8 results on '"Foroughirad V"'
Search Results
2. Correction to: A framework for the identification of long-term social avoidance in longitudinal datasets
- Author
-
Strickland, K., primary, Levengood, A., additional, Foroughirad, V., additional, Mann, J., additional, Krzyszczyk, E., additional, and Frère, C. H., additional
- Published
- 2022
- Full Text
- View/download PDF
3. Inferring dolphin population status: using unoccupied aerial systems to quantify age‐structure.
- Author
-
Vivier, F., Andrés, C., Gonzalvo, J., Fertitta, K., Aswegen, M., Foroughirad, V., Mann, J., McEntee, M., Wells, R. S., and Bejder, L.
- Subjects
- *
CETACEA , *DOLPHINS , *BOTTLENOSE dolphin , *SHARKS , *SPECIES , *PHOTOGRAMMETRY - Abstract
Assessing trends in population abundance and demographics is crucial for managing long‐lived and slow‐reproducing species. Obtaining demographic data, and age‐structure information, is challenging, notably for cetaceans. To address this, we combined Unoccupied Aerial System (UAS; drone) photogrammetry data with long‐term (>20 years) photo identification data to assess the age‐structure of the critically endangered sub‐population of common bottlenose dolphins (Tursiops truncatus) of the Gulf of Ambracia, Greece. We compared our findings with two extensively studied non‐endangered bottlenose dolphin populations (T. aduncus in Shark Bay, Australia, and T. truncatus in Sarasota Bay, USA). Using a log‐linear model, we estimated the total body lengths (TL) of 160 known‐aged dolphins between 2021 and 2023 from blowhole‐to‐dorsal‐fin distance (BHDF) measurements collected during surfacing. Subsequently, we tested four growth models to establish an age‐length growth curve. We assessed the sub‐population's age‐structure using three methods: (1) UAS‐derived TL estimates, (2) age‐length growth curve and (3) long‐term monitoring data (i.e. actual age‐structure). UAS‐measured TL (247.6 ± 32.2 cm) and UAS‐estimated TL (246.0 ± 34.7 cm) of the Greek sub‐population showed no differences. The Richards Growth model suggested an asymptotic length of 258.5 cm. In Greece, resulting age‐structure estimates across the three methods revealed no significant differences (P > 0.1). The Gulf of Ambracia and Shark Bay populations shared similar age‐structures, while Sarasota had higher proportions of 2–10 year‐olds and lower proportions of 10+ year‐olds. All populations had a comparable proportion of 0–2 year‐olds (~14%), indicating a similar reproductive rate. Our findings suggest stability in the Greek sub‐population; however, additional monitoring of reproductive parameters is essential before concluding its status. We demonstrated the effectiveness of UAS‐photogrammetry in rapidly quantifying population age‐structure, including scenarios with limited or no demographic data. This technique shows promise for enhancing precision, timeliness, cost‐effectiveness and efficiency in population monitoring and informing timely conservation management decisions. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF
4. Sex bias in mortality risk changes over the lifespan of bottlenose dolphins.
- Author
-
McEntee MHF, Foroughirad V, Krzyszczyk E, and Mann J
- Subjects
- Animals, Male, Female, Longevity, Sexism, Reproduction, Social Behavior, Bottle-Nosed Dolphin
- Abstract
Research on sex biases in longevity in mammals often assumes that male investment in competition results in a female survival advantage that is constant throughout life. We use 35 years of longitudinal data on 1003 wild bottlenose dolphins ( Tursiops aduncus ) to examine age-specific mortality, demonstrating a time-varying effect of sex on mortality hazard over the five-decade lifespan of a social mammal. Males are at higher risk of mortality than females during the juvenile period, but the gap between male and female mortality hazard closes in the mid-teens, coincident with the onset of female reproduction. Female mortality hazard is non-significantly higher than male mortality hazard in adulthood, resulting in a moderate male bias in the oldest age class. Bottlenose dolphins have an intensely male-competitive mating system, and juvenile male mortality has been linked to social competition. Contrary to predictions from sexual selection theory, however, male-male competition does not result in sustained male-biased mortality. As female dolphins experience high costs of sexual coercion in addition to long and energetically expensive periods of gestation and lactation, this suggests that substantial female investment in reproduction can elevate female mortality risk and impact sex biases in lifespan.
- Published
- 2023
- Full Text
- View/download PDF
5. Why don't we share data and code? Perceived barriers and benefits to public archiving practices.
- Author
-
Gomes DGE, Pottier P, Crystal-Ornelas R, Hudgins EJ, Foroughirad V, Sánchez-Reyes LL, Turba R, Martinez PA, Moreau D, Bertram MG, Smout CA, and Gaynor KM
- Subjects
- Motivation, Information Dissemination, Biological Science Disciplines
- Abstract
The biological sciences community is increasingly recognizing the value of open, reproducible and transparent research practices for science and society at large. Despite this recognition, many researchers fail to share their data and code publicly. This pattern may arise from knowledge barriers about how to archive data and code, concerns about its reuse, and misaligned career incentives. Here, we define, categorize and discuss barriers to data and code sharing that are relevant to many research fields. We explore how real and perceived barriers might be overcome or reframed in the light of the benefits relative to costs. By elucidating these barriers and the contexts in which they arise, we can take steps to mitigate them and align our actions with the goals of open science, both as individual scientists and as a scientific community.
- Published
- 2022
- Full Text
- View/download PDF
6. Maternal effects and fitness consequences of individual variation in bottlenose dolphins' ecological niche.
- Author
-
Strickland K, Mann J, Foroughirad V, Levengood AL, and Frère CH
- Subjects
- Animals, Biological Evolution, Ecosystem, Genetic Fitness, Maternal Inheritance, Bottle-Nosed Dolphin
- Abstract
The niche describes the ecological and social environment that an organism lives in, as well as the behavioural tactics used to interact with its environment. A species niche is key to both ecological and evolutionary processes, including speciation, and has therefore been a central focus in ecology. Recent evidence, however, points to considerable individual variation in a species' or population's niche use, although how this variation evolves or is maintained remains unclear. We used a large longitudinal dataset to investigate the drivers and maintenance of individual variation in bottlenose dolphins' Tursiops aduncus niche. Specifically, we (a) characterised the extent of individual differences in habitat use, (b) identified whether there were maternal effects associated with this variation and (c) investigated the relationship between habitat use and calving success, a component of reproductive fitness. By examining patterns of habitat use, we provide evidence that individual dolphins vary consistently between one another in their niche. We further show that such individual variation is driven by a strong maternal effect. Finally, habitat use and calving success were not related, suggesting that use of different habitats results in similar fitness outcomes. Niche partitioning, maintained by maternal effects, likely facilitates the coexistence of multiple ecotypes within this population., (© 2021 British Ecological Society.)
- Published
- 2021
- Full Text
- View/download PDF
7. Quality and quantity of genetic relatedness data affect the analysis of social structure.
- Author
-
Foroughirad V, Levengood AL, Mann J, and Frère CH
- Subjects
- Animals, Behavior, Animal, Dolphins genetics, Dolphins physiology, Genetics, Population methods, Pedigree, Social Networking
- Abstract
Kinship plays a fundamental role in the evolution of social systems and is considered a key driver of group living. To understand the role of kinship in the formation and maintenance of social bonds, accurate measures of genetic relatedness are critical. Genotype-by-sequencing technologies are rapidly advancing the accuracy and precision of genetic relatedness estimates for wild populations. The ability to assign kinship from genetic data varies depending on a species' or population's mating system and pattern of dispersal, and empirical data from longitudinal studies are crucial to validate these methods. We use data from a long-term behavioural study of a polygynandrous, bisexually philopatric marine mammal to measure accuracy and precision of parentage and genetic relatedness estimation against a known partial pedigree. We show that with moderate but obtainable sample sizes of approximately 4,235 SNPs and 272 individuals, highly accurate parentage assignments and genetic relatedness coefficients can be obtained. Additionally, we subsample our data to quantify how data availability affects relatedness estimation and kinship assignment. Lastly, we conduct a social network analysis to investigate the extent to which accuracy and precision of relatedness estimation improve statistical power to detect an effect of relatedness on social structure. Our results provide practical guidance for minimum sample sizes and sequencing depth for future studies, as well as thresholds for post hoc interpretation of previous analyses., (© 2019 John Wiley & Sons Ltd.)
- Published
- 2019
- Full Text
- View/download PDF
8. A framework for the identification of long-term social avoidance in longitudinal datasets.
- Author
-
Strickland K, Levengood A, Foroughirad V, Mann J, Krzyszczyk E, and Frère CH
- Abstract
Animal sociality is of significant interest to evolutionary and behavioural ecologists, with efforts focused on the patterns, causes and fitness outcomes of social preference. However, individual social patterns are the consequence of both attraction to (preference for) and avoidance of conspecifics. Despite this, social avoidance has received far less attention than social preference. Here, we detail the necessary steps to generate a spatially explicit, iterative null model which can be used to identify non-random social avoidance in longitudinal studies of social animals. We specifically identify and detail parameters which will influence the validity of the model. To test the usability of this model, we applied it to two longitudinal studies of social animals (Eastern water dragons ( Intellegama lesueurii ) and bottlenose dolphins ( Tursiops aduncus )) to identify the presence of social avoidances. Using this model allowed us to identify the presence of social avoidances in both species. We hope that the framework presented here inspires interest in addressing this critical gap in our understanding of animal sociality, in turn allowing for a more holistic understanding of social interactions, relationships and structure., Competing Interests: We declare we have no competing interests.
- Published
- 2017
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.