini, S., Learned, J., LeCompte, T., Legin, V., Miotto, G. Lehmann, Lehnert, R., de Oliveira, M. A. Leigui, Leitner, M., Silverio, D. Leon, Lepin, L. M., -Y~Li, J., Li, S. W., Li, Y., Liao, H., Lin, C. S., Lindebaum, D., Linden, S., Lineros, R. A., Lister, A., Littlejohn, B. R., Liu, H., Liu, J., Liu, Y., Lockwitz, S., Lokajicek, M., Lomidze, I., Long, K., Lopes, T. V., Lopez, J., de Rego, I. López, López-March, N., Lord, T., LoSecco, J. M., Louis, W. C., Sanchez, A. Lozano, Lu, X. -G., Luk, K. B., Lunday, B., Luo, X., Luppi, E., MacFarlane, D., Machado, A. A., Machado, P., Macias, C. T., Macier, J. R., MacMahon, M., Maddalena, A., Madera, A., Madigan, P., Magill, S., Magueur, C., Mahn, K., Maio, A., Major, A., Majumdar, K., Mameli, S., Man, M., Mandujano, R. C., Maneira, J., Manly, S., Mann, A., Manolopoulos, K., Plata, M. Manrique, Corchado, S. Manthey, Manyam, V. N., Marchan, M., Marchionni, A., Marciano, W., Marfatia, D., Mariani, C., Maricic, J., Marinho, F., Marino, A. D., Markiewicz, T., Marques, F. Das Chagas, Marquet, C., Marshak, M., Marshall, C. M., Marshall, J., Martina, L., Martín-Albo, J., Martinez, N., Caicedo, D. A. Martinez, López, F. Martínez, Miravé, P. Martínez, Martynenko, S., Mascagna, V., Massari, C., Mastbaum, A., Matichard, F., Matsuno, S., Matteucci, G., Matthews, J., Mauger, C., Mauri, N., Mavrokoridis, K., Mawby, I., Mazza, R., McAskill, T., McConkey, N., McFarland, K. S., McGrew, C., McNab, A., Meazza, L., Meddage, V. C. N., Mefodiev, A., Mehta, B., Mehta, P., Melas, P., Mena, O., Mendez, H., Mendez, P., Méndez, D. P., Menegolli, A., Meng, G., Mercuri, A. C. E. A., Meregaglia, A., Messier, M. D., Metallo, S., Metcalf, W., Mewes, M., Meyer, H., Miao, T., Micallef, J., Miccoli, A., Michna, G., Milincic, R., Miller, F., Miller, G., Miller, W., Mineev, O., Minotti, A., Miralles, L., Miranda, O. G., Mironov, C., Miryala, S., Miscetti, S., Mishra, C. S., Mishra, P., Mishra, S. R., Mislivec, A., Mitchell, M., Mladenov, D., Mocioiu, I., Mogan, A., Moggi, N., Mohanta, R., Mohayai, T. A., Mokhov, N., Molina, J., Bueno, L. Molina, Montagna, E., Montanari, A., Montanari, C., Montanari, D., Montanino, D., Zetina, L. M. Montaño, Mooney, M., Moor, A. F., Moore, Z., Moreno, D., Moreno-Palacios, O., Morescalchi, L., Moretti, D., Moretti, R., Morris, C., Mossey, C., Moura, C. A., Mouster, G., Mu, W., Mualem, L., Mueller, J., Muether, M., Muheim, F., Muir, A., Mulhearn, M., Munford, D., Munteanu, L. J., Muramatsu, H., Muraz, J., Murphy, M., Murphy, T., Muse, J., Mytilinaki, A., Nachtman, J., Nagai, Y., Nagu, S., Nandakumar, R., Naples, D., Narita, S., Navrer-Agasson, A., Nayak, N., Nebot-Guinot, M., Nehm, A., Nelson, J. K., Neogi, O., Nesbit, J., Nessi, M., Newbold, D., Newcomer, M., Nichol, R., Nicolas-Arnaldos, F., Nikolica, A., Nikolov, J., Niner, E., Nishimura, K., Norman, A., Norrick, A., Novella, P., Nowak, A., Nowak, J. A., Oberling, M., Ochoa-Ricoux, J. P., Oh, S., Oh, S. B., Olivier, A., Olshevskiy, A., Olson, T., Onel, Y., Onishchuk, Y., Oranday, A., Gann, G. D. Orebi, Osbiston, M., Vélez, J. A. Osorio, O'Sullivan, L., Ormachea, L. Otiniano, Ott, J., Pagani, L., Palacio, G., Palamara, O., Palestini, S., Paley, J. M., Pallavicini, M., Palomares, C., Pan, S., Panda, P., Vazquez, W. Panduro, Pantic, E., Paolone, V., Papaleo, R., Papanestis, A., Papoulias, D., Paramesvaran, S., Paris, A., Parke, S., Parozzi, E., Parsa, S., Parsa, Z., Parveen, S., Parvu, M., Pasciuto, D., Pascoli, S., Pasqualini, L., Pasternak, J., Patrick, C., Patrizii, L., Patterson, R. B., Patzak, T., Paudel, A., Paulucci, L., Pavlovic, Z., Pawloski, G., Payne, D., Pec, V., Pedreschi, E., Peeters, S. J. M., Pellico, W., Perez, A. Pena, Pennacchio, E., Penzo, A., Peres, O. L. G., Gonzalez, Y. F. Perez, Pérez-Molina, L., Pernas, C., Perry, J., Pershey, D., Pessina, G., Petrillo, G., Petta, C., Petti, R., Pfaff, M., Pia, V., Pickering, L., Pietropaolo, F., Pimentel, V. L., Pinaroli, G., Pincha, S., Pinchault, J., Pitts, K., Plows, K., Pollack, C., Pollman, T., Pompa, F., Pons, X., Poonthottathil, N., Popov, V., Poppi, F., Porter, J., Paix{ã}o, L. G. Porto, Potekhin, M., Potenza, R., Pozimski, J., Pozzato, M., Prakash, T., Pratt, C., Prest, M., Psihas, F., Pugnere, D., Qian, X., Queen, J., Raaf, J. L., Radeka, V., Rademacker, J., Radics, B., Raffaelli, F., Rafique, A., Raguzin, E., Rai, M., Rajagopalan, S., Rajaoalisoa, M., Rakhno, I., Rakotondravohitra, L., Ralte, L., Delgado, M. A. Ramirez, Ramson, B., Rappoldi, A., Raselli, G., Ratoff, P., Ray, R., Razafinime, H., Rea, E. M., Real, J. S., Rebel, B., Rechenmacher, R., Reichenbacher, J., Reitzner, S. D., Sfar, H. Rejeb, Renner, E., Renshaw, A., Rescia, S., Resnati, F., Diego~Restrepo, Reynolds, C., Ribas, M., Riboldi, S., Riccio, C., Riccobene, G., Ricol, J. S., Rigan, M., Rincón, E. V., Ritchie-Yates, A., Ritter, S., Rivera, D., Rivera, R., Robert, A., Rocha, J. L. Rocabado, Rochester, L., Roda, M., Rodrigues, P., Alonso, M. J. Rodriguez, Rondon, J. Rodriguez, Rosauro-Alcaraz, S., Rosier, P., Ross, D., Rossella, M., Rossi, M., Ross-Lonergan, M., Roy, N., Roy, P., Rubbia, C., Ruggeri, A., Ruiz, G., Russell, B., Ruterbories, D., Rybnikov, A., Sacerdoti, S., Saha, S., Sahoo, S. K., Sahu, N., Sala, P., Samios, N., Samoylov, O., Sanchez, M. C., Bravo, A. Sánchez, Sánchez-Castillo, A., Sanchez-Lucas, P., Sandberg, V., Sanders, D. A., Sanfilippo, S., Sankey, D., Santoro, D., Saoulidou, N., Sapienza, P., Sarasty, C., Sarcevic, I., Sarra, I., Savage, G., Savinov, V., Scanavini, G., Scaramelli, A., Scarff, A., Schefke, T., Schellman, H., Schifano, S., Schlabach, P., Schmitz, D., Schneider, A. W., Scholberg, K., Schukraft, A., Schuld, B., Segade, A., Segreto, E., Selyunin, A., Senadheera, D., Senise, C. R., Sensenig, J., Seo, S. H., Shaevitz, M. H., Shanahan, P., Sharma, P., Kumar, R., Poudel, S. Sharma, Shaw, K., Shaw, T., Shchablo, K., Shen, J., Shepherd-Themistocleous, C., Sheshukov, A., Shi, J., Shi, W., Shin, S., Shivakoti, S., Shoemaker, I., Shooltz, D., Shrock, R., Siddi, B., Siden, M., Silber, J., Simard, L., Sinclair, J., Sinev, G., Singh, J., Singh, L., Singh, P., Singh, V., Chauhan, S. Singh, Sipos, R., Sironneau, C., Sirri, G., Siyeon, K., Skarpaas, K., Smedley, J., Smith, E., Smith, J., Smith, P., Smolik, J., Smy, M., Snape, M., Snider, E. L., Snopok, P., Snowden-Ifft, D., Nunes, M. Soares, Sobel, H., Soderberg, M., Sokolov, S., Salinas, C. J. Solano, Söldner-Rembold, S., Solomey, N., Solovov, V., Sondheim, W. E., Sorel, M., Sotnikov, A., Soto-Oton, J., Sousa, A., Soustruznik, K., Spinella, F., Spitz, J., Spooner, N. J. C., Spurgeon, K., Stalder, D., Stancari, M., Stanco, L., Steenis, J., Stein, R., Steiner, H. M., Lisbôa, A. F. Steklain, Stepanova, A., Stewart, J., Stillwell, B., Stock, J., Stocker, F., Stokes, T., Strait, M., Strauss, T., Strigari, L., Stuart, A., Suarez, J. G., Subash, J., Surdo, A., Suter, L., Sutera, C. M., Sutton, K., Suvorov, Y., Svoboda, R., Swain, S. K., Szczerbinska, B., Szelc, A. M., Sztuc, A., Taffara, A., Talukdar, N., Tamara, J., Tanaka, H. A., Tang, S., Taniuchi, N., Casanova, A. M. Tapia, Oregui, B. Tapia, Tapper, A., Tariq, S., Tarpara, E., Tatar, E., Tayloe, R., Tedeschi, D., Teklu, A. M., Vidal, J. Tena, Tennessen, P., Tenti, M., Terao, K., Terranova, F., Testera, G., Thakore, T., Thea, A., Thomas, S., Thompson, A., Thorn, C., Timm, S. C., Tiras, E., Tishchenko, V., Todorović, N., Tomassetti, L., Tonazzo, A., Torbunov, D., Torti, M., Tortola, M., Tortorici, F., Tosi, N., Totani, D., Toups, M., Touramanis, C., Tran, D., Travaglini, R., Trevor, J., Triller, E., Trilov, S., Truchon, J., Truncali, D., Trzaska, W. H., Tsai, Y., Tsai, Y. -T., Tsamalaidze, Z., Tsang, K. V., Tsverava, N., Tu, S. Z., Tufanli, S., Tunnell, C., Turnberg, S., Turner, J., Tuzi, M., Tyler, J., Tyley, E., Tzanov, M., Uchida, M. A., González, J. Ureña, Urheim, J., Usher, T., Utaegbulam, H., Uzunyan, S., Vagins, M. R., Vahle, P., Valder, S., Valdiviesso, G. A., Valencia, E., Valentim, R., Vallari, Z., Vallazza, E., Valle, J. W. F., Van Berg, R., Van de Water, R. G., Forero, D. V., Vannozzi, A., Van Nuland-Troost, M., Varanini, F., Oliva, D. Vargas, Vasina, S., Vaughan, N., Vaziri, K., Vázquez-Ramos, A., Vega, J., Ventura, S., Verdugo, A., Vergani, S., Verzocchi, M., Vetter, K., Vicenzi, M., de Souza, H. Vieira, Vignoli, C., Vilela, C., Villa, E., Viola, S., Viren, B., Hernandez, A. P. Vizcaya, Vuong, Q., Waldron, A. V., Wallbank, M., Walsh, J., Walton, T., Wang, H., Wang, J., Wang, L., Wang, M. H. L. S., Wang, X., Wang, Y., Warburton, K., Warner, D., Warsame, L., Wascko, M. O., Waters, D., Watson, A., Wawrowska, K., Weber, A., Weber, C. M., Weber, M., Wei, H., Weinstein, A., Westerdale, S., Wetstein, M., Whalen, K., White, A., Whitehead, L. H., Whittington, D., Wilhlemi, J., Wilking, M. J., Wilkinson, A., Wilkinson, C., Wilson, F., Wilson, R. J., Winter, P., Wisniewski, W., Wolcott, J., Wolfs, J., Wongjirad, T., Wood, A., Wood, K., Worcester, E., Worcester, M., Wospakrik, M., Wresilo, K., Wret, C., Wu, S., Wu, W., Wurm, M., Wyenberg, J., Xiao, Y., Xiotidis, I., Yaeggy, B., Yahlali, N., Yandel, E., Yang, J., Yang, K., Yang, T., Yankelevich, A., Yershov, N., Yonehara, K., Young, T., Yu, B., Yu, H., Yu, J., Yu, Y., Yuan, W., Zaki, R., Zalesak, J., Zambelli, L., Zamorano, B., Zani, A., Zapata, O., Zazueta, L., Zeller, G. P., Zennamo, J., Zeug, K., Zhang, C., Zhang, S., Zhao, M., Zhivun, E., Zimmerman, E. D., Zucchelli, S., Zuklin, J., Zutshi, V., and Zwaska, R.
- Subjects
Physics - Instrumentation and Detectors ,High Energy Physics - Experiment - Abstract
The international collaboration designing and constructing the Deep Underground Neutrino Experiment (DUNE) at the Long-Baseline Neutrino Facility (LBNF) has developed a two-phase strategy toward the implementation of this leading-edge, large-scale science project. The 2023 report of the US Particle Physics Project Prioritization Panel (P5) reaffirmed this vision and strongly endorsed DUNE Phase I and Phase II, as did the European Strategy for Particle Physics. While the construction of the DUNE Phase I is well underway, this White Paper focuses on DUNE Phase II planning. DUNE Phase-II consists of a third and fourth far detector (FD) module, an upgraded near detector complex, and an enhanced 2.1 MW beam. The fourth FD module is conceived as a "Module of Opportunity", aimed at expanding the physics opportunities, in addition to supporting the core DUNE science program, with more advanced technologies. This document highlights the increased science opportunities offered by the DUNE Phase II near and far detectors, including long-baseline neutrino oscillation physics, neutrino astrophysics, and physics beyond the standard model. It describes the DUNE Phase II near and far detector technologies and detector design concepts that are currently under consideration. A summary of key R&D goals and prototyping phases needed to realize the Phase II detector technical designs is also provided. DUNE's Phase II detectors, along with the increased beam power, will complete the full scope of DUNE, enabling a multi-decadal program of groundbreaking science with neutrinos.
- Published
- 2024
29. Ophthalmic Biomarker Detection: Highlights from the IEEE Video and Image Processing Cup 2023 Student Competition
- Author
-
AlRegib, Ghassan, Prabhushankar, Mohit, Kokilepersaud, Kiran, Chowdhury, Prithwijit, Fowler, Zoe, Corona, Stephanie Trejo, Thomaz, Lucas, and Majumdar, Angshul
- Subjects
Electrical Engineering and Systems Science - Image and Video Processing - Abstract
The VIP Cup offers a unique experience to undergraduates, allowing students to work together to solve challenging, real-world problems with video and image processing techniques. In this iteration of the VIP Cup, we challenged students to balance personalization and generalization when performing biomarker detection in 3D optical coherence tomography (OCT) images. Balancing personalization and generalization is an important challenge to tackle, as the variation within OCT scans of patients between visits can be minimal while the difference in manifestation of the same disease across different patients may be substantial. The domain difference between OCT scans can arise due to pathology manifestation across patients, clinical labels, and the visit along the treatment process when the scan is taken. Hence, we provided a multimodal OCT dataset to allow teams to effectively target this challenge. Overall, this competition gave undergraduates an opportunity to learn about how artificial intelligence can be a powerful tool for the medical field, as well as the unique challenges one faces when applying machine learning to biomedical data.
- Published
- 2024
30. First Measurement of the Total Inelastic Cross-Section of Positively-Charged Kaons on Argon at Energies Between 5.0 and 7.5 GeV
- Author
-
DUNE Collaboration, Abud, A. Abed, Abi, B., Acciarri, R., Acero, M. A., Adames, M. R., Adamov, G., Adamowski, M., Adams, D., Adinolfi, M., Adriano, C., Aduszkiewicz, A., Aguilar, J., Akbar, F., Allison, K., Monsalve, S. Alonso, Alrashed, M., Alton, A., Alvarez, R., Alves, T., Amar, H., Amedo, P., Anderson, J., Andreopoulos, C., Andreotti, M., Andrews, M. P., Andrianala, F., Andringa, S., Anfimov, N., Ankowski, A., Antic, D., Antoniassi, M., Antonova, M., Antoshkin, A., Aranda-Fernandez, A., Arellano, L., Diaz, E. Arrieta, Arroyave, M. A., Asaadi, J., Ashkenazi, A., Asner, D., Asquith, L., Atkin, E., Auguste, D., Aurisano, A., Aushev, V., Autiero, D., Azam, M. B., Azfar, F., Back, A., Back, H., Back, J. J., Bagaturia, I., Bagby, L., Balashov, N., Balasubramanian, S., Baldi, P., Baldini, W., Baldonedo, J., Baller, B., Bambah, B., Banerjee, R., Barao, F., Barbu, D., Barenboim, G., Barham~Alzás, P., Barker, G. J., Barkhouse, W., Barr, G., Monarca, J. Barranco, Barros, A., Barros, N., Barrow, D., Barrow, J. L., Basharina-Freshville, A., Bashyal, A., Basque, V., Batchelor, C., Bathe-Peters, L., Battat, J. B. R., Battisti, F., Bay, F., Bazetto, M. C. Q., Alba, J. L. L. Bazo, Beacom, J. F., Bechetoille, E., Behera, B., Belchior, E., Bell, G., Bellantoni, L., Bellettini, G., Bellini, V., Beltramello, O., Benekos, N., Montiel, C. Benitez, Benjamin, D., Neves, F. Bento, Berger, J., Berkman, S., Bernal, J., Bernardini, P., Bersani, A., Bertolucci, S., Betancourt, M., Rodríguez, A. Betancur, Bevan, A., Bezawada, Y., Bezerra, A. T., Bezerra, T. J., Bhat, A., Bhatnagar, V., Bhatt, J., Bhattacharjee, M., Bhattacharya, M., Bhuller, S., Bhuyan, B., Biagi, S., Bian, J., Biery, K., Bilki, B., Bishai, M., Bitadze, A., Blake, A., Blaszczyk, F. D., Blazey, G. C., Blucher, E., Bodek, A., Bogenschuetz, J., Boissevain, J., Bolognesi, S., Bolton, T., Bomben, L., Bonesini, M., Bonilla-Diaz, C., Bonini, F., Booth, A., Boran, F., Bordoni, S., Merlo, R. Borges, Borkum, A., Bostan, N., Bouet, R., Boza, J., Bracinik, J., Brahma, B., Brailsford, D., Bramati, F., Branca, A., Brandt, A., Bremer, J., Brew, C., Brice, S. J., Brio, V., Brizzolari, C., Bromberg, C., Brooke, J., Bross, A., Brunetti, G., Brunetti, M., Buchanan, N., Budd, H., Buergi, J., Bundock, A., Burgardt, D., Butchart, S., V., G. Caceres, Cagnoli, I., Cai, T., Calabrese, R., Calcutt, J., Calivers, L., Calvo, E., Caminata, A., Camino, A. F., Campanelli, W., Campani, A., Benitez, A. Campos, Canci, N., Capó, J., Caracas, I., Caratelli, D., Carber, D., Carceller, J. M., Carini, G., Carlus, B., Carneiro, M. F., Carniti, P., Terrazas, I. Caro, Carranza, H., Carrara, N., Carroll, L., Carroll, T., Carter, A., Casarejos, E., Casazza, D., Forero, J. F. Castaño, Castaño, F. A., Castillo, A., Castromonte, C., Catano-Mur, E., Cattadori, C., Cavalier, F., Cavanna, F., Centro, S., Cerati, G., Cerna, C., Cervelli, A., Villanueva, A. Cervera, Chakraborty, K., Chakraborty, S., Chalifour, M., Chappell, A., Charitonidis, N., Chatterjee, A., Chen, H., Chen, M., Chen, W. C., Chen, Y., Chen-Wishart, Z., Cherdack, D., Chi, C., Chiapponi, F., Chirco, R., Chitirasreemadam, N., Cho, K., Choate, S., Chokheli, D., Chong, P. S., Chowdhury, B., Christian, D., Chukanov, A., Chung, M., Church, E., Cicala, M. F., Cicerchia, M., Cicero, V., Ciolini, R., Clarke, P., Cline, G., Coan, T. E., Cocco, A. G., Coelho, J. A. B., Cohen, A., Collazo, J., Collot, J., Conley, E., Conrad, J. M., Convery, M., Copello, S., Cova, P., Cox, C., Cremaldi, L., Cremonesi, L., Crespo-Anadón, J. I., Crisler, M., Cristaldo, E., Crnkovic, J., Crone, G., Cross, R., Cudd, A., Cuesta, C., Cui, Y., Curciarello, F., Cussans, D., Dai, J., Dalager, O., Dallavalle, R., Dallaway, W., D'Amico, R., da Motta, H., Dar, Z. A., Darby, R., Peres, L. Da Silva, David, Q., Davies, G. S., Davini, S., Dawson, J., De Aguiar, R., De Almeida, P., Debbins, P., De Bonis, I., Decowski, M. P., de Gouvêa, A., De Holanda, P. C., Astiz, I. L. De Icaza, De Jong, P., Sanchez, P. Del Amo, De la Torre, A., De Lauretis, G., Delbart, A., Delepine, D., Delgado, M., Dell'Acqua, A., Monache, G. Delle, Delmonte, N., De Lurgio, P., Demario, R., De Matteis, G., Neto, J. R. T. de Mello, DeMuth, D. M., Dennis, S., Densham, C., Denton, P., Deptuch, G. W., De Roeck, A., De Romeri, V., Detje, J. P., Devine, J., Dharmapalan, R., Dias, M., Diaz, A., Díaz, J. S., Díaz, F., Di Capua, F., Di Domenico, A., Di Domizio, S., Di Falco, S., Di Giulio, L., Ding, P., Di Noto, L., Diociaiuti, E., Distefano, C., Diurba, R., Diwan, M., Djurcic, Z., Doering, D., Dolan, S., Dolek, F., Dolinski, M. J., Domenici, D., Domine, L., Donati, S., Donon, Y., Doran, S., Douglas, D., Doyle, T. A., Dragone, A., Drielsma, F., Duarte, L., Duchesneau, D., Duffy, K., Dugas, K., Dunne, P., Dutta, B., Duyang, H., Dwyer, D. A., Dyshkant, A. S., Dytman, S., Eads, M., Earle, A., Edayath, S., Edmunds, D., Eisch, J., Englezos, P., Ereditato, A., Erjavec, T., Escobar, C. O., Evans, J. J., Ewart, E., Ezeribe, A. C., Fahey, K., Fajt, L., Falcone, A., Fani', M., Farnese, C., Farrell, S., Farzan, Y., Fedoseev, D., Felix, J., Feng, Y., Fernandez-Martinez, E., Ferry, G., Fialova, E., Fields, L., Filip, P., Filkins, A., Filthaut, F., Fine, R., Fiorillo, G., Fiorini, M., Fogarty, S., Foreman, W., Fowler, J., Franc, J., Francis, K., Franco, D., Franklin, J., Freeman, J., Fried, J., Friedland, A., Fuess, S., Furic, I. K., Furman, K., Furmanski, A. P., Gaba, R., Gabrielli, A., M~Gago, A., Galizzi, F., Gallagher, H., Gallice, N., Galymov, V., Gamberini, E., Gamble, T., Ganacim, F., Gandhi, R., Ganguly, S., Gao, F., Gao, S., Garcia-Gamez, D., García-Peris, M. Á., Gardim, F., Gardiner, S., Gastler, D., Gauch, A., Gauvreau, J., Gauzzi, P., Gazzana, S., Ge, G., Geffroy, N., Gelli, B., Gent, S., Gerlach, L., Ghorbani-Moghaddam, Z., Giammaria, T., Gibin, D., Gil-Botella, I., Gilligan, S., Gioiosa, A., Giovannella, S., Girerd, C., Giri, A. K., Giugliano, C., Giusti, V., Gnani, D., Gogota, O., Gollapinni, S., Gollwitzer, K., Gomes, R. A., Bermeo, L. V. Gomez, Fajardo, L. S. Gomez, Gonnella, F., Gonzalez-Diaz, D., Gonzalez-Lopez, M., Goodman, M. C., Goswami, S., Gotti, C., Goudeau, J., Goudzovski, E., Grace, C., Gramellini, E., Gran, R., Granados, E., Granger, P., Grant, C., Gratieri, D. R., Grauso, G., Green, P., Greenberg, S., Greer, J., Griffith, W. C., Groetschla, F. T., Grzelak, K., Gu, L., Gu, W., Guarino, V., Guarise, M., Guenette, R., Guerzoni, M., Guffanti, D., Guglielmi, A., Guo, B., Guo, F. Y., Gupta, A., Gupta, V., Gurung, G., Gutierrez, D., Guzowski, P., Guzzo, M. M., Gwon, S., Habig, A., Hadavand, H., Haegel, L., Haenni, R., Hagaman, L., Hahn, A., Haiston, J., Hakenmüller, J., Hamernik, T., Hamilton, P., Hancock, J., Happacher, F., Harris, D. A., Hartnell, J., Hartnett, T., Harton, J., Hasegawa, T., Hasnip, C. M., Hatcher, R., Hayrapetyan, K., Hays, J., Hazen, E., He, M., Heavey, A., Heeger, K. M., Heise, J., Hellmuth, P., Henry, S., Herner, K., Hewes, V., Higuera, A., Hilgenberg, C., Hillier, S. J., Himmel, A., Hinkle, E., Hirsch, L. R., Ho, J., Hoff, J., Holin, A., Holvey, T., Hoppe, E., Horiuchi, S., Horton-Smith, G. A., Houdy, T., Howard, B., Howell, R., Hristova, I., Hronek, M. S., Huang, J., Huang, R. G., Hulcher, Z., Ibrahim, M., Iles, G., Ilic, N., Iliescu, A. M., Illingworth, R., Ingratta, G., Ioannisian, A., Irwin, B., Isenhower, L., Oliveira, M. Ismerio, Itay, R., Jackson, C. M., Jain, V., James, E., Jang, W., Jargowsky, B., Jena, D., Jentz, I., Ji, X., Jiang, C., Jiang, J., Jiang, L., Jipa, A., Jo, J. H., Joaquim, F. R., Johnson, W., Jollet, C., Jones, B., Jones, R., Jovancevic, N., Judah, M., Jung, C. K., Junk, T., Jwa, Y., Kabirnezhad, M., Kaboth, A. C., Kadenko, I., Kakorin, I., Kalitkina, A., Kalra, D., Kandemir, M., Kaplan, D. M., Karagiorgi, G., Karaman, G., Karcher, A., Karyotakis, Y., Kasai, S., Kasetti, S. P., Kashur, L., Katsioulas, I., Kauther, A., Kazaryan, N., Ke, L., Kearns, E., Keener, P. T., Kelly, K. J., Kemp, E., Kemularia, O., Kermaidic, Y., Ketchum, W., Kettell, S. H., Khabibullin, M., Khan, N., Khvedelidze, A., Kim, D., Kim, J., Kim, M. J., King, B., Kirby, B., Kirby, M., Kish, A., Klein, J., Kleykamp, J., Klustova, A., Kobilarcik, T., Koch, L., Koehler, K., Koerner, L. W., Koh, D. H., Kolupaeva, L., Korablev, D., Kordosky, M., Kosc, T., Kose, U., Kostelecký, V. A., Kothekar, K., Kotler, I., Kovalcuk, M., Kozhukalov, V., Krah, W., Kralik, R., Kramer, M., Kreczko, L., Krennrich, F., Kreslo, I., Kroupova, T., Kubota, S., Kubu, M., Kudenko, Y., Kudryavtsev, V. A., Kufatty, G., Kuhlmann, S., Kulagin, S., Kumar, J., Kumar, P., Kumaran, S., Kunzmann, J., Kuravi, R., Kurita, N., Kuruppu, C., Kus, V., Kutter, T., Kvasnicka, J., Labree, T., Lackey, T., Lal{ă}u, I., Lambert, A., Land, B. J., Lane, C. E., Lane, N., Lang, K., Langford, T., Langstaff, M., Lanni, F., Lantwin, O., Larkin, J., Lasorak, P., Last, D., Laudrain, A., Laundrie, A., Laurenti, G., Lavaut, E., Laycock, P., Lazanu, I., LaZur, R., Lazzaroni, M., Le, T., Leardini, S., Learned, J., LeCompte, T., Legin, V., Miotto, G. Lehmann, Lehnert, R., de Oliveira, M. A. Leigui, Leitner, M., Silverio, D. Leon, Lepin, L. M., -Y~Li, J., Li, S. W., Li, Y., Liao, H., Lin, C. S., Lindebaum, D., Linden, S., Lineros, R. A., Lister, A., Littlejohn, B. R., Liu, H., Liu, J., Liu, Y., Lockwitz, S., Lokajicek, M., Lomidze, I., Long, K., Lopes, T. V., Lopez, J., de Rego, I. López, López-March, N., Lord, T., LoSecco, J. M., Louis, W. C., Sanchez, A. Lozano, Lu, X. -G., Luk, K. B., Lunday, B., Luo, X., Luppi, E., MacFarlane, D., Machado, A. A., Machado, P., Macias, C. T., Macier, J. R., MacMahon, M., Maddalena, A., Madera, A., Madigan, P., Magill, S., Magueur, C., Mahn, K., Maio, A., Major, A., Majumdar, K., Mameli, S., Man, M., Mandujano, R. C., Maneira, J., Manly, S., Mann, A., Manolopoulos, K., Plata, M. Manrique, Corchado, S. Manthey, Manyam, V. N., Marchan, M., Marchionni, A., Marciano, W., Marfatia, D., Mariani, C., Maricic, J., Marinho, F., Marino, A. D., Markiewicz, T., Marques, F. Das Chagas, Marquet, C., Marshak, M., Marshall, C. M., Marshall, J., Martina, L., Martín-Albo, J., Martinez, N., Caicedo, D. A. Martinez, López, F. Martínez, Miravé, P. Martínez, Martynenko, S., Mascagna, V., Massari, C., Mastbaum, A., Matichard, F., Matsuno, S., Matteucci, G., Matthews, J., Mauger, C., Mauri, N., Mavrokoridis, K., Mawby, I., Mazza, R., McAskill, T., McConkey, N., McFarland, K. S., McGrew, C., McNab, A., Meazza, L., Meddage, V. C. N., Mefodiev, A., Mehta, B., Mehta, P., Melas, P., Mena, O., Mendez, H., Mendez, P., Méndez, D. P., Menegolli, A., Meng, G., Mercuri, A. C. E. A., Meregaglia, A., Messier, M. D., Metallo, S., Metcalf, W., Mewes, M., Meyer, H., Miao, T., Micallef, J., Miccoli, A., Michna, G., Milincic, R., Miller, F., Miller, G., Miller, W., Mineev, O., Minotti, A., Miralles, L., Miranda, O. G., Mironov, C., Miryala, S., Miscetti, S., Mishra, C. S., Mishra, P., Mishra, S. R., Mislivec, A., Mitchell, M., Mladenov, D., Mocioiu, I., Mogan, A., Moggi, N., Mohanta, R., Mohayai, T. A., Mokhov, N., Molina, J., Bueno, L. Molina, Montagna, E., Montanari, A., Montanari, C., Montanari, D., Montanino, D., Zetina, L. M. Montaño, Mooney, M., Moor, A. F., Moore, Z., Moreno, D., Moreno-Palacios, O., Morescalchi, L., Moretti, D., Moretti, R., Morris, C., Mossey, C., Moura, C. A., Mouster, G., Mu, W., Mualem, L., Mueller, J., Muether, M., Muheim, F., Muir, A., Mulhearn, M., Munford, D., Munteanu, L. J., Muramatsu, H., Muraz, J., Murphy, M., Murphy, T., Muse, J., Mytilinaki, A., Nachtman, J., Nagai, Y., Nagu, S., Nandakumar, R., Naples, D., Narita, S., Navrer-Agasson, A., Nayak, N., Nebot-Guinot, M., Nehm, A., Nelson, J. K., Neogi, O., Nesbit, J., Nessi, M., Newbold, D., Newcomer, M., Nichol, R., Nicolas-Arnaldos, F., Nikolica, A., Nikolov, J., Niner, E., Nishimura, K., Norman, A., Norrick, A., Novella, P., Nowak, A., Nowak, J. A., Oberling, M., Ochoa-Ricoux, J. P., Oh, S., Oh, S. B., Olivier, A., Olshevskiy, A., Olson, T., Onel, Y., Onishchuk, Y., Oranday, A., Osbiston, M., Vélez, J. A. Osorio, O'Sullivan, L., Ormachea, L. Otiniano, Ott, J., Pagani, L., Palacio, G., Palamara, O., Palestini, S., Paley, J. M., Pallavicini, M., Palomares, C., Pan, S., Panda, P., Vazquez, W. Panduro, Pantic, E., Paolone, V., Papaleo, R., Papanestis, A., Papoulias, D., Paramesvaran, S., Paris, A., Parke, S., Parozzi, E., Parsa, S., Parsa, Z., Parveen, S., Parvu, M., Pasciuto, D., Pascoli, S., Pasqualini, L., Pasternak, J., Patrick, C., Patrizii, L., Patterson, R. B., Patzak, T., Paudel, A., Paulucci, L., Pavlovic, Z., Pawloski, G., Payne, D., Pec, V., Pedreschi, E., Peeters, S. J. M., Pellico, W., Perez, A. Pena, Pennacchio, E., Penzo, A., Peres, O. L. G., Gonzalez, Y. F. Perez, Pérez-Molina, L., Pernas, C., Perry, J., Pershey, D., Pessina, G., Petrillo, G., Petta, C., Petti, R., Pfaff, M., Pia, V., Pickering, L., Pietropaolo, F., Pimentel, V. L., Pinaroli, G., Pincha, S., Pinchault, J., Pitts, K., Plows, K., Pollack, C., Pollman, T., Pompa, F., Pons, X., Poonthottathil, N., Popov, V., Poppi, F., Porter, J., Paix{ã}o, L. G. Porto, Potekhin, M., Potenza, R., Pozimski, J., Pozzato, M., Prakash, T., Pratt, C., Prest, M., Psihas, F., Pugnere, D., Qian, X., Queen, J., Raaf, J. L., Radeka, V., Rademacker, J., Radics, B., Raffaelli, F., Rafique, A., Raguzin, E., Rai, M., Rajagopalan, S., Rajaoalisoa, M., Rakhno, I., Rakotondravohitra, L., Ralte, L., Delgado, M. A. Ramirez, Ramson, B., Rappoldi, A., Raselli, G., Ratoff, P., Ray, R., Razafinime, H., Rea, E. M., Real, J. S., Rebel, B., Rechenmacher, R., Reichenbacher, J., Reitzner, S. D., Sfar, H. Rejeb, Renner, E., Renshaw, A., Rescia, S., Resnati, F., Diego~Restrepo, Reynolds, C., Ribas, M., Riboldi, S., Riccio, C., Riccobene, G., Ricol, J. S., Rigan, M., Rincón, E. V., Ritchie-Yates, A., Ritter, S., Rivera, D., Rivera, R., Robert, A., Rocha, J. L. Rocabado, Rochester, L., Roda, M., Rodrigues, P., Alonso, M. J. Rodriguez, Rondon, J. Rodriguez, Rosauro-Alcaraz, S., Rosier, P., Ross, D., Rossella, M., Rossi, M., Ross-Lonergan, M., Roy, N., Roy, P., Rubbia, C., Ruggeri, A., Ferreira, G. Ruiz, Russell, B., Ruterbories, D., Rybnikov, A., Sacerdoti, S., Saha, S., Sahoo, S. K., Sahu, N., Sala, P., Samios, N., Samoylov, O., Sanchez, M. C., Bravo, A. Sánchez, Sánchez-Castillo, A., Sanchez-Lucas, P., Sandberg, V., Sanders, D. A., Sanfilippo, S., Sankey, D., Santoro, D., Saoulidou, N., Sapienza, P., Sarasty, C., Sarcevic, I., Sarra, I., Savage, G., Savinov, V., Scanavini, G., Scaramelli, A., Scarff, A., Schefke, T., Schellman, H., Schifano, S., Schlabach, P., Schmitz, D., Schneider, A. W., Scholberg, K., Schukraft, A., Schuld, B., Segade, A., Segreto, E., Selyunin, A., Senadheera, D., Senise, C. R., Sensenig, J., Shaevitz, M. H., Shanahan, P., Sharma, P., Kumar, R., Poudel, S. Sharma, Shaw, K., Shaw, T., Shchablo, K., Shen, J., Shepherd-Themistocleous, C., Sheshukov, A., Shi, J., Shi, W., Shin, S., Shivakoti, S., Shoemaker, I., Shooltz, D., Shrock, R., Siddi, B., Siden, M., Silber, J., Simard, L., Sinclair, J., Sinev, G., Singh, Jaydip, Singh, J., Singh, L., Singh, P., Singh, V., Chauhan, S. Singh, Sipos, R., Sironneau, C., Sirri, G., Siyeon, K., Skarpaas, K., Smedley, J., Smith, E., Smith, J., Smith, P., Smolik, J., Smy, M., Snape, M., Snider, E. L., Snopok, P., Snowden-Ifft, D., Nunes, M. Soares, Sobel, H., Soderberg, M., Sokolov, S., Salinas, C. J. Solano, Söldner-Rembold, S., Solomey, N., Solovov, V., Sondheim, W. E., Sorel, M., Sotnikov, A., Soto-Oton, J., Sousa, A., Soustruznik, K., Spinella, F., Spitz, J., Spooner, N. J. C., Spurgeon, K., Stalder, D., Stancari, M., Stanco, L., Steenis, J., Stein, R., Steiner, H. M., Lisbôa, A. F. Steklain, Stepanova, A., Stewart, J., Stillwell, B., Stock, J., Stocker, F., Stokes, T., Strait, M., Strauss, T., Strigari, L., Stuart, A., Suarez, J. G., Subash, J., Surdo, A., Suter, L., Sutera, C. M., Sutton, K., Suvorov, Y., Svoboda, R., Swain, S. K., Szczerbinska, B., Szelc, A. M., Sztuc, A., Taffara, A., Talukdar, N., Tamara, J., Tanaka, H. A., Tang, S., Taniuchi, N., Casanova, A. M. Tapia, Oregui, B. Tapia, Tapper, A., Tariq, S., Tarpara, E., Tatar, E., Tayloe, R., Tedeschi, D., Teklu, A. M., Vidal, J. Tena, Tennessen, P., Tenti, M., Terao, K., Terranova, F., Testera, G., Thakore, T., Thea, A., Thomas, S., Thompson, A., Thorn, C., Timm, S. C., Tiras, E., Tishchenko, V., Todorović, N., Tomassetti, L., Tonazzo, A., Torbunov, D., Torti, M., Tortola, M., Tortorici, F., Tosi, N., Totani, D., Toups, M., Touramanis, C., Tran, D., Travaglini, R., Trevor, J., Triller, E., Trilov, S., Truchon, J., Truncali, D., Trzaska, W. H., Tsai, Y., Tsai, Y. -T., Tsamalaidze, Z., Tsang, K. V., Tsverava, N., Tu, S. Z., Tufanli, S., Tunnell, C., Turnberg, S., Turner, J., Tuzi, M., Tyler, J., Tyley, E., Tzanov, M., Uchida, M. A., González, J. Ureña, Urheim, J., Usher, T., Utaegbulam, H., Uzunyan, S., Vagins, M. R., Vahle, P., Valder, S., Valdiviesso, G. A., Valencia, E., Valentim, R., Vallari, Z., Vallazza, E., Valle, J. W. F., Van Berg, R., Van de Water, R. G., Forero, D. V., Vannozzi, A., Van Nuland-Troost, M., Varanini, F., Oliva, D. Vargas, Vasina, S., Vaughan, N., Vaziri, K., Vázquez-Ramos, A., Vega, J., Ventura, S., Verdugo, A., Vergani, S., Verzocchi, M., Vetter, K., Vicenzi, M., de Souza, H. Vieira, Vignoli, C., Vilela, C., Villa, E., Viola, S., Viren, B., Hernandez, A. P. Vizcaya, Vuong, Q., Waldron, A. V., Wallbank, M., Walsh, J., Walton, T., Wang, H., Wang, J., Wang, L., Wang, M. H. L. S., Wang, X., Wang, Y., Warburton, K., Warner, D., Warsame, L., Wascko, M. O., Waters, D., Watson, A., Wawrowska, K., Weber, A., Weber, C. M., Weber, M., Wei, H., Weinstein, A., Westerdale, S., Wetstein, M., Whalen, K., White, A., Whitehead, L. H., Whittington, D., Wilhlemi, J., Wilking, M. J., Wilkinson, A., Wilkinson, C., Wilson, F., Wilson, R. J., Winter, P., Wisniewski, W., Wolcott, J., Wolfs, J., Wongjirad, T., Wood, A., Wood, K., Worcester, E., Worcester, M., Wospakrik, M., Wresilo, K., Wret, C., Wu, S., Wu, W., Wurm, M., Wyenberg, J., Xiao, Y., Xiotidis, I., Yaeggy, B., Yahlali, N., Yandel, E., Yang, J., Yang, K., Yang, T., Yankelevich, A., Yershov, N., Yonehara, K., Young, T., Yu, B., Yu, H., Yu, J., Yu, Y., Yuan, W., Zaki, R., Zalesak, J., Zambelli, L., Zamorano, B., Zani, A., Zapata, O., Zazueta, L., Zeller, G. P., Zennamo, J., Zeug, K., Zhang, C., Zhang, S., Zhao, M., Zhivun, E., Zimmerman, E. D., Zucchelli, S., Zuklin, J., Zutshi, V., and Zwaska, R.
- Subjects
High Energy Physics - Experiment ,Physics - Instrumentation and Detectors - Abstract
ProtoDUNE Single-Phase (ProtoDUNE-SP) is a 770-ton liquid argon time projection chamber that operated in a hadron test beam at the CERN Neutrino Platform in 2018. We present a measurement of the total inelastic cross section of charged kaons on argon as a function of kaon energy using 6 and 7 GeV/$c$ beam momentum settings. The flux-weighted average of the extracted inelastic cross section at each beam momentum setting was measured to be 380$\pm$26 mbarns for the 6 GeV/$c$ setting and 379$\pm$35 mbarns for the 7 GeV/$c$ setting.
- Published
- 2024
31. The Llama 3 Herd of Models
- Author
-
Dubey, Abhimanyu, Jauhri, Abhinav, Pandey, Abhinav, Kadian, Abhishek, Al-Dahle, Ahmad, Letman, Aiesha, Mathur, Akhil, Schelten, Alan, Yang, Amy, Fan, Angela, Goyal, Anirudh, Hartshorn, Anthony, Yang, Aobo, Mitra, Archi, Sravankumar, Archie, Korenev, Artem, Hinsvark, Arthur, Rao, Arun, Zhang, Aston, Rodriguez, Aurelien, Gregerson, Austen, Spataru, Ava, Roziere, Baptiste, Biron, Bethany, Tang, Binh, Chern, Bobbie, Caucheteux, Charlotte, Nayak, Chaya, Bi, Chloe, Marra, Chris, McConnell, Chris, Keller, Christian, Touret, Christophe, Wu, Chunyang, Wong, Corinne, Ferrer, Cristian Canton, Nikolaidis, Cyrus, Allonsius, Damien, Song, Daniel, Pintz, Danielle, Livshits, Danny, Esiobu, David, Choudhary, Dhruv, Mahajan, Dhruv, Garcia-Olano, Diego, Perino, Diego, Hupkes, Dieuwke, Lakomkin, Egor, AlBadawy, Ehab, Lobanova, Elina, Dinan, Emily, Smith, Eric Michael, Radenovic, Filip, Zhang, Frank, Synnaeve, Gabriel, Lee, Gabrielle, Anderson, Georgia Lewis, Nail, Graeme, Mialon, Gregoire, Pang, Guan, Cucurell, Guillem, Nguyen, Hailey, Korevaar, Hannah, Xu, Hu, Touvron, Hugo, Zarov, Iliyan, Ibarra, Imanol Arrieta, Kloumann, Isabel, Misra, Ishan, Evtimov, Ivan, Copet, Jade, Lee, Jaewon, Geffert, Jan, Vranes, Jana, Park, Jason, Mahadeokar, Jay, Shah, Jeet, van der Linde, Jelmer, Billock, Jennifer, Hong, Jenny, Lee, Jenya, Fu, Jeremy, Chi, Jianfeng, Huang, Jianyu, Liu, Jiawen, Wang, Jie, Yu, Jiecao, Bitton, Joanna, Spisak, Joe, Park, Jongsoo, Rocca, Joseph, Johnstun, Joshua, Saxe, Joshua, Jia, Junteng, Alwala, Kalyan Vasuden, Upasani, Kartikeya, Plawiak, Kate, Li, Ke, Heafield, Kenneth, Stone, Kevin, El-Arini, Khalid, Iyer, Krithika, Malik, Kshitiz, Chiu, Kuenley, Bhalla, Kunal, Rantala-Yeary, Lauren, van der Maaten, Laurens, Chen, Lawrence, Tan, Liang, Jenkins, Liz, Martin, Louis, Madaan, Lovish, Malo, Lubo, Blecher, Lukas, Landzaat, Lukas, de Oliveira, Luke, Muzzi, Madeline, Pasupuleti, Mahesh, Singh, Mannat, Paluri, Manohar, Kardas, Marcin, Oldham, Mathew, Rita, Mathieu, Pavlova, Maya, Kambadur, Melanie, Lewis, Mike, Si, Min, Singh, Mitesh Kumar, Hassan, Mona, Goyal, Naman, Torabi, Narjes, Bashlykov, Nikolay, Bogoychev, Nikolay, Chatterji, Niladri, Duchenne, Olivier, Çelebi, Onur, Alrassy, Patrick, Zhang, Pengchuan, Li, Pengwei, Vasic, Petar, Weng, Peter, Bhargava, Prajjwal, Dubal, Pratik, Krishnan, Praveen, Koura, Punit Singh, Xu, Puxin, He, Qing, Dong, Qingxiao, Srinivasan, Ragavan, Ganapathy, Raj, Calderer, Ramon, Cabral, Ricardo Silveira, Stojnic, Robert, Raileanu, Roberta, Girdhar, Rohit, Patel, Rohit, Sauvestre, Romain, Polidoro, Ronnie, Sumbaly, Roshan, Taylor, Ross, Silva, Ruan, Hou, Rui, Wang, Rui, Hosseini, Saghar, Chennabasappa, Sahana, Singh, Sanjay, Bell, Sean, Kim, Seohyun Sonia, Edunov, Sergey, Nie, Shaoliang, Narang, Sharan, Raparthy, Sharath, Shen, Sheng, Wan, Shengye, Bhosale, Shruti, Zhang, Shun, Vandenhende, Simon, Batra, Soumya, Whitman, Spencer, Sootla, Sten, Collot, Stephane, Gururangan, Suchin, Borodinsky, Sydney, Herman, Tamar, Fowler, Tara, Sheasha, Tarek, Georgiou, Thomas, Scialom, Thomas, Speckbacher, Tobias, Mihaylov, Todor, Xiao, Tong, Karn, Ujjwal, Goswami, Vedanuj, Gupta, Vibhor, Ramanathan, Vignesh, Kerkez, Viktor, Gonguet, Vincent, Do, Virginie, Vogeti, Vish, Petrovic, Vladan, Chu, Weiwei, Xiong, Wenhan, Fu, Wenyin, Meers, Whitney, Martinet, Xavier, Wang, Xiaodong, Tan, Xiaoqing Ellen, Xie, Xinfeng, Jia, Xuchao, Wang, Xuewei, Goldschlag, Yaelle, Gaur, Yashesh, Babaei, Yasmine, Wen, Yi, Song, Yiwen, Zhang, Yuchen, Li, Yue, Mao, Yuning, Coudert, Zacharie Delpierre, Yan, Zheng, Chen, Zhengxing, Papakipos, Zoe, Singh, Aaditya, Grattafiori, Aaron, Jain, Abha, Kelsey, Adam, Shajnfeld, Adam, Gangidi, Adithya, Victoria, Adolfo, Goldstand, Ahuva, Menon, Ajay, Sharma, Ajay, Boesenberg, Alex, Vaughan, Alex, Baevski, Alexei, Feinstein, Allie, Kallet, Amanda, Sangani, Amit, Yunus, Anam, Lupu, Andrei, Alvarado, Andres, Caples, Andrew, Gu, Andrew, Ho, Andrew, Poulton, Andrew, Ryan, Andrew, Ramchandani, Ankit, Franco, Annie, Saraf, Aparajita, Chowdhury, Arkabandhu, Gabriel, Ashley, Bharambe, Ashwin, Eisenman, Assaf, Yazdan, Azadeh, James, Beau, Maurer, Ben, Leonhardi, Benjamin, Huang, Bernie, Loyd, Beth, De Paola, Beto, Paranjape, Bhargavi, Liu, Bing, Wu, Bo, Ni, Boyu, Hancock, Braden, Wasti, Bram, Spence, Brandon, Stojkovic, Brani, Gamido, Brian, Montalvo, Britt, Parker, Carl, Burton, Carly, Mejia, Catalina, Wang, Changhan, Kim, Changkyu, Zhou, Chao, Hu, Chester, Chu, Ching-Hsiang, Cai, Chris, Tindal, Chris, Feichtenhofer, Christoph, Civin, Damon, Beaty, Dana, Kreymer, Daniel, Li, Daniel, Wyatt, Danny, Adkins, David, Xu, David, Testuggine, Davide, David, Delia, Parikh, Devi, Liskovich, Diana, Foss, Didem, Wang, Dingkang, Le, Duc, Holland, Dustin, Dowling, Edward, Jamil, Eissa, Montgomery, Elaine, Presani, Eleonora, Hahn, Emily, Wood, Emily, Brinkman, Erik, Arcaute, Esteban, Dunbar, Evan, Smothers, Evan, Sun, Fei, Kreuk, Felix, Tian, Feng, Ozgenel, Firat, Caggioni, Francesco, Guzmán, Francisco, Kanayet, Frank, Seide, Frank, Florez, Gabriela Medina, Schwarz, Gabriella, Badeer, Gada, Swee, Georgia, Halpern, Gil, Thattai, Govind, Herman, Grant, Sizov, Grigory, Guangyi, Zhang, Lakshminarayanan, Guna, Shojanazeri, Hamid, Zou, Han, Wang, Hannah, Zha, Hanwen, Habeeb, Haroun, Rudolph, Harrison, Suk, Helen, Aspegren, Henry, Goldman, Hunter, Damlaj, Ibrahim, Molybog, Igor, Tufanov, Igor, Veliche, Irina-Elena, Gat, Itai, Weissman, Jake, Geboski, James, Kohli, James, Asher, Japhet, Gaya, Jean-Baptiste, Marcus, Jeff, Tang, Jeff, Chan, Jennifer, Zhen, Jenny, Reizenstein, Jeremy, Teboul, Jeremy, Zhong, Jessica, Jin, Jian, Yang, Jingyi, Cummings, Joe, Carvill, Jon, Shepard, Jon, McPhie, Jonathan, Torres, Jonathan, Ginsburg, Josh, Wang, Junjie, Wu, Kai, U, Kam Hou, Saxena, Karan, Prasad, Karthik, Khandelwal, Kartikay, Zand, Katayoun, Matosich, Kathy, Veeraraghavan, Kaushik, Michelena, Kelly, Li, Keqian, Huang, Kun, Chawla, Kunal, Lakhotia, Kushal, Huang, Kyle, Chen, Lailin, Garg, Lakshya, A, Lavender, Silva, Leandro, Bell, Lee, Zhang, Lei, Guo, Liangpeng, Yu, Licheng, Moshkovich, Liron, Wehrstedt, Luca, Khabsa, Madian, Avalani, Manav, Bhatt, Manish, Tsimpoukelli, Maria, Mankus, Martynas, Hasson, Matan, Lennie, Matthew, Reso, Matthias, Groshev, Maxim, Naumov, Maxim, Lathi, Maya, Keneally, Meghan, Seltzer, Michael L., Valko, Michal, Restrepo, Michelle, Patel, Mihir, Vyatskov, Mik, Samvelyan, Mikayel, Clark, Mike, Macey, Mike, Wang, Mike, Hermoso, Miquel Jubert, Metanat, Mo, Rastegari, Mohammad, Bansal, Munish, Santhanam, Nandhini, Parks, Natascha, White, Natasha, Bawa, Navyata, Singhal, Nayan, Egebo, Nick, Usunier, Nicolas, Laptev, Nikolay Pavlovich, Dong, Ning, Zhang, Ning, Cheng, Norman, Chernoguz, Oleg, Hart, Olivia, Salpekar, Omkar, Kalinli, Ozlem, Kent, Parkin, Parekh, Parth, Saab, Paul, Balaji, Pavan, Rittner, Pedro, Bontrager, Philip, Roux, Pierre, Dollar, Piotr, Zvyagina, Polina, Ratanchandani, Prashant, Yuvraj, Pritish, Liang, Qian, Alao, Rachad, Rodriguez, Rachel, Ayub, Rafi, Murthy, Raghotham, Nayani, Raghu, Mitra, Rahul, Li, Raymond, Hogan, Rebekkah, Battey, Robin, Wang, Rocky, Maheswari, Rohan, Howes, Russ, Rinott, Ruty, Bondu, Sai Jayesh, Datta, Samyak, Chugh, Sara, Hunt, Sara, Dhillon, Sargun, Sidorov, Sasha, Pan, Satadru, Verma, Saurabh, Yamamoto, Seiji, Ramaswamy, Sharadh, Lindsay, Shaun, Feng, Sheng, Lin, Shenghao, Zha, Shengxin Cindy, Shankar, Shiva, Zhang, Shuqiang, Wang, Sinong, Agarwal, Sneha, Sajuyigbe, Soji, Chintala, Soumith, Max, Stephanie, Chen, Stephen, Kehoe, Steve, Satterfield, Steve, Govindaprasad, Sudarshan, Gupta, Sumit, Cho, Sungmin, Virk, Sunny, Subramanian, Suraj, Choudhury, Sy, Goldman, Sydney, Remez, Tal, Glaser, Tamar, Best, Tamara, Kohler, Thilo, Robinson, Thomas, Li, Tianhe, Zhang, Tianjun, Matthews, Tim, Chou, Timothy, Shaked, Tzook, Vontimitta, Varun, Ajayi, Victoria, Montanez, Victoria, Mohan, Vijai, Kumar, Vinay Satish, Mangla, Vishal, Albiero, Vítor, Ionescu, Vlad, Poenaru, Vlad, Mihailescu, Vlad Tiberiu, Ivanov, Vladimir, Li, Wei, Wang, Wenchen, Jiang, Wenwen, Bouaziz, Wes, Constable, Will, Tang, Xiaocheng, Wang, Xiaofang, Wu, Xiaojian, Wang, Xiaolan, Xia, Xide, Wu, Xilun, Gao, Xinbo, Chen, Yanjun, Hu, Ye, Jia, Ye, Qi, Ye, Li, Yenda, Zhang, Yilin, Zhang, Ying, Adi, Yossi, Nam, Youngjin, Yu, Wang, Hao, Yuchen, Qian, Yundi, He, Yuzi, Rait, Zach, DeVito, Zachary, Rosnbrick, Zef, Wen, Zhaoduo, Yang, Zhenyu, and Zhao, Zhiwei
- Subjects
Computer Science - Artificial Intelligence ,Computer Science - Computation and Language ,Computer Science - Computer Vision and Pattern Recognition - Abstract
Modern artificial intelligence (AI) systems are powered by foundation models. This paper presents a new set of foundation models, called Llama 3. It is a herd of language models that natively support multilinguality, coding, reasoning, and tool usage. Our largest model is a dense Transformer with 405B parameters and a context window of up to 128K tokens. This paper presents an extensive empirical evaluation of Llama 3. We find that Llama 3 delivers comparable quality to leading language models such as GPT-4 on a plethora of tasks. We publicly release Llama 3, including pre-trained and post-trained versions of the 405B parameter language model and our Llama Guard 3 model for input and output safety. The paper also presents the results of experiments in which we integrate image, video, and speech capabilities into Llama 3 via a compositional approach. We observe this approach performs competitively with the state-of-the-art on image, video, and speech recognition tasks. The resulting models are not yet being broadly released as they are still under development.
- Published
- 2024
32. An iterative transversal CNOT decoder
- Author
-
Wan, Kwok Ho, Webber, Mark, Fowler, Austin G., and Hensinger, Winfried K.
- Subjects
Quantum Physics - Abstract
Modern platforms for potential qubit candidates, such as trapped ions or neutral atoms, allow long range connectivity between distant physical qubits through shuttling. This opens up an avenue for transversal logical CNOT gates between distant logical qubits, whereby physical CNOT gates are performed between each corresponding physical qubit on the control and target logical qubits. However, the transversal CNOT can propagate errors from one logical qubit to another, leading to correlated errors between logical qubits. We have developed a multi-pass iterative decoder that decodes each logical qubit separately to deal with this correlated error. We show that under circuit-level noise and only $\mathcal{O}(1)$ code cycles, a threshold can still persist, and the logical error rate will not be significantly degraded, matching the sub-threshold logical error rate scaling of $p^{\lfloor\frac{d}{2}\rfloor}$ for a distance $d$ rotated surface code.
- Published
- 2024
33. Causal estimands and identification of time-varying effects in non-stationary time series from N-of-1 mobile device data
- Author
-
Cai, Xiaoxuan, Zeng, Li, Fowler, Charlotte, Dixon, Lisa, Ongur, Dost, Baker, Justin T., Onnela, Jukka-Pekka, and Valeri, Linda
- Subjects
Statistics - Methodology - Abstract
Mobile technology (mobile phones and wearable devices) generates continuous data streams encompassing outcomes, exposures and covariates, presented as intensive longitudinal or multivariate time series data. The high frequency of measurements enables granular and dynamic evaluation of treatment effect, revealing their persistence and accumulation over time. Existing methods predominantly focus on the contemporaneous effect, temporal-average, or population-average effects, assuming stationarity or invariance of treatment effects over time, which are inadequate both conceptually and statistically to capture dynamic treatment effects in personalized mobile health data. We here propose new causal estimands for multivariate time series in N-of-1 studies. These estimands summarize how time-varying exposures impact outcomes in both short- and long-term. We propose identifiability assumptions and a g-formula estimator that accounts for exposure-outcome and outcome-covariate feedback. The g-formula employs a state space model framework innovatively to accommodate time-varying behavior of treatment effects in non-stationary time series. We apply the proposed method to a multi-year smartphone observational study of bipolar patients and estimate the dynamic effect of phone-based communication on mood of patients with bipolar disorder in an N-of-1 setting. Our approach reveals substantial heterogeneity in treatment effects over time and across individuals. A simulation-based strategy is also proposed for the development of a short-term, dynamic, and personalized treatment recommendation based on patient's past information, in combination with a novel positivity diagnostics plot, validating proper causal inference in time series data.
- Published
- 2024
34. The future looks dark: improving high contrast imaging with hyper-parameter optimization for data-driven predictive wavefront control
- Author
-
Fowler, J., Jensen-Clem, Rebecca, van Kooten, Maaike A. M., Chambouleyron, Vincent, and Cetre, Sylvain
- Subjects
Astrophysics - Instrumentation and Methods for Astrophysics ,Astrophysics - Earth and Planetary Astrophysics - Abstract
The direct imaging and characterization of exoplanets requires extreme adaptive optics (XAO), achieving exquisite wavefront correction (upwards of 90$\%$ Strehl) over a narrow field of view (a few arcseconds). For these XAO systems the temporal error is often a leading term in the error budget, wherein the wavefront evolves faster than the lag between wavefront sensing and control. For atmospheres with high-velocity wind layers, this can result in a wind-driven halo in the coronagraphic dark-zone, limiting sensitivity to faint, close-in companions. The AO system's lag-time is often limited by the wavefront sensor exposure time, especially in the case of fainter guidestars. Predictive control mitigates the temporal error by predicting the shape of the wavefront by time the system correction is applied. One such method of prediction is empirical orthogonal functions (EOF), wherein previous states in the wavefront sensor history are used to learn linear correlations with a minimization problem. This method has been demonstrated on-sky at Subaru/SCExAO and Keck/NIRC2, but has yet to be optimized. With this work as a starting point, we explore the optimal filter hyper-parameter space for implementing EOF on-sky, study its stability under varying atmospheric parameters, and discuss future paths for facilitization of predictive control. This work not only offers a pathway to optimize Keck and Subaru observing, but also acts as a pathfinder for predictive control methods with extremely large telescopes.
- Published
- 2024
35. Supernova Pointing Capabilities of DUNE
- Author
-
DUNE Collaboration, Abud, A. Abed, Abi, B., Acciarri, R., Acero, M. A., Adames, M. R., Adamov, G., Adamowski, M., Adams, D., Adinolfi, M., Adriano, C., Aduszkiewicz, A., Aguilar, J., Aimard, B., Akbar, F., Allison, K., Monsalve, S. Alonso, Alrashed, M., Alton, A., Alvarez, R., Alves, T., Amar, H., Amedo, P., Anderson, J., Andrade, D. A., Andreopoulos, C., Andreotti, M., Andrews, M. P., Andrianala, F., Andringa, S., Anfimov, N., Ankowski, A., Antoniassi, M., Antonova, M., Antoshkin, A., Aranda-Fernandez, A., Arellano, L., Diaz, E. Arrieta, Arroyave, M. A., Asaadi, J., Ashkenazi, A., Asner, D., Asquith, L., Atkin, E., Auguste, D., Aurisano, A., Aushev, V., Autiero, D., Azfar, F., Back, A., Back, H., Back, J. J., Bagaturia, I., Bagby, L., Balashov, N., Balasubramanian, S., Baldi, P., Baldini, W., Baldonedo, J., Baller, B., Bambah, B., Banerjee, R., Barao, F., Barenboim, G., Alzás, P. Barham, Barker, G. J., Barkhouse, W., Barr, G., Monarca, J. Barranco, Barros, A., Barros, N., Barrow, D., Barrow, J. L., Basharina-Freshville, A., Bashyal, A., Basque, V., Batchelor, C., Bathe-Peters, L., Battat, J. B. R., Battisti, F., Bay, F., Bazetto, M. C. Q., Alba, J. L. L. Bazo, Beacom, J. F., Bechetoille, E., Behera, B., Belchior, E., Bell, G., Bellantoni, L., Bellettini, G., Bellini, V., Beltramello, O., Benekos, N., Montiel, C. Benitez, Benjamin, D., Neves, F. Bento, Berger, J., Berkman, S., Bernal, J., Bernardini, P., Bersani, A., Bertolucci, S., Betancourt, M., Rodríguez, A. Betancur, Bevan, A., Bezawada, Y., Bezerra, A. T., Bezerra, T. J., Bhat, A., Bhatnagar, V., Bhatt, J., Bhattacharjee, M., Bhattacharya, M., Bhuller, S., Bhuyan, B., Biagi, S., Bian, J., Biery, K., Bilki, B., Bishai, M., Bitadze, A., Blake, A., Blaszczyk, F. D., Blazey, G. C., Blucher, E., Bogenschuetz, J., Boissevain, J., Bolognesi, S., Bolton, T., Bomben, L., Bonesini, M., Bonilla-Diaz, C., Bonini, F., Booth, A., Boran, F., Bordoni, S., Merlo, R. Borges, Borkum, A., Bostan, N., Bracinik, J., Braga, D., Brahma, B., Brailsford, D., Bramati, F., Branca, A., Brandt, A., Bremer, J., Brew, C., Brice, S. J., Brio, V., Brizzolari, C., Bromberg, C., Brooke, J., Bross, A., Brunetti, G., Brunetti, M., Buchanan, N., Budd, H., Buergi, J., Burgardt, D., Butchart, S., V., G. Caceres, Cagnoli, I., Cai, T., Calabrese, R., Calcutt, J., Calin, M., Calivers, L., Calvo, E., Caminata, A., Camino, A. F., Campanelli, W., Campani, A., Benitez, A. Campos, Canci, N., Capó, J., Caracas, I., Caratelli, D., Carber, D., Carceller, J. M., Carini, G., Carlus, B., Carneiro, M. F., Carniti, P., Terrazas, I. Caro, Carranza, H., Carrara, N., Carroll, L., Carroll, T., Carter, A., Casarejos, E., Casazza, D., Forero, J. F. Castaño, Castaño, F. A., Castillo, A., Castromonte, C., Catano-Mur, E., Cattadori, C., Cavalier, F., Cavanna, F., Centro, S., Cerati, G., Cerna, C., Cervelli, A., Villanueva, A. Cervera, Chakraborty, K., Chakraborty, S., Chalifour, M., Chappell, A., Charitonidis, N., Chatterjee, A., Chen, H., Chen, M., Chen, W. C., Chen, Y., Chen-Wishart, Z., Cherdack, D., Chi, C., Chiapponi, F., Chirco, R., Chitirasreemadam, N., Cho, K., Choate, S., Chokheli, D., Chong, P. S., Chowdhury, B., Christian, D., Chukanov, A., Chung, M., Church, E., Cicala, M. F., Cicerchia, M., Cicero, V., Ciolini, R., Clarke, P., Cline, G., Coan, T. E., Cocco, A. G., Coelho, J. A. B., Cohen, A., Collazo, J., Collot, J., Conley, E., Conrad, J. M., Convery, M., Copello, S., Cova, P., Cox, C., Cremaldi, L., Cremonesi, L., Crespo-Anadón, J. I., Crisler, M., Cristaldo, E., Crnkovic, J., Crone, G., Cross, R., Cudd, A., Cuesta, C., Cui, Y., Curciarello, F., Cussans, D., Dai, J., Dalager, O., Dallavalle, R., Dallaway, W., da Motta, H., Dar, Z. A., Darby, R., Peres, L. Da Silva, David, Q., Davies, G. S., Davini, S., Dawson, J., De Aguiar, R., De Almeida, P., Debbins, P., De Bonis, I., Decowski, M. P., de Gouvêa, A., De Holanda, P. C., Astiz, I. L. De Icaza, De Jong, P., Sanchez, P. Del Amo, De la Torre, A., De Lauretis, G., Delbart, A., Delepine, D., Delgado, M., Dell'Acqua, A., Monache, G. Delle, Delmonte, N., De Lurgio, P., Demario, R., De Matteis, G., Neto, J. R. T. de Mello, DeMuth, D. M., Dennis, S., Densham, C., Denton, P., Deptuch, G. W., De Roeck, A., De Romeri, V., Detje, J. P., Devine, J., Dharmapalan, R., Dias, M., Diaz, A., Díaz, J. S., Díaz, F., Di Capua, F., Di Domenico, A., Di Domizio, S., Di Falco, S., Di Giulio, L., Ding, P., Di Noto, L., Diociaiuti, E., Distefano, C., Diurba, R., Diwan, M., Djurcic, Z., Doering, D., Dolan, S., Dolek, F., Dolinski, M. J., Domenici, D., Domine, L., Donati, S., Donon, Y., Doran, S., Douglas, D., Doyle, T. A., Dragone, A., Drielsma, F., Duarte, L., Duchesneau, D., Duffy, K., Dugas, K., Dunne, P., Dutta, B., Duyang, H., Dwyer, D. A., Dyshkant, A. S., Dytman, S., Eads, M., Earle, A., Edayath, S., Edmunds, D., Eisch, J., Englezos, P., Ereditato, A., Erjavec, T., Escobar, C. O., Evans, J. J., Ewart, E., Ezeribe, A. C., Fahey, K., Fajt, L., Falcone, A., Fani', M., Farnese, C., Farrell, S., Farzan, Y., Fedoseev, D., Felix, J., Feng, Y., Fernandez-Martinez, E., Ferry, G., Fields, L., Filip, P., Filkins, A., Filthaut, F., Fine, R., Fiorillo, G., Fiorini, M., Fogarty, S., Foreman, W., Fowler, J., Franc, J., Francis, K., Franco, D., Franklin, J., Freeman, J., Fried, J., Friedland, A., Fuess, S., Furic, I. K., Furman, K., Furmanski, A. P., Gaba, R., Gabrielli, A., Gago, A. M, Galizzi, F., Gallagher, H., Gallas, A., Gallice, N., Galymov, V., Gamberini, E., Gamble, T., Ganacim, F., Gandhi, R., Ganguly, S., Gao, F., Gao, S., Garcia-Gamez, D., García-Peris, M. Á., Gardim, F., Gardiner, S., Gastler, D., Gauch, A., Gauvreau, J., Gauzzi, P., Gazzana, S., Ge, G., Geffroy, N., Gelli, B., Gent, S., Gerlach, L., Ghorbani-Moghaddam, Z., Giammaria, T., Gibin, D., Gil-Botella, I., Gilligan, S., Gioiosa, A., Giovannella, S., Girerd, C., Giri, A. K., Giugliano, C., Giusti, V., Gnani, D., Gogota, O., Gollapinni, S., Gollwitzer, K., Gomes, R. A., Bermeo, L. V. Gomez, Fajardo, L. S. Gomez, Gonnella, F., Gonzalez-Diaz, D., Gonzalez-Lopez, M., Goodman, M. C., Goswami, S., Gotti, C., Goudeau, J., Goudzovski, E., Grace, C., Gramellini, E., Gran, R., Granados, E., Granger, P., Grant, C., Gratieri, D. R., Grauso, G., Green, P., Greenberg, S., Greer, J., Griffith, W. C., Groetschla, F. T., Grzelak, K., Gu, L., Gu, W., Guarino, V., Guarise, M., Guenette, R., Guerard, E., Guerzoni, M., Guffanti, D., Guglielmi, A., Guo, B., Guo, Y., Gupta, A., Gupta, V., Gurung, G., Gutierrez, D., Guzowski, P., Guzzo, M. M., Gwon, S., Habig, A., Hadavand, H., Haegel, L., Haenni, R., Hagaman, L., Hahn, A., Haiston, J., Hakenmüller, J., Hamernik, T., Hamilton, P., Hancock, J., Happacher, F., Harris, D. A., Hartnell, J., Hartnett, T., Harton, J., Hasegawa, T., Hasnip, C., Hatcher, R., Hayrapetyan, K., Hays, J., Hazen, E., He, M., Heavey, A., Heeger, K. M., Heise, J., Henry, S., Morquecho, M. A. Hernandez, Herner, K., Hewes, V., Higuera, A., Hilgenberg, C., Hillier, S. J., Himmel, A., Hinkle, E., Hirsch, L. R., Ho, J., Hoff, J., Holin, A., Holvey, T., Hoppe, E., Horiuchi, S., Horton-Smith, G. A., Hostert, M., Houdy, T., Howard, B., Howell, R., Hristova, I., Hronek, M. S., Huang, J., Huang, R. G., Hulcher, Z., Ibrahim, M., Iles, G., Ilic, N., Iliescu, A. M., Illingworth, R., Ingratta, G., Ioannisian, A., Irwin, B., Isenhower, L., Oliveira, M. Ismerio, Itay, R., Jackson, C. M., Jain, V., James, E., Jang, W., Jargowsky, B., Jena, D., Jentz, I., Ji, X., Jiang, C., Jiang, J., Jiang, L., Jipa, A., Joaquim, F. R., Johnson, W., Jollet, C., Jones, B., Jones, R., Fernández, D. José, Jovancevic, N., Judah, M., Jung, C. K., Junk, T., Jwa, Y., Kabirnezhad, M., Kaboth, A. C., Kadenko, I., Kakorin, I., Kalitkina, A., Kalra, D., Kandemir, M., Kaplan, D. M., Karagiorgi, G., Karaman, G., Karcher, A., Karyotakis, Y., Kasai, S., Kasetti, S. P., Kashur, L., Katsioulas, I., Kauther, A., Kazaryan, N., Ke, L., Kearns, E., Keener, P. T., Kelly, K. J., Kemp, E., Kemularia, O., Kermaidic, Y., Ketchum, W., Kettell, S. H., Khabibullin, M., Khan, N., Khvedelidze, A., Kim, D., Kim, J., King, B., Kirby, B., Kirby, M., Kish, A., Klein, J., Kleykamp, J., Klustova, A., Kobilarcik, T., Koch, L., Koehler, K., Koerner, L. W., Koh, D. H., Kolupaeva, L., Korablev, D., Kordosky, M., Kosc, T., Kose, U., Kostelecký, V. A., Kothekar, K., Kotler, I., Kovalcuk, M., Kozhukalov, V., Krah, W., Kralik, R., Kramer, M., Kreczko, L., Krennrich, F., Kreslo, I., Kroupova, T., Kubota, S., Kubu, M., Kudenko, Y., Kudryavtsev, V. A., Kufatty, G., Kuhlmann, S., Kumar, J., Kumar, P., Kumaran, S., Kunze, P., Kunzmann, J., Kuravi, R., Kurita, N., Kuruppu, C., Kus, V., Kutter, T., Kvasnicka, J., Labree, T., Lackey, T., Lambert, A., Land, B. J., Lane, C. E., Lane, N., Lang, K., Langford, T., Langstaff, M., Lanni, F., Lantwin, O., Larkin, J., Lasorak, P., Last, D., Laudrain, A., Laundrie, A., Laurenti, G., Lavaut, E., Lawrence, A., Laycock, P., Lazanu, I., Lazzaroni, M., Le, T., Leardini, S., Learned, J., LeCompte, T., Lee, C., Legin, V., Miotto, G. Lehmann, Lehnert, R., de Oliveira, M. A. Leigui, Leitner, M., Silverio, D. Leon, Lepin, L. M., Li, J. -Y, Li, S. W., Li, Y., Liao, H., Lin, C. S., Lindebaum, D., Linden, S., Lineros, R. A., Ling, J., Lister, A., Littlejohn, B. R., Liu, H., Liu, J., Liu, Y., Lockwitz, S., Lokajicek, M., Lomidze, I., Long, K., Lopes, T. V., Lopez, J., de Rego, I. López, López-March, N., Lord, T., LoSecco, J. M., Louis, W. C., Sanchez, A. Lozano, Lu, X. -G., Luk, K. B., Lunday, B., Luo, X., Luppi, E., Maalmi, J., MacFarlane, D., Machado, A. A., Machado, P., Macias, C. T., Macier, J. R., MacMahon, M., Maddalena, A., Madera, A., Madigan, P., Magill, S., Magueur, C., Mahn, K., Maio, A., Major, A., Majumdar, K., Man, M., Mandujano, R. C., Maneira, J., Manly, S., Mann, A., Manolopoulos, K., Plata, M. Manrique, Corchado, S. Manthey, Manyam, V. N., Marchan, M., Marchionni, A., Marciano, W., Marfatia, D., Mariani, C., Maricic, J., Marinho, F., Marino, A. D., Markiewicz, T., Marques, F. Das Chagas, Marquet, C., Marsden, D., Marshak, M., Marshall, C. M., Marshall, J., Martina, L., Martín-Albo, J., Martinez, N., Caicedo, D. A. Martinez, López, F. Martínez, Miravé, P. Martínez, Martynenko, S., Mascagna, V., Massari, C., Mastbaum, A., Matichard, F., Matsuno, S., Matteucci, G., Matthews, J., Mauger, C., Mauri, N., Mavrokoridis, K., Mawby, I., Mazza, R., Mazzacane, A., McAskill, T., McConkey, N., McFarland, K. S., McGrew, C., McNab, A., Meazza, L., Meddage, V. C. N., Mehta, B., Mehta, P., Melas, P., Mena, O., Mendez, H., Mendez, P., Méndez, D. P., Menegolli, A., Meng, G., Mercuri, A. C. E. A., Meregaglia, A., Messier, M. D., Metallo, S., Metcalf, J., Metcalf, W., Mewes, M., Meyer, H., Miao, T., Miccoli, A., Michna, G., Mikola, V., Milincic, R., Miller, F., Miller, G., Miller, W., Mineev, O., Minotti, A., Miralles, L., Miranda, O. G., Mironov, C., Miryala, S., Miscetti, S., Mishra, C. S., Mishra, S. R., Mislivec, A., Mitchell, M., Mladenov, D., Mocioiu, I., Mogan, A., Moggi, N., Mohanta, R., Mohayai, T. A., Mokhov, N., Molina, J., Bueno, L. Molina, Montagna, E., Montanari, A., Montanari, C., Montanari, D., Montanino, D., Zetina, L. M. Montaño, Mooney, M., Moor, A. F., Moore, Z., Moreno, D., Moreno-Palacios, O., Morescalchi, L., Moretti, D., Moretti, R., Morris, C., Mossey, C., Mote, M., Moura, C. A., Mouster, G., Mu, W., Mualem, L., Mueller, J., Muether, M., Muheim, F., Muir, A., Mulhearn, M., Munford, D., Munteanu, L. J., Muramatsu, H., Muraz, J., Murphy, M., Murphy, T., Muse, J., Mytilinaki, A., Nachtman, J., Nagai, Y., Nagu, S., Nandakumar, R., Naples, D., Narita, S., Nath, A., Navrer-Agasson, A., Nayak, N., Nebot-Guinot, M., Nehm, A., Nelson, J. K., Neogi, O., Nesbit, J., Nessi, M., Newbold, D., Newcomer, M., Nichol, R., Nicolas-Arnaldos, F., Nikolica, A., Nikolov, J., Niner, E., Nishimura, K., Norman, A., Norrick, A., Novella, P., Nowak, J. A., Oberling, M., Ochoa-Ricoux, J. P., Oh, S., Oh, S. B., Olivier, A., Olshevskiy, A., Olson, T., Onel, Y., Onishchuk, Y., Oranday, A., Osbiston, M., Vélez, J. A. Osorio, Ormachea, L. Otiniano, Ott, J., Pagani, L., Palacio, G., Palamara, O., Palestini, S., Paley, J. M., Pallavicini, M., Palomares, C., Pan, S., Panda, P., Vazquez, W. Panduro, Pantic, E., Paolone, V., Papadimitriou, V., Papaleo, R., Papanestis, A., Papoulias, D., Paramesvaran, S., Paris, A., Parke, S., Parozzi, E., Parsa, S., Parsa, Z., Parveen, S., Parvu, M., Pasciuto, D., Pascoli, S., Pasqualini, L., Pasternak, J., Patrick, C., Patrizii, L., Patterson, R. B., Patzak, T., Paudel, A., Paulucci, L., Pavlovic, Z., Pawloski, G., Payne, D., Pec, V., Pedreschi, E., Peeters, S. J. M., Pellico, W., Perez, A. Pena, Pennacchio, E., Penzo, A., Peres, O. L. G., Gonzalez, Y. F. Perez, Pérez-Molina, L., Pernas, C., Perry, J., Pershey, D., Pessina, G., Petrillo, G., Petta, C., Petti, R., Pfaff, M., Pia, V., Pickering, L., Pietropaolo, F., Pimentel, V. L., Pinaroli, G., Pinchault, J., Pitts, K., Plows, K., Plunkett, R., Pollack, C., Pollman, T., Polo-Toledo, D., Pompa, F., Pons, X., Poonthottathil, N., Popov, V., Poppi, F., Porter, J., Potekhin, M., Potenza, R., Pozimski, J., Pozzato, M., Prakash, T., Pratt, C., Prest, M., Psihas, F., Pugnere, D., Qian, X., Queen, J., Raaf, J. L., Radeka, V., Rademacker, J., Radics, B., Rafique, A., Raguzin, E., Rai, M., Rajagopalan, S., Rajaoalisoa, M., Rakhno, I., Rakotondravohitra, L., Ralte, L., Delgado, M. A. Ramirez, Ramson, B., Rappoldi, A., Raselli, G., Ratoff, P., Ray, R., Razafinime, H., Rea, E. M., Real, J. S., Rebel, B., Rechenmacher, R., Reggiani-Guzzo, M., Reichenbacher, J., Reitzner, S. D., Sfar, H. Rejeb, Renner, E., Renshaw, A., Rescia, S., Resnati, F., Restrepo, Diego, Reynolds, C., Ribas, M., Riboldi, S., Riccio, C., Riccobene, G., Ricol, J. S., Rigan, M., Rincón, E. V., Ritchie-Yates, A., Ritter, S., Rivera, D., Rivera, R., Robert, A., Rocha, J. L. Rocabado, Rochester, L., Roda, M., Rodrigues, P., Alonso, M. J. Rodriguez, Roeth, A. J., Rondon, J. Rodriguez, Rosauro-Alcaraz, S., Rosier, P., Ross, D., Rossella, M., Rossi, M., Ross-Lonergan, M., Roy, N., Roy, P., Rubbia, C., Ruggeri, A., Ferreira, G. Ruiz, Russell, B., Ruterbories, D., Rybnikov, A., Saa-Hernandez, A., Saakyan, R., Sacerdoti, S., Sahoo, S. K., Sahu, N., Sala, P., Samios, N., Samoylov, O., Sanchez, M. C., Bravo, A. Sánchez, Sanchez-Lucas, P., Sandberg, V., Sanders, D. A., Sanfilippo, S., Sankey, D., Santoro, D., Saoulidou, N., Sapienza, P., Sarasty, C., Sarcevic, I., Sarra, I., Savage, G., Savinov, V., Scanavini, G., Scaramelli, A., Scarff, A., Schefke, T., Schellman, H., Schifano, S., Schlabach, P., Schmitz, D., Schneider, A. W., Scholberg, K., Schukraft, A., Schuld, B., Segade, A., Segreto, E., Selyunin, A., Senise, C. R., Sensenig, J., Shaevitz, M. H., Shanahan, P., Sharma, P., Kumar, R., Shaw, K., Shaw, T., Shchablo, K., Shen, J., Shepherd-Themistocleous, C., Sheshukov, A., Shi, W., Shin, S., Shivakoti, S., Shoemaker, I., Shooltz, D., Shrock, R., Siddi, B., Siden, M., Silber, J., Simard, L., Sinclair, J., Sinev, G., Singh, Jaydip, Singh, J., Singh, L., Singh, P., Singh, V., Chauhan, S. Singh, Sipos, R., Sironneau, C., Sirri, G., Siyeon, K., Skarpaas, K., Smedley, J., Smith, E., Smith, J., Smith, P., Smolik, J., Smy, M., Snape, M., Snider, E. L., Snopok, P., Snowden-Ifft, D., Nunes, M. Soares, Sobel, H., Soderberg, M., Sokolov, S., Salinas, C. J. Solano, Söldner-Rembold, S., Soleti, S. R., Solomey, N., Solovov, V., Sondheim, W. E., Sorel, M., Sotnikov, A., Soto-Oton, J., Sousa, A., Soustruznik, K., Spinella, F., Spitz, J., Spooner, N. J. C., Spurgeon, K., Stalder, D., Stancari, M., Stanco, L., Steenis, J., Stein, R., Steiner, H. M., Lisbôa, A. F. Steklain, Stepanova, A., Stewart, J., Stillwell, B., Stock, J., Stocker, F., Stokes, T., Strait, M., Strauss, T., Strigari, L., Stuart, A., Suarez, J. G., Subash, J., Surdo, A., Suter, L., Sutera, C. M., Sutton, K., Suvorov, Y., Svoboda, R., Swain, S. K., Szczerbinska, B., Szelc, A. M., Sztuc, A., Taffara, A., Talukdar, N., Tamara, J., Tanaka, H. A., Tang, S., Taniuchi, N., Casanova, A. M. Tapia, Oregui, B. Tapia, Tapper, A., Tariq, S., Tarpara, E., Tatar, E., Tayloe, R., Tedeschi, D., Teklu, A. M., Vidal, J. Tena, Tennessen, P., Tenti, M., Terao, K., Terranova, F., Testera, G., Thakore, T., Thea, A., Thiebault, A., Thomas, S., Thompson, A., Thorn, C., Timm, S. C., Tiras, E., Tishchenko, V., Todorović, N., Tomassetti, L., Tonazzo, A., Torbunov, D., Torti, M., Tortola, M., Tortorici, F., Tosi, N., Totani, D., Toups, M., Touramanis, C., Tran, D., Travaglini, R., Trevor, J., Triller, E., Trilov, S., Truchon, J., Truncali, D., Trzaska, W. H., Tsai, Y., Tsai, Y. -T., Tsamalaidze, Z., Tsang, K. V., Tsverava, N., Tu, S. Z., Tufanli, S., Tunnell, C., Turner, J., Tuzi, M., Tyler, J., Tyley, E., Tzanov, M., Uchida, M. A., González, J. Ureña, Urheim, J., Usher, T., Utaegbulam, H., Uzunyan, S., Vagins, M. R., Vahle, P., Valder, S., Valdiviesso, G. A., Valencia, E., Valentim, R., Vallari, Z., Vallazza, E., Valle, J. W. F., Van Berg, R., Van de Water, R. G., Forero, D. V., Vannozzi, A., Van Nuland-Troost, M., Varanini, F., Oliva, D. Vargas, Vasina, S., Vaughan, N., Vaziri, K., Vázquez-Ramos, A., Vega, J., Ventura, S., Verdugo, A., Vergani, S., Verzocchi, M., Vetter, K., Vicenzi, M., de Souza, H. Vieira, Vignoli, C., Vilela, C., Villa, E., Viola, S., Viren, B., Vizcaya-Hernandez, A., Vrba, T., Vuong, Q., Waldron, A. V., Wallbank, M., Walsh, J., Walton, T., Wang, H., Wang, J., Wang, L., Wang, M. H. L. S., Wang, X., Wang, Y., Warburton, K., Warner, D., Warsame, L., Wascko, M. O., Waters, D., Watson, A., Wawrowska, K., Weber, A., Weber, C. M., Weber, M., Wei, H., Weinstein, A., Wenzel, H., Westerdale, S., Wetstein, M., Whalen, K., Whilhelmi, J., White, A., Whitehead, L. H., Whittington, D., Wilking, M. J., Wilkinson, A., Wilkinson, C., Wilson, F., Wilson, R. J., Winter, P., Wisniewski, W., Wolcott, J., Wolfs, J., Wongjirad, T., Wood, A., Wood, K., Worcester, E., Worcester, M., Wospakrik, M., Wresilo, K., Wret, C., Wu, S., Wu, W., Wurm, M., Wyenberg, J., Xiao, Y., Xiotidis, I., Yaeggy, B., Yahlali, N., Yandel, E., Yang, K., Yang, T., Yankelevich, A., Yershov, N., Yonehara, K., Young, T., Yu, B., Yu, H., Yu, J., Yu, Y., Yuan, W., Zaki, R., Zalesak, J., Zambelli, L., Zamorano, B., Zani, A., Zapata, O., Zazueta, L., Zeller, G. P., Zennamo, J., Zeug, K., Zhang, C., Zhang, S., Zhao, M., Zhivun, E., Zimmerman, E. D., Zucchelli, S., Zuklin, J., Zutshi, V., and Zwaska, R.
- Subjects
High Energy Physics - Experiment ,Astrophysics - High Energy Astrophysical Phenomena ,Astrophysics - Instrumentation and Methods for Astrophysics ,Astrophysics - Solar and Stellar Astrophysics ,Nuclear Experiment ,Physics - Instrumentation and Detectors - Abstract
The determination of the direction of a stellar core collapse via its neutrino emission is crucial for the identification of the progenitor for a multimessenger follow-up. A highly effective method of reconstructing supernova directions within the Deep Underground Neutrino Experiment (DUNE) is introduced. The supernova neutrino pointing resolution is studied by simulating and reconstructing electron-neutrino charged-current absorption on $^{40}$Ar and elastic scattering of neutrinos on electrons. Procedures to reconstruct individual interactions, including a newly developed technique called ``brems flipping'', as well as the burst direction from an ensemble of interactions are described. Performance of the burst direction reconstruction is evaluated for supernovae happening at a distance of 10 kpc for a specific supernova burst flux model. The pointing resolution is found to be 3.4 degrees at 68% coverage for a perfect interaction-channel classification and a fiducial mass of 40 kton, and 6.6 degrees for a 10 kton fiducial mass respectively. Assuming a 4% rate of charged-current interactions being misidentified as elastic scattering, DUNE's burst pointing resolution is found to be 4.3 degrees (8.7 degrees) at 68% coverage., Comment: 25 pages, 16 figures
- Published
- 2024
36. Few-electron highly charged muonic Ar atoms verified by electronic $K$ x rays
- Author
-
Okumura, T., Azuma, T., Bennett, D. A., Doriese, W. B., Durkin, M. S., Fowler, J. W., Gard, J. D., Hashimoto, T., Hayakawa, R., Ichinohe, Y., Indelicato, P., Isobe, T., Kanda, S., Kato, D., Katsuragawa, M., Kawamura, N., Kino, Y., Kominato, N., Miyake, Y., Morgan, K. M., Noda, H., O'Neil, G. C., Okada, S., Okutsu, K., Paul, N., Reintsema, C. D., Sato, T., Schmidt, D. R., Shimomura, K., Strasser, P., Swetz, D. S., Takahashi, T., Takeda, S., Takeshita, S., Tampo, M., Tatsuno, H., Tőkési, K., Tong, X. M., Toyama, Y., Ullom, J. N., Watanabe, S., Yamada, S., and Yamashita, T.
- Subjects
Physics - Atomic Physics - Abstract
Electronic $K$ x rays emitted by muonic Ar atoms in the gas phase were observed using a superconducting transition-edge-sensor microcalorimeter. The high-precision energy spectra provided a clear signature of the presence of muonic atoms accompanied by a few electrons, which have never been observed before. One-, two-, and three-electron bound, i.e., H-like, He-like, and Li-like, muonic Ar atoms were identified from electronic $K$ x rays and hyper-satellite $K$ x rays. These $K$ x rays are emitted after the charge transfer process by the collisions with surrounding Ar atoms. With the aid of theoretical calculations, we confirmed that the peak positions are consistent with the x-ray energies from highly charged Cl ions, and the intensities reflecting deexcitation dynamics were successfully understood by taking into account the interaction between the muon and bound electrons.
- Published
- 2024
37. Resonance and Damping in Drop-Cantilever Interactions
- Author
-
Fowler, Crystal, Marshall, Rehan, Son, Maeji, and Jung, Sunghwan
- Subjects
Physics - Fluid Dynamics - Abstract
In this study, we investigated the dynamics of a droplet impacting and oscillating a polycarbonate cantilever beam of nine varying lengths. We analyzed the cantilever's damping and vibration frequency in relation to a resonance length, where the frequencies of the droplet and the cantilever are equal. In the pre-resonance length, the beam vibrates at a frequency higher than that of the droplet. Upon reaching resonance, the frequencies of both the droplet and the cantilever align, and the cantilever is out of phase with the oscillation of the droplet's apex. This leads to increased damping rates. At this resonance length, the droplet's force and the direction of the cantilever oppose each other. When the cantilever length exceeds the resonance length, it synchronize more with the droplet apex. This alignment allows the droplet force and the cantilever to work in phase. Our findings provide fundamental insights into the damping effect of droplet impacts on elastic surfaces around resonance.
- Published
- 2024
38. OQuPy: A Python package to efficiently simulate non-Markovian open quantum systems with process tensors
- Author
-
Fux, Gerald E., Fowler-Wright, Piper, Beckles, Joel, Butler, Eoin P., Eastham, Paul R., Gribben, Dominic, Keeling, Jonathan, Kilda, Dainius, Kirton, Peter, Lawrence, Ewen D. C., Lovett, Brendon W., O'Neill, Eoin, Strathearn, Aidan, and de Wit, Roosmarijn
- Subjects
Quantum Physics - Abstract
Non-Markovian dynamics arising from the strong coupling of a system to a structured environment is essential in many applications of quantum mechanics and emerging technologies. Deriving an accurate description of general quantum dynamics including memory effects is however a demanding task, prohibitive to standard analytical or direct numerical approaches. We present a major release of our open source software package, OQuPy (Open Quantum System in Python), which provides several recently developed numerical methods that address this challenging task. It utilizes the process tensor approach to open quantum systems in which a single map, the process tensor, captures all possible effects of an environment on the system. The representation of the process tensor in a tensor network form allows an exact yet highly efficient description of non-Markovian open quantum systems (NM-OQS). The OQuPy package provides methods to (1) compute the dynamics and multi-time correlations of quantum systems coupled to single and multiple environments, (2) optimize control protocols for NM-OQS, (3) simulate interacting chains of NM-OQS, and (4) compute the mean-field dynamics of an ensemble of NM-OQS coupled to a common central system. Our aim is to provide an easily accessible and extensible tool for researchers of open quantum systems in fields such as quantum chemistry, quantum sensing, and quantum information., Comment: 20 pages, 15 figures
- Published
- 2024
- Full Text
- View/download PDF
39. Long-distance decay-less spin transport in indirect excitons in a van der Waals heterostructure
- Author
-
Zhou, Zhiwen, Szwed, E. A., Choksy, D. J., Fowler-Gerace, L. H., and Butov, L. V.
- Subjects
Condensed Matter - Mesoscale and Nanoscale Physics - Abstract
In addition to its fundamental interest, the long-distance spin transport with suppressed spin losses is essential for spintronic devices. However, the spin relaxation caused by scattering of the particles carrying the spin, limits the spin transport. We explored spatially indirect excitons (IXs), also known as interlayer excitons, in van der Waals heterostructures (HS) composed of atomically thin layers of transition-metal dichalcogenides (TMD) as spin carries. TMD HS also offer coupling of spin and valley transport. We observed the long-distance spin transport with the decay distances exceeding 100~$\mu$m and diverging so spin currents show no decay in the HS. With increasing IX density, we observed spin localization, then long-distance spin transport, and then reentrant spin localization, in agreement with the Bose-Hubbard theory prediction for superfluid and insulating phases in periodic potentials due to moir\'e superlattices. The suppression of scattering in exciton superfluid suppresses the spin relaxation and enables the long-distance spin transport. This mechanism of protection against the spin relaxation makes IXs a platform for the realization of long-distance decay-less spin transport., Comment: arXiv admin note: text overlap with arXiv:2307.00702
- Published
- 2024
- Full Text
- View/download PDF
40. Sacred Sharing Circles: Urban Indigenous Experience with Bariatric Surgery in Manitoba
- Author
-
Whyte, Marta, Fowler-Woods, Melinda, Fowler-Woods, Amanda, Shingoose, Geraldine, Hatala, Andrew, Daeninck, Felicia, Vergis, Ashley, Clouston, Kathleen, He, Wenjing, and Hardy, Krista
- Published
- 2024
- Full Text
- View/download PDF
41. Safe Injection Self-Efficacy is Associated with HCV and HIVSeropositivity Among People Who Inject Drugs in the San Diego–Tijuana Border Region
- Author
-
Fowler, Rebecca
- Abstract
Safe injection self-efficacy (SISE) is negatively associated with injection risk behaviors among people who inject drugs (PWID) but has not been examined in differing risk environments. We compared responses to a validated SISE scale between PWID in San Diego, California and Tijuana, Mexico, and examine correlates of SISE among PWID in Tijuana. PWID were recruited via street outreach for a longitudinal cohort study from October 2020 – September 2021. We compared SISE scale items by city. Due to low variability in SISE scores among San Diego residents, we restricted analysis of factors associated with SISE to Tijuana residents and identified correlates of SISE score levels (low, medium, high) using ordinal logistic regression. Of 474 participants, mostwere male (74%), Latinx (78%) and Tijuana residents (73%). Mean age was 44. MeanSISE scores among San Diego residents were high (3.46 of 4 maximum) relative toTijuana residents (mean: 1.93). Among Tijuana residents, White race and havingpreviously resided in San Diego were associated with higher SISE scores. HCV andHIV seropositivity, homelessness, fentanyl use, polysubstance co-injection, and greaterinjection frequency were associated with lower SISE scores. We found profoundinequalities between Tijuana and San Diego SISE, likely attributable to differential riskenvironments. Associations with fentanyl and polysubstance co-injection, injectionfrequency, and both HIV and HCV seropositivity suggest that SISE contribute to bloodborne infection transmission risks in Tijuana. SISE reflects an actionable intervention target to reduce injection risk behaviors, but structural interventions are required to change the risk environment.
- Published
- 2024
42. Systemic inflammation in pregnant women with HIV: relationship with HIV treatment regimen and preterm delivery
- Author
-
Shivakoti, Rupak, Giganti, Mark J, Lederman, Michael M, Ketchum, Rachel, Brummel, Sean, Moisi, Daniela, Dadabhai, Sufia, Moodley, Dhayendre, Violari, Avy, Chinula, Lameck, Owor, Maxensia, Gupta, Amita, Currier, Judith S, Taha, Taha E, Fowler, Mary Glenn, and team, for the PROMISE study
- Subjects
Reproductive Medicine ,Biomedical and Clinical Sciences ,Perinatal Period - Conditions Originating in Perinatal Period ,Preterm ,Low Birth Weight and Health of the Newborn ,HIV/AIDS ,Infectious Diseases ,Pediatric ,Women's Health ,Clinical Trials and Supportive Activities ,Clinical Research ,Sexually Transmitted Infections ,Pregnancy ,Evaluation of treatments and therapeutic interventions ,6.1 Pharmaceuticals ,Infection ,Reproductive health and childbirth ,Good Health and Well Being ,Humans ,Female ,HIV Infections ,Premature Birth ,Adult ,Inflammation ,Case-Control Studies ,Pregnancy Complications ,Infectious ,Anti-HIV Agents ,Biomarkers ,Zidovudine ,Tenofovir ,Antiretroviral Therapy ,Highly Active ,Lopinavir ,Young Adult ,PROMISE study team ,Biological Sciences ,Medical and Health Sciences ,Psychology and Cognitive Sciences ,Virology ,Biomedical and clinical sciences ,Health sciences - Abstract
ObjectiveHIV treatment regimen during pregnancy was associated with preterm delivery (PTD) in the PROMISE 1077 BF trial. Systemic inflammation among pregnant women with HIV could help explain differences in PTD by treatment regimen. We assessed associations between inflammation, treatment regimen, and PTD.Design/methodsA nested 1 : 1 case-control study ( N = 362) was conducted within a multicountry randomized trial comparing three HIV regimens in pregnant women: zidovudine alone, or combination antiretroviral therapy (ART) with lopinavir/ritonavir and either zidovudine or tenofovir. Cases were women with PTD (
- Published
- 2024
43. Network model of skeletal muscle cell signalling predicts differential responses to endurance and resistance exercise training.
- Author
-
Fowler, Annabelle, Knaus, Katherine, Khuu, Stephanie, Khalilimeybodi, Ali, Schenk, Simon, Ward, Samuel, Fry, Andrew, Rangamani, Padmini, and McCulloch, Andrew
- Subjects
computational model ,endurance exercise ,exercise ,resistance exercise ,signalling network ,skeletal muscle ,Humans ,Signal Transduction ,Muscle ,Skeletal ,Resistance Training ,Physical Endurance ,Animals ,Adaptation ,Physiological ,Exercise ,Models ,Biological - Abstract
Exercise-induced muscle adaptations vary based on exercise modality and intensity. We constructed a signalling network model from 87 published studies of human or rodent skeletal muscle cell responses to endurance or resistance exercise in vivo or simulated exercise in vitro. The network comprises 259 signalling interactions between 120 nodes, representing eight membrane receptors and eight canonical signalling pathways regulating 14 transcriptional regulators, 28 target genes and 12 exercise-induced phenotypes. Using this network, we formulated a logic-based ordinary differential equation model predicting time-dependent molecular and phenotypic alterations following acute endurance and resistance exercises. Compared with nine independent studies, the model accurately predicted 18/21 (85%) acute responses to resistance exercise and 12/16 (75%) acute responses to endurance exercise. Detailed sensitivity analysis of differential phenotypic responses to resistance and endurance training showed that, in the model, exercise regulates cell growth and protein synthesis primarily by signalling via mechanistic target of rapamycin, which is activated by Akt and inhibited in endurance exercise by AMP-activated protein kinase. Endurance exercise preferentially activates inflammation via reactive oxygen species and nuclear factor κB signalling. Furthermore, the expected preferential activation of mitochondrial biogenesis by endurance exercise was counterbalanced in the model by protein kinase C in response to resistance training. This model provides a new tool for investigating cross-talk between skeletal muscle signalling pathways activated by endurance and resistance exercise, and the mechanisms of interactions such as the interference effects of endurance training on resistance exercise outcomes.
- Published
- 2024
44. Static Subspace Approximation for Random Phase Approximation Correlation Energies: Implementation and Performance
- Author
-
Weinberg, Daniel, Hull, Olivia A., Clary, Jacob M., Sundararaman, Ravishankar, Vigil-Fowler, Derek, and Del Ben, Mauro
- Subjects
Condensed Matter - Materials Science - Abstract
Developing theoretical understanding of complex reactions and processes at interfaces requires using methods that go beyond semilocal density functional theory to accurately describe the interactions between solvent, reactants and substrates. Methods based on many-body perturbation theory, such as the random phase approximation (RPA), have previously been limited due to their computational complexity. However, this is now a surmountable barrier due to the advances in computational power available, in particular through modern GPU-based supercomputers. In this work, we describe the implementation of RPA calculations within BerkeleyGW and show its favorable computational performance on large complex systems relevant for catalysis and electrochemistry applications. Our implementation builds off of the static subspace approximation which, by employing a compressed representation of the frequency dependent polarizability, enables the evaluation of the RPA correlation energy with significant acceleration and systematically controllable accuracy. We find that the computational cost of calculating the RPA correlation energy scales only linearly with system size for systems containing up to 50 thousand bands, and is expected to scale quadratically thereafter. We also show excellent strong scaling results across several supercomputers, demonstrating the performance and portability of this implementation., Comment: 10 pages, 5 figures
- Published
- 2024
45. BEAST DB: Grand-Canonical Database of Electrocatalyst Properties
- Author
-
Tezak, Cooper, Clary, Jacob, Gerits, Sophie, Quinton, Joshua, Rich, Benjamin, Singstock, Nicholas, Alherz, Abdulaziz, Aubry, Taylor, Clark, Struan, Hurst, Rachel, Del Ben, Mauro, Sutton, Christopher, Sundararaman, Ravishankar, Musgrave, Charles, and Vigil-Fowler, Derek
- Subjects
Condensed Matter - Materials Science ,Physics - Chemical Physics - Abstract
We present BEAST DB, an open-source database comprised of ab initio electrochemical data computed using grand-canonical density functional theory in implicit solvent at consistent calculation parameters. The database contains over 20,000 surface calculations and covers a broad set of heterogeneous catalyst materials and electrochemical reactions. Calculations were performed at self-consistent fixed potential as well as constant charge to facilitate comparisons to the computational hydrogen electrode. This article presents common use cases of the database to rationalize trends in catalyst activity, screen catalyst material spaces, understand elementary mechanistic steps, analyze electronic structure, and train machine learning models to predict higher fidelity properties. Users can interact graphically with the database by querying for individual calculations to gain granular understanding of reaction steps or by querying for an entire reaction pathway on a given material using an interactive reaction pathway tool. BEAST DB will be periodically updated, with planned future updates to include advanced electronic structure data, surface speciation studies, and greater reaction coverage., Comment: 24 pages, 8 figures
- Published
- 2024
46. Enhancing Exoplanet Ephemerides by Leveraging Professional and Citizen Science Data: A Test Case with WASP-77A b
- Author
-
Noguer, Federico R., Corley, Suber, Pearson, Kyle A., Zellem, Robert T., Simon, Molly N., Burt, Jennifer A., Huckabee, Isabela, August, Prune C., Mansfield, Megan Weiner, Dalba, Paul A., Smith, Peter C. B., Banks, Timothy, Bell, Ira, Daniel, Dominique, Dawson, Lindsay, De Mula, Jesús, Deldem, Marc, Deligeorgopoulos, Dimitrios, Di Sisto, Romina P., Dymock, Roger, Evans, Phil, Follero, Giulio, Fowler, Martin J. F., Fernández-Lajús, Eduardo, Hamrick, Alex, Iannascoli, Nicoletta, Kovacs, Andre O., Kulh, Denis Henrique, Lopresti, Claudio, Marino, Antonio, Martin, Bryan E., Matassa, Paolo Arcangelo, Napoleão, Tasso Augusto, Nastasi, Alessandro, Norris, Anthony, Odasso, Alessandro, Paschalis, Nikolaos I., Pintr, Pavel, Postiglione, Jake, Randolph, Justus, Regembal, François, Rousselot, Lionel, da Silva, Sergio José Gonçalves, Smith, Andrew, and Tomacelli, Andrea
- Subjects
Astrophysics - Earth and Planetary Astrophysics ,Astrophysics - Instrumentation and Methods for Astrophysics - Abstract
We present an updated ephemeris and physical parameters for the exoplanet WASP-77 A b. In this effort, we combine 64 ground- and space-based transit observations, 6 space-based eclipse observations, and 32 radial velocity observations to produce the most precise orbital solution to date for this target, aiding in the planning of James Webb Space Telescope (JWST) and Ariel observations and atmospheric studies. We report a new orbital period of 1.360029395 +- 5.7e-8 days, a new mid-transit time of 2459957.337860 +- 4.3e-5 BJDTDB (Barycentric Julian Date in the Barycentric Dynamical Time scale; arXiv:1005.4415) and a new mid-eclipse time of 2459956.658192 +- 6.7e-5 BJDTDB. Furthermore, the methods presented in this study reduce the uncertainties in the planet mass to 1.6654 +- 4.5e-3 Mjup and orbital period to 1.360029395 +- 5.7e-8 days by factors of 15.1 and 10.9, respectively. Through a joint fit analysis comparison of transit data taken by space-based and citizen science-led initiatives, our study demonstrates the power of including data collected by citizen scientists compared to a fit of the space-based data alone. Additionally, by including a vast array of citizen science data from ExoClock, Exoplanet Transit Database (ETD), and Exoplanet Watch, we can increase our observational baseline and thus acquire better constraints on the forward propagation of our ephemeris than what is achievable with TESS data alone., Comment: Updated a co-author name. Added a co-author. Added an acknowledgement
- Published
- 2024
47. Thermalization and Criticality on an Analog-Digital Quantum Simulator
- Author
-
Andersen, Trond I., Astrakhantsev, Nikita, Karamlou, Amir H., Berndtsson, Julia, Motruk, Johannes, Szasz, Aaron, Gross, Jonathan A., Schuckert, Alexander, Westerhout, Tom, Zhang, Yaxing, Forati, Ebrahim, Rossi, Dario, Kobrin, Bryce, Di Paolo, Agustin, Klots, Andrey R., Drozdov, Ilya, Kurilovich, Vladislav D., Petukhov, Andre, Ioffe, Lev B., Elben, Andreas, Rath, Aniket, Vitale, Vittorio, Vermersch, Benoit, Acharya, Rajeev, Beni, Laleh Aghababaie, Anderson, Kyle, Ansmann, Markus, Arute, Frank, Arya, Kunal, Asfaw, Abraham, Atalaya, Juan, Ballard, Brian, Bardin, Joseph C., Bengtsson, Andreas, Bilmes, Alexander, Bortoli, Gina, Bourassa, Alexandre, Bovaird, Jenna, Brill, Leon, Broughton, Michael, Browne, David A., Buchea, Brett, Buckley, Bob B., Buell, David A., Burger, Tim, Burkett, Brian, Bushnell, Nicholas, Cabrera, Anthony, Campero, Juan, Chang, Hung-Shen, Chen, Zijun, Chiaro, Ben, Claes, Jahan, Cleland, Agnetta Y., Cogan, Josh, Collins, Roberto, Conner, Paul, Courtney, William, Crook, Alexander L., Das, Sayan, Debroy, Dripto M., De Lorenzo, Laura, Barba, Alexander Del Toro, Demura, Sean, Donohoe, Paul, Dunsworth, Andrew, Earle, Clint, Eickbusch, Alec, Elbag, Aviv Moshe, Elzouka, Mahmoud, Erickson, Catherine, Faoro, Lara, Fatemi, Reza, Ferreira, Vinicius S., Burgos, Leslie Flores, Fowler, Austin G., Foxen, Brooks, Ganjam, Suhas, Gasca, Robert, Giang, William, Gidney, Craig, Gilboa, Dar, Giustina, Marissa, Gosula, Raja, Dau, Alejandro Grajales, Graumann, Dietrich, Greene, Alex, Habegger, Steve, Hamilton, Michael C., Hansen, Monica, Harrigan, Matthew P., Harrington, Sean D., Heslin, Stephen, Heu, Paula, Hill, Gordon, Hoffmann, Markus R., Huang, Hsin-Yuan, Huang, Trent, Huff, Ashley, Huggins, William J., Isakov, Sergei V., Jeffrey, Evan, Jiang, Zhang, Jones, Cody, Jordan, Stephen, Joshi, Chaitali, Juhas, Pavol, Kafri, Dvir, Kang, Hui, Kechedzhi, Kostyantyn, Khaire, Trupti, Khattar, Tanuj, Khezri, Mostafa, Kieferová, Mária, Kim, Seon, Kitaev, Alexei, Klimov, Paul V., Korotkov, Alexander N., Kostritsa, Fedor, Kreikebaum, John Mark, Landhuis, David, Langley, Brandon W., Laptev, Pavel, Lau, Kim-Ming, Guevel, Loïck Le, Ledford, Justin, Lee, Joonho, Lee, Kenny, Lensky, Yuri D., Lester, Brian J., Li, Wing Yan, Lill, Alexander T., Liu, Wayne, Livingston, William P., Locharla, Aditya, Lundahl, Daniel, Lunt, Aaron, Madhuk, Sid, Maloney, Ashley, Mandrà, Salvatore, Martin, Leigh S., Martin, Orion, Martin, Steven, Maxfield, Cameron, McClean, Jarrod R., McEwen, Matt, Meeks, Seneca, Miao, Kevin C., Mieszala, Amanda, Molina, Sebastian, Montazeri, Shirin, Morvan, Alexis, Movassagh, Ramis, Neill, Charles, Nersisyan, Ani, Newman, Michael, Nguyen, Anthony, Nguyen, Murray, Ni, Chia-Hung, Niu, Murphy Yuezhen, Oliver, William D., Ottosson, Kristoffer, Pizzuto, Alex, Potter, Rebecca, Pritchard, Orion, Pryadko, Leonid P., Quintana, Chris, Reagor, Matthew J., Rhodes, David M., Roberts, Gabrielle, Rocque, Charles, Rosenberg, Eliott, Rubin, Nicholas C., Saei, Negar, Sankaragomathi, Kannan, Satzinger, Kevin J., Schurkus, Henry F., Schuster, Christopher, Shearn, Michael J., Shorter, Aaron, Shutty, Noah, Shvarts, Vladimir, Sivak, Volodymyr, Skruzny, Jindra, Small, Spencer, Smith, W. Clarke, Springer, Sofia, Sterling, George, Suchard, Jordan, Szalay, Marco, Sztein, Alex, Thor, Douglas, Torres, Alfredo, Torunbalci, M. Mert, Vaishnav, Abeer, Vdovichev, Sergey, Villalonga, Benjamin, Heidweiller, Catherine Vollgraff, Waltman, Steven, Wang, Shannon X., White, Theodore, Wong, Kristi, Woo, Bryan W., Xing, Cheng, Yao, Z. Jamie, Yeh, Ping, Ying, Bicheng, Yoo, Juhwan, Yosri, Noureldin, Young, Grayson, Zalcman, Adam, Zhu, Ningfeng, Zobrist, Nicholas, Neven, Hartmut, Babbush, Ryan, Boixo, Sergio, Hilton, Jeremy, Lucero, Erik, Megrant, Anthony, Kelly, Julian, Chen, Yu, Smelyanskiy, Vadim, Vidal, Guifre, Roushan, Pedram, Lauchli, Andreas M., Abanin, Dmitry A., and Mi, Xiao
- Subjects
Quantum Physics ,Condensed Matter - Mesoscale and Nanoscale Physics ,Condensed Matter - Strongly Correlated Electrons - Abstract
Understanding how interacting particles approach thermal equilibrium is a major challenge of quantum simulators. Unlocking the full potential of such systems toward this goal requires flexible initial state preparation, precise time evolution, and extensive probes for final state characterization. We present a quantum simulator comprising 69 superconducting qubits which supports both universal quantum gates and high-fidelity analog evolution, with performance beyond the reach of classical simulation in cross-entropy benchmarking experiments. Emulating a two-dimensional (2D) XY quantum magnet, we leverage a wide range of measurement techniques to study quantum states after ramps from an antiferromagnetic initial state. We observe signatures of the classical Kosterlitz-Thouless phase transition, as well as strong deviations from Kibble-Zurek scaling predictions attributed to the interplay between quantum and classical coarsening of the correlated domains. This interpretation is corroborated by injecting variable energy density into the initial state, which enables studying the effects of the eigenstate thermalization hypothesis (ETH) in targeted parts of the eigenspectrum. Finally, we digitally prepare the system in pairwise-entangled dimer states and image the transport of energy and vorticity during thermalization. These results establish the efficacy of superconducting analog-digital quantum processors for preparing states across many-body spectra and unveiling their thermalization dynamics.
- Published
- 2024
48. Kinetic inductance current sensor for visible to near-infrared wavelength transition-edge sensor readout
- Author
-
Szypryt, Paul, Bennett, Douglas A., Florang, Ian Fogarty, Fowler, Joseph W., Giachero, Andrea, Hummatov, Ruslan, Lita, Adriana E., Mates, John A. B., Nam, Sae Woo, O'Neil, Galen C., Swetz, Daniel S., Ullom, Joel N., Vissers, Michael R., Wheeler, Jordan, and Gao, Jiansong
- Subjects
Physics - Instrumentation and Detectors - Abstract
Single-photon detectors based on the superconducting transition-edge sensor (TES) are used in a number of visible to near-infrared (VNIR) applications, particularly for photon-number-resolving measurements in quantum information science. To be practical for large-scale photonic quantum computing or for future spectroscopic imaging applications in astronomy, the size of VNIR TES arrays must be increased from a few pixels to many thousands. Historically, TES arrays have been read out with multiplexed superconducting quantum interference devices (SQUIDs), but the microsecond-duration pulse signals of VNIR TESs are notoriously difficult to multiplex. In this manuscript, we introduce the kinetic inductance current sensor (KICS), a more readily scalable readout technology that exploits the nonlinear kinetic inductance in a superconducting resonator to make sensitive current measurements. KICS devices can replace SQUIDs for many applications because of their ability to measure fast, high slew-rate signals, their compatibility with standard microwave frequency-division multiplexing techniques, and their relatively simple fabrication. Here, we demonstrate the readout of a VNIR TES using a KICS with $3.7$ $\text{MHz}$ of bandwidth. We measure a readout noise of $1.4$ $\text{pA}/\sqrt{\text{Hz}}$, considerably below the TES noise at frequencies of interest, and a TES energy resolution of $(0.137 \pm 0.001)$ $\text{eV}$ at $0.8$ $\text{eV}$, comparable to resolutions observed with non-multiplexed SQUID readouts., Comment: 14 pages, 8 figures
- Published
- 2024
49. Mean-field and cumulant approaches to modelling organic polariton physics
- Author
-
Fowler-Wright, Piper
- Subjects
Condensed Matter - Other Condensed Matter ,Quantum Physics - Abstract
In this thesis we develop methods for many-body open quantum systems and apply them to systems of organic polaritons. The methods employ a mean-field approach to reduce the dimensionality of large-scale problems. Initially assuming the absence of correlations in the many-body state, this approach is built upon in two ways. First, we show how the mean-field approximation can be combined with matrix product operator methods to efficiently simulate the non-Markovian dynamics of a many-body system with strong coupling to multiple environments. We apply this method to calculate the threshold and photoluminescence for a realistic model of an organic laser. Second, we extend the mean-field description by systematically including higher-order correlations via cumulant expansions of the Heisenberg equations of motion. We investigate the validity and convergence properties of these expansions, both with respect to expansion order and system size, for many-body systems with many-to-one network structures. We then show how the cumulant expansions may be used to calculate spatially resolved dynamics of organic polaritons. This enables a study of organic polariton transport in which we observe reversible conversion to dark exciton states and sub-group-velocity propagation. The methods established in this work offer versatile tools for analysing large, many-body open quantum systems and investigating finite-size effects. Their application reveals the intricate dynamics of organic polaritons resulting from the interplay of strong light-matter coupling and vibrational effects., Comment: PhD Thesis
- Published
- 2024
- Full Text
- View/download PDF
50. Some uniform effective results on Andr\'{e}--Oort for sums of powers in $\mathbb{C}^n$
- Author
-
Fowler, Guy
- Subjects
Mathematics - Number Theory ,11G18, 14G35 - Abstract
We prove an Andr\'e--Oort-type result for a family of hypersurfaces in $\mathbb{C}^n$ that is both uniform and effective. Let $K_*$ denote the single exceptional imaginary quadratic field which occurs in the Siegel--Tatuzawa lower bound for the class number. We prove that, for $m, n \in \mathbb{Z}_{>0}$, there exists an effective constant $c(m, n)>0$ with the following property: if pairwise distinct singular moduli $x_1, \ldots, x_n$ with respective discriminants $\Delta_1, \ldots, \Delta_n$ are such that $a_1 x_1^m + \ldots + a_n x_n^m \in \mathbb{Q}$ for some $a_1, \ldots, a_n \in \mathbb{Q} \setminus \{0\}$ and $\# \{ \Delta_i : \mathbb{Q}(\sqrt{\Delta_i}) = K_*\} \leq 1$, then $\max_i \lvert \Delta_i \rvert \leq c(m, n)$. In addition, we prove an unconditional and completely explicit version of this result when $(m, n) = (1, 3)$ and thereby determine all the triples $(x_1, x_2, x_3)$ of singular moduli such that $a_1 x_1 + a_2 x_2 + a_3 x_3 \in \mathbb{Q}$ for some $a_1, a_2, a_3 \in \mathbb{Q} \setminus \{0\}$.
- Published
- 2024
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.