31 results on '"Fornadel C"'
Search Results
2. A qualitative look at bed net access and use in Burkina Faso, Mozambique, Nigeria, and Rwanda following piloted distributions of dual-active ingredient insecticide-treated nets.
- Author
-
Shannon J, Kagone M, Candrinho B, Otikwu S, Ingabire C, Gansane A, Pooda S, Aboubacar F, Ouattara F, Savaio B, Joanguete C, Sixpence L, Koenker H, Uhomoibhi P, Okoko OO, Ali O, Babarinde D, Ogundairo J, Lemah AS, Mbituyumuremyi A, Singirankabo JH, Kawakyu N, Guglielmo F, Fornadel C, Arnett K, Wagman J, Gogue C, Tynuv K, Digre P, Mwesigwa J, and Robertson M
- Subjects
- Nigeria, Burkina Faso, Humans, Mozambique, Female, Rwanda, Male, Adult, Middle Aged, Young Adult, Focus Groups, Insecticide-Treated Bednets statistics & numerical data, Malaria prevention & control, Mosquito Control methods, Mosquito Control statistics & numerical data
- Abstract
Background: Universal coverage with insecticide-treated nets (ITNs) is important for malaria control and elimination. The emergence and intensification of insecticide resistance threatens progress made through the deployment of these interventions and has required the development of newer, more expensive ITN types. Understanding malaria prevention behaviour, including barriers and facilitators to net access and use, can support effective decision-making for the promotion and distribution of ITNs., Methods: In-depth interviews and focus group discussions were conducted in 3 to 4 villages per district, in 13 districts across Burkina Faso, Mozambique, Nigeria and Rwanda from 2019 to 2022. Interviews were conducted in the local language, translated and transcribed in English, French or Portuguese. Transcripts were coded and analysed using Nvivo and ATLAS.ti., Results: ITNs were obtained from mass distribution campaigns, antenatal care and immunization visits, and purchased on the private market in some locations. While there were divergent perspectives in whether the number of distributed nets were adequate, participants consistently expressed concerns of bias, discrimination, and a lack of transparency with the distribution process. ITNs were frequently used alongside other malaria prevention methods. The primary motivation for use was malaria prevention. While some participants reported using nets nightly throughout the year, other participants reported seasonal use, both due to the perceived higher density of mosquitoes and discomfort of sleeping under a net in the increased heat. Other barriers to consistent net use included activities that take place away from the home, sleeping patterns and arrangements, and sensitivity to the insecticides on the nets., Conclusions: ITNs remain an important malaria control intervention. To ensure adequate and increased net access, distribution campaigns should consider family structures, available sleeping spaces, and other bed sharing preferences when identifying the number of nets needed for distribution. In addition, campaigns should allow for multiple options for net distribution points and timing to accommodate households remote to health services. Continuous distribution channels and complimentary distribution through the private sector could help fill gaps in coverage. Solutions are needed for outdoor malaria transmission, including alternative designs for ITNs, and improving access to complementary personal protective measures., (© 2024. The Author(s).)
- Published
- 2024
- Full Text
- View/download PDF
3. Insecticides for Mosquito Control: Improving and Validating Methods to Strengthen the Evidence Base.
- Author
-
Lees RS, Fornadel C, Snetselaar J, Wagman J, and Spiers A
- Abstract
Efforts to eliminate vector-borne diseases, for example malaria which caused an estimated 619,000 deaths in 2021 [...].
- Published
- 2023
- Full Text
- View/download PDF
4. Some residual malaria transmission may be "out of control" but "within reach" of current tools.
- Author
-
Wagman J, Fornadel C, and Okumu F
- Subjects
- Animals, Culicidae drug effects, Humans, Insecticides, Mosquito Nets, Insect Bites and Stings parasitology, Malaria prevention & control, Malaria transmission, Mosquito Control methods
- Published
- 2022
- Full Text
- View/download PDF
5. Strain Characterisation for Measuring Bioefficacy of ITNs Treated with Two Active Ingredients (Dual-AI ITNs): Developing a Robust Protocol by Building Consensus.
- Author
-
Lees RS, Armistead JS, Azizi S, Constant E, Fornadel C, Gimnig JE, Hemingway J, Impoinvil D, Irish SR, Kisinza W, Lissenden N, Mawejje HD, Messenger LA, Moore S, Ngufor C, Oxborough R, Protopopoff N, Ranson H, Small G, Wagman J, Weetman D, Zohdy S, and Spiers A
- Abstract
Durability monitoring of insecticide-treated nets (ITNs) containing a pyrethroid in combination with a second active ingredient (AI) must be adapted so that the insecticidal bioefficacy of each AI can be monitored independently. An effective way to do this is to measure rapid knock down of a pyrethroid-susceptible strain of mosquitoes to assess the bioefficacy of the pyrethroid component and to use a pyrethroid-resistant strain to measure the bioefficacy of the second ingredient. To allow robust comparison of results across tests within and between test facilities, and over time, protocols for bioefficacy testing must include either characterisation of the resistant strain, standardisation of the mosquitoes used for bioassays, or a combination of the two. Through a series of virtual meetings, key stakeholders and practitioners explored different approaches to achieving these goals. Via an iterative process we decided on the preferred approach and produced a protocol consisting of characterising mosquitoes used for bioefficacy testing before and after a round of bioassays, for example at each time point in a durability monitoring study. We present the final protocol and justify our approach to establishing a standard methodology for durability monitoring of ITNs containing pyrethroid and a second AI.
- Published
- 2022
- Full Text
- View/download PDF
6. Optimising the deployment of vector control tools against malaria: a data-informed modelling study.
- Author
-
Sherrard-Smith E, Winskill P, Hamlet A, Ngufor C, N'Guessan R, Guelbeogo MW, Sanou A, Nash RK, Hill A, Russell EL, Woodbridge M, Tungu P, Kont MD, Mclean T, Fornadel C, Richardson JH, Donnelly MJ, Staedke SG, Gonahasa S, Protopopoff N, Rowland M, and Churcher TS
- Subjects
- Animals, Mosquito Control methods, Piperonyl Butoxide, Tanzania, Insecticide-Treated Bednets, Malaria epidemiology, Malaria prevention & control
- Abstract
Background: Concern that insecticide resistant mosquitoes are threatening malaria control has driven the development of new types of insecticide treated nets (ITNs) and indoor residual spraying (IRS) of insecticide. Malaria control programmes have a choice of vector control interventions although it is unclear which controls should be used to combat the disease. The study aimed at producing a framework to easily compare the public health impact and cost-effectiveness of different malaria prevention measures currently in widespread use., Methods: We used published data from experimental hut trials conducted across Africa to characterise the entomological effect of pyrethroid-only ITNs versus ITNs combining a pyrethroid insecticide with the synergist piperonyl butoxide (PBO). We use these estimates to parameterise a dynamic mathematical model of Plasmodium falciparum malaria which is validated for two sites by comparing simulated results to empirical data from randomised control trials (RCTs) in Tanzania and Uganda. We extrapolated model simulations for a series of potential scenarios likely across the sub-Saharan African region and include results in an online tool (Malaria INtervention Tool [MINT]) that aims to identify optimum vector control intervention packages for scenarios with varying budget, price, entomological and epidemiological factors., Findings: Our model indicates that switching from pyrethroid-only to pyrethroid-PBO ITNs could averted up to twice as many cases, although the additional benefit is highly variable and depends on the setting conditions. We project that annual delivery of long-lasting, non-pyrethroid IRS would prevent substantially more cases over 3-years, while pyrethroid-PBO ITNs tend to be the most cost-effective intervention per case averted. The model was able to predict prevalence and efficacy against prevalence in both RCTs for the intervention types tested. MINT is applicable to regions of sub-Saharan Africa with endemic malaria and provides users with a method of designing intervention packages given their setting and budget., Interpretation: The most cost-effective vector control package will vary locally. Models able to recreate results of RCTs can be used to extrapolate outcomes elsewhere to support evidence-based decision making for investment in vector control., Funding: Medical Research Council, IVCC, Wellcome Trust., Translation: For the French translation of the abstract see Supplementary Materials section., Competing Interests: Declaration of interests We declare no competing interests., (Copyright © 2022 This is an Open Access article under the CC BY 4.0 license. Published by Elsevier Ltd.. All rights reserved.)
- Published
- 2022
- Full Text
- View/download PDF
7. Design and methods for a quasi-experimental pilot study to evaluate the impact of dual active ingredient insecticide-treated nets on malaria burden in five regions in sub-Saharan Africa.
- Author
-
Gansané A, Candrinho B, Mbituyumuremyi A, Uhomoibhi P, NFalé S, Mohammed AB, Guelbeogo WM, Sanou A, Kangoye D, Debe S, Kagone M, Hakizimana E, Uwimana A, Tuyishime A, Ingabire CM, Singirankabo JH, Koenker H, Marrenjo D, Abilio AP, Salvador C, Savaio B, Okoko OO, Maikore I, Obi E, Awolola ST, Adeogun A, Babarinde D, Ali O, Guglielmo F, Yukich J, Scates S, Sherrard-Smith E, Churcher T, Fornadel C, Shannon J, Kawakyu N, Beylerian E, Digre P, Tynuv K, Gogue C, Mwesigwa J, Wagman J, Adeleke M, Adeolu AT, and Robertson M
- Subjects
- Africa South of the Sahara epidemiology, Humans, Incidence, Insecticide-Treated Bednets classification, Malaria epidemiology, Pilot Projects, Prevalence, Cost of Illness, Insecticide-Treated Bednets statistics & numerical data, Malaria prevention & control, Mosquito Control statistics & numerical data
- Abstract
Background: Vector control tools have contributed significantly to a reduction in malaria burden since 2000, primarily through insecticidal-treated bed nets (ITNs) and indoor residual spraying. In the face of increasing insecticide resistance in key malaria vector species, global progress in malaria control has stalled. Innovative tools, such as dual active ingredient (dual-AI) ITNs that are effective at killing insecticide-resistant mosquitoes have recently been introduced. However, large-scale uptake has been slow for several reasons, including higher costs and limited evidence on their incremental effectiveness and cost-effectiveness. The present report describes the design of several observational studies aimed to determine the effectiveness and cost-effectiveness of dual-AI ITNs, compared to standard pyrethroid-only ITNs, at reducing malaria transmission across a variety of transmission settings., Methods: Observational pilot studies are ongoing in Burkina Faso, Mozambique, Nigeria, and Rwanda, leveraging dual-AI ITN rollouts nested within the 2019 and 2020 mass distribution campaigns in each country. Enhanced surveillance occurring in select study districts include annual cross-sectional surveys during peak transmission seasons, monthly entomological surveillance, passive case detection using routine health facility surveillance systems, and studies on human behaviour and ITN use patterns. Data will compare changes in malaria transmission and disease burden in districts receiving dual-AI ITNs to similar districts receiving standard pyrethroid-only ITNs over three years. The costs of net distribution will be calculated using the provider perspective including financial and economic costs, and a cost-effectiveness analysis will assess incremental cost-effectiveness ratios for Interceptor® G2, Royal Guard®, and piperonyl butoxide ITNs in comparison to standard pyrethroid-only ITNs, based on incidence rate ratios calculated from routine data., Conclusions: Evidence of the effectiveness and cost-effectiveness of the dual-AI ITNs from these pilot studies will complement evidence from two contemporary cluster randomized control trials, one in Benin and one in Tanzania, to provide key information to malaria control programmes, policymakers, and donors to help guide decision-making and planning for local malaria control and elimination strategies. Understanding the breadth of contexts where these dual-AI ITNs are most effective and collecting robust information on factors influencing comparative effectiveness could improve uptake and availability and help maximize their impact., (© 2022. The Author(s).)
- Published
- 2022
- Full Text
- View/download PDF
8. Partial indoor residual spraying with pirimiphos-methyl as an effective and cost-saving measure for the control of Anopheles gambiae s.l. in northern Ghana.
- Author
-
Coleman S, Yihdego Y, Sherrard-Smith E, Thomas CS, Dengela D, Oxborough RM, Dadzie SK, Boakye D, Gyamfi F, Obiri-Danso K, Johns B, Siems LV, Lucas B, Tongren JE, Zigirumugabe S, Dery D, Fornadel C, George K, Belemvire A, Carlson J, Irish SR, Armistead JS, and Seyoum A
- Subjects
- Aerosolized Particles and Droplets, Animals, Cost-Benefit Analysis, Geography, Ghana epidemiology, Malaria epidemiology, Malaria prevention & control, Malaria transmission, Models, Theoretical, Public Health Surveillance, Anopheles drug effects, Insecticides administration & dosage, Mosquito Control methods, Organothiophosphorus Compounds administration & dosage
- Abstract
The scale up of indoor residual spraying (IRS) and insecticide treated nets have contributed significantly to global reductions in malaria prevalence over the last two decades. However, widespread pyrethroid resistance has necessitated the use of new and more expensive insecticides for IRS. Partial IRS with pirimiphos-methyl in experimental huts and houses in a village-wide trial was evaluated against Anopheles gambiae s.l. in northern Ghana. Four different scenarios in which either only the top or bottom half of the walls of experimental huts were sprayed, with or without also spraying the ceiling were compared. Mortality of An. gambiae s.l. on partially sprayed walls was compared with the standard procedures in which all walls and ceiling surfaces are sprayed. A small-scale trial was then conducted to assess the effectiveness, feasibility, and cost of spraying only the upper walls and ceiling as compared to full IRS and no spraying in northern Ghana. Human landing catches were conducted to estimate entomological indices and determine the effectiveness of partial IRS. An established transmission dynamics model was parameterized by an analysis of the experimental hut data and used to predict the epidemiological impact and cost effectiveness of partial IRS for malaria control in northern Ghana. In the experimental huts, partial IRS of the top (IRR 0.89, p = 0.13) or bottom (IRR 0.90, p = 0.15) half of walls and the ceiling was not significantly less effective than full IRS in terms of mosquito mortality. In the village trial, the annual entomological inoculation rate was higher for the unsprayed control (217 infective bites/person/year (ib/p/yr)) compared with the fully and partially sprayed sites, with 28 and 38 ib/p/yr, respectively. The transmission model predicts that the efficacy of partial IRS against all-age prevalence of malaria after six months would be broadly equivalent to a full IRS campaign in which 40% reduction is expected relative to no spray campaign. At scale, partial IRS in northern Ghana would have resulted in a 33% cost savings ($496,426) that would enable spraying of 36,000 additional rooms. These findings suggest that partial IRS is an effective, feasible, and cost saving approach to IRS that could be adopted to sustain and expand implementation of this key malaria control intervention., (© 2021. The Author(s).)
- Published
- 2021
- Full Text
- View/download PDF
9. Incremental impact on malaria incidence following indoor residual spraying in a highly endemic area with high standard ITN access in Mozambique: results from a cluster-randomized study.
- Author
-
Chaccour C, Zulliger R, Wagman J, Casellas A, Nacima A, Elobolobo E, Savaio B, Saifodine A, Fornadel C, Richardson J, Candrinho B, Robertson M, and Saute F
- Subjects
- Child, Child, Preschool, Cohort Studies, Female, Humans, Incidence, Infant, Insecticide-Treated Bednets statistics & numerical data, Male, Mozambique epidemiology, Randomized Controlled Trials as Topic, Insecticides administration & dosage, Malaria, Falciparum epidemiology, Mosquito Control, Organothiophosphorus Compounds administration & dosage
- Abstract
Background: Attaining the goal of reducing the global malaria burden is threatened by recent setbacks in maintaining the effectiveness of vector control interventions partly due to the emergence of pyrethroid resistant vectors. One potential strategy to address these setbacks could be combining indoor residual spraying (IRS) with non-pyrethroids and standard insecticide-treated nets (ITNs). This study aimed to provide evidence on the incremental epidemiological benefit of using third-generation IRS product in a highly endemic area with high ITN ownership., Methods: A cluster-randomized, open-label, parallel-arms, superiority trial was conducted in the Mopeia district in Zambezia, Mozambique from 2016 to 2018. The district had received mass distribution of alphacypermethrin ITNs two years before the trial and again mid-way. 86 clusters were defined, stratified and randomized to receive or not receive IRS with pirimiphos-methyl (Actellic®300 CS). Efficacy of adding IRS was assessed through malaria incidence in a cohort of children under five followed prospectively for two years, enhanced passive surveillance at health facilities and by community health workers, and yearly cross-sectional surveys at the peak of the transmission season., Findings: A total of 1536 children were enrolled in the cohort. Children in the IRS arm experienced 4,801 cases (incidence rate of 3,532 per 10,000 children-month at risk) versus 5,758 cases in the no-IRS arm (incidence rate of 4,297 per 10,000 children-month at risk), resulting in a crude risk reduction of 18% and an incidence risk ratio of 0.82 (95% CI 0.79-0.86, p-value < 0.001). Facility and community passive surveillance showed a malaria incidence of 278 per 10,000 person-month in the IRS group (43,974 cases over 22 months) versus 358 (95% CI 355-360) per 10,000 person-month at risk in the no-IRS group (58,030 cases over 22 months), resulting in an incidence rate ratio of 0.65 (95% CI 0.60-0.71, p < 0.001). In the 2018 survey, prevalence in children under five in the IRS arm was significantly lower than in the no-IRS arm (OR 0.54, 95% CI, 0.31-0.92, p = 0.0241)., Conclusion: In a highly endemic area with high ITN access and emerging pyrethroid resistance, adding IRS with pirimiphos-methyl resulted in significant additional protection for children under five years of age., Trial Registration: ClinicalTrials.gov identifier NCT02910934, registered 22 September 2016, https://clinicaltrials.gov/ct2/show/NCT02910934?term=NCT02910934&draw=2&rank=1 .
- Published
- 2021
- Full Text
- View/download PDF
10. Reduced exposure to malaria vectors following indoor residual spraying of pirimiphos-methyl in a high-burden district of rural Mozambique with high ownership of long-lasting insecticidal nets: entomological surveillance results from a cluster-randomized trial.
- Author
-
Wagman JM, Varela K, Zulliger R, Saifodine A, Muthoni R, Magesa S, Chaccour C, Gogue C, Tynuv K, Seyoum A, Dengela D, Saúte F, Richardson JH, Fornadel C, Linton YM, Slutsker L, Candrinho B, and Robertson M
- Subjects
- Animals, Anopheles drug effects, Entomology methods, Environmental Monitoring statistics & numerical data, Female, Humans, Insecticide-Treated Bednets, Mozambique, Ownership statistics & numerical data, Pyrethrins pharmacology, Insecticides pharmacology, Malaria prevention & control, Mosquito Control methods, Mosquito Vectors drug effects, Organothiophosphorus Compounds pharmacology
- Abstract
Background: The need to develop new products and novel approaches for malaria vector control is recognized as a global health priority. One approach to meeting this need has been the development of new products for indoor residual spraying (IRS) with novel active ingredients for public health. While initial results showing the impact of several of these next-generation IRS products have been encouraging, questions remain about how to best deploy them for maximum impact. To help address these questions, a 2-year cluster-randomized controlled trial to measure the impact of IRS with a microencapsulated formulation of pirimiphos-methyl (PM) in an area with high ownership of long-lasting insecticidal nets (LLINs) was conducted in a high-transmission district of central Mozambique with pyrethroid resistant vectors. Presented here are the results of the vector surveillance component of the trial., Methods: The 2 year, two-armed trial was conducted in Mopeia District, Zambezia Province, Mozambique. In ten sentinel villages, five that received IRS with PM in October-November 2016 and again in October-November 2017 and five that received no IRS, indoor light trap collections and paired indoor-outdoor human landing collections catches (HLCs) were conducted monthly from September 2016 through October 2018. A universal coverage campaign in June 2017, just prior to the second spray round, distributed 131,540 standard alpha-cypermethrin LLINs across all study villages and increased overall net usage rates in children under 5 years old to over 90%., Results: The primary malaria vector during the trial was Anopheles funestus sensu lato (s.l.), and standard World Health Organization (WHO) tube tests with this population indicated variable but increasing resistance to pyrethroids (including alpha-cypermethrin, from > 85% mortality in 2017 to 7% mortality in 2018) and uniform susceptibility to PM (100% mortality in both years). Over the entire duration of the study, IRS reduced An. funestus s.l. densities by 48% (CI
95 33-59%; p < 0.001) in indoor light traps and by 74% (CI95 38-90%; p = 0.010) during indoor and outdoor HLC, though in each study year reductions in vector density were consistently greatest in those months immediately following the IRS campaigns and waned over time. Overall there was no strong preference for An. funestus to feed indoors or outdoors, and these biting behaviours did not differ significantly across study arms: observed indoor-outdoor biting ratios were 1.10 (CI95 1.00-1.21) in no-IRS villages and 0.88 (CI95 0.67-1.15) in IRS villages. The impact of IRS was consistent in reducing HLC exposures both indoors (75% reduction: CI95 47-88%; p = 0. < 0.001) and outdoors (68% reduction: CI95 22-87%; p = 0.012). While substantially fewer Anopheles gambiae s.l. were collected during the study, trends show a similar impact of IRS on this key vector group as well, with a 33% (CI95 7-53%; p = 0.019) reduction in mosquitoes collected in light traps and a non-statistically significant 39% reduction (p = 0.249) in HLC landing rates., Conclusion: IRS with PM used in addition to pyrethroid-only LLINs substantially reduced human exposures to malaria vectors during both years of the cluster-randomized controlled trial in Mopeia-a high-burden district where the primary vector, An. funestus s.l., was equally likely to feed indoors or outdoors and demonstrated increasing resistance to pyrethroids. Findings suggest that IRS with PM can provide effective vector control, including in some settings where pyrethroid-only ITNs are widely used. Trial registration clinicaltrials.gov , NCT02910934. Registered 22 September 2016, https://www.clinicaltrials.gov/ct2/show/NCT02910934.- Published
- 2021
- Full Text
- View/download PDF
11. Rapid reduction of malaria transmission following the introduction of indoor residual spraying in previously unsprayed districts: an observational analysis of Mopti Region, Mali, in 2017.
- Author
-
Wagman J, Cissé I, Kone D, Fomba S, Eckert E, Mihigo J, Bankineza E, Bah M, Diallo D, Gogue C, Tynuv K, Saibu A, Richardson JH, Fornadel C, Slutsker L, and Robertson M
- Subjects
- Humans, Incidence, Malaria, Falciparum epidemiology, Mali epidemiology, Retrospective Studies, Communicable Disease Control statistics & numerical data, Disease Eradication statistics & numerical data, Malaria, Falciparum prevention & control, Pesticide Residues
- Abstract
Background: The National Malaria Control Programme (NMCP) of Mali has had recent success decreasing malaria transmission using 3rd generation indoor residual spraying (IRS) products in areas with pyrethroid resistance, primarily in Ségou and Koulikoro Regions. In 2015, national survey data showed that Mopti Region had the highest under 5-year-old (u5) malaria prevalence at 54%-nearly twice the national average-despite having high access to long-lasting insecticidal nets (LLINs) and seasonal malaria chemoprevention (SMC). Accordingly, in 2016 the NMCP and other stakeholders shifted IRS activities from Ségou to Mopti. Here, the results of a series of observational analyses utilizing routine malaria indicators to evaluate the impact of this switch are presented., Methods: A set of retrospective, eco-observational time-series analyses were performed using monthly incidence rates of rapid diagnostic test (RDT)-confirmed malaria cases reported in the District Health Information System 2 (DHIS2) from January 2016 until February 2018. Comparisons of case incidence rates were made between health facility catchments from the same region that differed in IRS status (IRS vs. no-IRS) to describe the general impact of the 2016 and 2017 IRS campaigns, and a difference-in-differences approach comparing changes in incidence from year-to-year was used to describe the effect of suspending IRS operations in Ségou and introducing IRS operations in Mopti in 2017., Results: Compared to communities with no IRS, cumulative case incidence rates in IRS communities were reduced 16% in Ségou Region during the 6 months following the 2016 campaign and 31% in Mopti Region during the 6 months following the 2017 campaign, likely averting a total of more than 22,000 cases of malaria that otherwise would have been expected during peak transmission months. Across all comparator health facilities (HFs) where there was no IRS in either year, peak malaria case incidence rates fell by an average of 22% (CI
95 18-30%) from 2016 to 2017. At HFs in communities of Mopti where IRS was introduced in 2017, peak incidence fell by an average of 42% (CI95 31-63%) between these years, a significantly greater decrease (p = 0.040) almost double what was seen in the comparator HFCAs. The opposite effect was observed in Ségou Region, where peak incidence at those HFs where IRS was withdrawn after the 2016 campaign increased by an average of 106% (CI95 63-150%) from year to year, also a significant difference-in-differences compared to the comparator no-IRS HFs (p < 0.0001)., Conclusion: Annual IRS campaigns continue to make dramatic contributions to the seasonal reduction of malaria transmission in communities across central Mali, where IRS campaigns were timed in advance of peak seasonal transmission and utilized a micro-encapsulated product with an active ingredient that was of a different class than the one found on the LLINs used throughout the region and to which local malaria vectors were shown to be susceptible. Strategies to help mitigate the resurgence of malaria cases that can be expected should be prioritized whenever the suspension of IRS activities in a particular region is considered.- Published
- 2020
- Full Text
- View/download PDF
12. Combining next-generation indoor residual spraying and drug-based malaria control strategies: observational evidence of a combined effect in Mali.
- Author
-
Wagman J, Cissé I, Kone D, Fomba S, Eckert E, Mihigo J, Bankineza E, Bah M, Diallo D, Gogue C, Tynuv K, Saibu A, Richardson JH, Fornadel C, Slutsker L, and Robertson M
- Subjects
- Adolescent, Adult, Aged, Aged, 80 and over, Animals, Child, Child, Preschool, Humans, Incidence, Infant, Malaria, Falciparum epidemiology, Malaria, Falciparum parasitology, Mali epidemiology, Middle Aged, Pesticide Residues, Young Adult, Anopheles, Antimalarials therapeutic use, Communicable Disease Control methods, Insecticides, Malaria, Falciparum prevention & control, Mosquito Control methods, Mosquito Vectors, Organothiophosphorus Compounds
- Abstract
Background: Ségou Region in central Mali is an area of high malaria burden with seasonal transmission. The region reports high access to and use of long-lasting insecticidal nets (LLINs), though the principal vector, Anopheles gambiae, is resistant to pyrethroids. From 2011 until 2016, several high-burden districts of Ségou also received indoor residual spraying (IRS), though in 2014 concerns about pyrethroid resistance prompted a shift in IRS products to a micro-encapsulated formulation of the organophosphate insecticide pirimiphos-methyl. Also in 2014, the region expanded a pilot programme to provide seasonal malaria chemoprevention (SMC) to children aged 3-59 months in two districts. The timing of these decisions presented an opportunity to estimate the impact of both interventions, deployed individually and in combination, using quality-assured passive surveillance data., Methods: A non-randomized, quasi-experimental time series approach was used to analyse monthly trends in malaria case incidence at the district level. Districts were stratified by intervention status: an SMC district, an IRS district, an IRS + SMC district, and control districts that received neither IRS nor SMC in 2014. The numbers of positive rapid diagnostic test (RDT +) results reported at community health facilities were aggregated and epidemiological curves showing the incidence of RDT-confirmed malaria cases per 10,000 person-months were plotted for the total all-ages and for the under 5 year old (u5) population. The cumulative incidence of RDT + malaria cases observed from September 2014 to February 2015 was calculated in each intervention district and compared to the cumulative incidence reported from the same period in the control districts., Results: Cumulative peak-transmission all-ages incidence was lower in each of the intervention districts compared to the control districts: 16% lower in the SMC district; 28% lower in the IRS district; and 39% lower in the IRS + SMC district. The same trends were observed in the u5 population: incidence was 15% lower with SMC, 48% lower with IRS, and 53% lower with IRS + SMC. The SMC-only intervention had a more moderate effect on incidence reduction initially, which increased over time. The IRS-only intervention had a rapid, comparatively large impact initially that waned over time. The impact of the combined interventions was both rapid and longer lasting., Conclusion: Evaluating the impact of IRS with an organophosphate and SMC on reducing incidence rates of passive RDT-confirmed malaria cases in Ségou Region in 2014 suggests that combining the interventions had a greater effect than either intervention used individually in this high-burden region of central Mali with pyrethroid-resistant vectors and high rates of household access to LLINs.
- Published
- 2020
- Full Text
- View/download PDF
13. An observational analysis of the impact of indoor residual spraying in Northern, Upper East, and Upper West Regions of Ghana: 2014 through 2017.
- Author
-
Gogue C, Wagman J, Tynuv K, Saibu A, Yihdego Y, Malm K, Mohamed W, Akplu W, Tagoe T, Ofosu A, Williams I, Asiedu S, Richardson J, Fornadel C, Slutsker L, and Robertson M
- Subjects
- Ghana epidemiology, Humans, Incidence, Malaria prevention & control, Mosquito Control methods, Retrospective Studies, Insecticides administration & dosage, Malaria epidemiology, Mosquito Control statistics & numerical data
- Abstract
Background: Ghana has been implementing the indoor residual spraying (IRS) of insecticides since 2006, focusing operations in the north. Insecticide resistance concerns prompted a switch from pyrethroids to organophosphates, beginning gradually in 2011 and switching fully to the micro-encapsulated formulation of pirimiphosmethyl (PM CS), Actellic
® 300CS, a third-generation indoor residual spraying (3GIRS) product, by 2014. Entomological surveillance studies have shown IRS to be a highly effective malaria control tool, but epidemiological evidence is needed as well. Countrywide prevalence surveys have shown that malaria parasite prevalence in children under 5 years of age in Northern, Upper East, and Upper West Regions had declined to less than 40% in each region by 2016. Similarly, malaria deaths in children under 5 years of age have also been declining nationally since 2009. Although IRS is suspected to have contributed to this decline, stronger evidence is needed to link the IRS interventions to the epidemiological impact., Methods: To assess the epidemiological impact of Ghana's IRS programmatic activities, a retrospective, observational analysis using routine epidemiological data was conducted to compare malaria incidence rates from IRS and non-IRS districts in Northern, Upper East, and Upper West Regions. Routine epidemiological data consisted of passive malaria case surveillance data reported in the District Health Information System 2 (DHIS2); with cases representing patients with suspected malaria who had sought care in the public health system and had received a confirmatory diagnosis with a positive malaria RDT result. Final routine data were extracted in September 2018. All districts that had received IRS were included in the analysis and compared to all non-IRS districts within the same region. In the Northern Region, only PMI districts were included in the analysis, as they had similar historical data., Results: District-level analysis from Northern Region from 2015 to 2017 of the aggregate malaria incidence reported from IRS districts relative to non-IRS comparator districts showed 39%, 26%, and 58% fewer confirmed malaria cases reported from IRS districts in 2015, 2016, and 2017, respectively. This translates to approximately 257,000 fewer cases than expected over the three years. In Upper East Region, the effect on reported malaria cases of withdrawing IRS from the region was striking; after spray operations were suspended in 2015, incidence increased an average of 485% per district (95% confidence interval: 330% to 640%) compared to 2014., Conclusions: The current observational analysis results are in line with the entomological studies in demonstrating the positive contribution of IRS with a 3GIRS product to malaria control programmes in northern Ghana and the value of using routine surveillance and implementation data to rapidly assess the impact of vector control interventions in operational settings, even in complex implementation environments.- Published
- 2020
- Full Text
- View/download PDF
14. Anopheles gambiae (s.l.) exhibit high intensity pyrethroid resistance throughout Southern and Central Mali (2016-2018): PBO or next generation LLINs may provide greater control.
- Author
-
Sovi A, Keita C, Sinaba Y, Dicko A, Traore I, Cisse MBM, Koita O, Dengela D, Flatley C, Bankineza E, Mihigo J, Belemvire A, Carlson J, Fornadel C, and Oxborough RM
- Subjects
- Animals, Biological Assay, Female, Insecticide-Treated Bednets, Larva, Malaria prevention & control, Mali, Mosquito Control, Mosquito Vectors, Anopheles, Insecticide Resistance, Insecticides, Piperonyl Butoxide, Pyrethrins
- Abstract
Background: Millions of pyrethroid LLINs have been distributed in Mali during the past 20 years which, along with agricultural use, has increased the selection pressure on malaria vector populations. This study investigated pyrethroid resistance intensity and susceptible status of malaria vectors to alternative insecticides to guide choice of insecticides for LLINs and IRS for effective control of malaria vectors., Methods: For 3 years between 2016 and 2018, susceptibility testing was conducted annually in 14-16 sites covering southern and central Mali. Anopheles gambiae (s.l.) were collected from larval sites and adult mosquitoes exposed in WHO tube tests to diagnostic doses of bendiocarb (0.1%) and pirimiphos-methyl (0.25%). Resistance intensity tests were conducted using CDC bottle bioassays (2016-2017) and WHO tube tests (2018) at 1×, 2×, 5×, and 10× the diagnostic concentration of permethrin, deltamethrin and alpha-cypermethrin. WHO tube tests were conducted with pre-exposure to the synergist PBO followed by permethrin or deltamethrin. Chlorfenapyr was tested in CDC bottle bioassays at 100 µg active ingredient per bottle and clothianidin at 2% in WHO tube tests. PCR was performed to identify species within the An. gambiae complex., Results: In all sites An. gambiae (s.l.) showed high intensity resistance to permethrin and deltamethrin in CDC bottle bioassay tests in 2016 and 2017. In 2018, the WHO intensity tests resulted in survivors at all sites for permethrin, deltamethrin and alpha-cypermethrin when tested at 10× the diagnostic dose. Across all sites mean mortality was 33.7% with permethrin (0.75%) compared with 71.8% when pre-exposed to PBO (4%), representing a 2.13-fold increase in mortality. A similar trend was recorded for deltamethrin. There was susceptibility to pirimiphos-methyl, chlorfenapyr and clothianidin in all surveyed sites, including current IRS sites in Mopti Region. An. coluzzii was the primary species in 4 of 6 regions., Conclusions: Widespread high intensity pyrethroid resistance was recorded during 2016-2018 and is likely to compromise the effectiveness of pyrethroid LLINs in Mali. PBO or chlorfenapyr LLINs should provide improved control of An. gambiae (s.l.). Clothianidin and pirimiphos-methyl insecticides are currently being used for IRS as part of a rotation strategy based on susceptibility being confirmed in this study.
- Published
- 2020
- Full Text
- View/download PDF
15. Intensity of pyrethroid resistance in Anopheles gambiae before and after a mass distribution of insecticide-treated nets in Kinshasa and in 11 provinces of the Democratic Republic of Congo.
- Author
-
Wat'senga F, Agossa F, Manzambi EZ, Illombe G, Mapangulu T, Muyembe T, Clark T, Niang M, Ntoya F, Sadou A, Plucinski M, Li Y, Messenger LA, Fornadel C, Oxborough RM, and Irish SR
- Subjects
- Animals, Democratic Republic of the Congo, Female, Nitriles pharmacology, Permethrin pharmacology, Anopheles drug effects, Insecticide Resistance, Insecticide-Treated Bednets statistics & numerical data, Insecticides pharmacology, Pyrethrins pharmacology
- Abstract
Background: Between 2011 and 2018, an estimated 134.8 million pyrethroid-treated long-lasting insecticidal nets (LLINs) were distributed nationwide in the Democratic Republic of Congo (DRC) for malaria control. Pyrethroid resistance has developed in DRC in recent years, but the intensity of resistance and impact on LLIN efficacy was not known. Therefore, the intensity of resistance of Anopheles gambiae sensu lato (s.l.) to permethrin and deltamethrin was monitored before and after a mass distribution of LLINs in Kinshasa in December 2016, and in 6 other sites across the country in 2017 and 11 sites in 2018., Methods: In Kinshasa, CDC bottle bioassays using 1, 2, 5, and 10 times the diagnostic dose of permethrin and deltamethrin were conducted using An. gambiae s.l. collected as larvae and reared to adults. Bioassays were conducted in four sites in Kinshasa province 6 months before a mass distribution of deltamethrin-treated LLINs and then two, six, and 10 months after the distribution. One site in neighbouring Kongo Central province was used as a control (no mass campaign of LLIN distribution during the study). Nationwide intensity assays were conducted in six sites in 2017 using CDC bottle bioassays and in 11 sites in 2018 using WHO intensity assays. A sub-sample of An. gambiae s.l. was tested by PCR to determine species composition and frequency of kdr-1014F and 1014S alleles., Results: In June 2016, before LLIN distribution, permethrin resistance intensity was high in Kinshasa; the mean mortality rate was 43% at the 5× concentration and 73% at the 10× concentration. Bioassays at 3 time points after LLIN distribution showed considerable variation by site and time and there was no consistent evidence for an increase in pyrethroid resistance intensity compared to the neighbouring control site. Tests of An. gambiae s.l. in 6 sites across the country in 2017 and 11 sites in 2018 showed all populations were resistant to the diagnostic doses of 3 pyrethroids. In 2018, the intensity of resistance varied by site, but was generally moderate for all three pyrethroids, with survivors at ×5 the diagnostic dose. Anopheles gambiae sensu stricto (s.s.) was the most common species identified across 11 sites in DRC, but in Kinshasa, An. gambiae s.s. (91%) and Anopheles coluzzii (8%) were sympatric., Conclusions: Moderate or high intensity pyrethroid resistance was detected nationwide in DRC and is a serious threat to sustained malaria control with pyrethroid LLINs. Next generation nets (PBO nets or bi-treated nets) should be considered for mass distribution.
- Published
- 2020
- Full Text
- View/download PDF
16. Impact of indoor residual spraying with pirimiphos-methyl (Actellic 300CS) on entomological indicators of transmission and malaria case burden in Migori County, western Kenya.
- Author
-
Abong'o B, Gimnig JE, Torr SJ, Longman B, Omoke D, Muchoki M, Ter Kuile F, Ochomo E, Munga S, Samuels AM, Njagi K, Maas J, Perry RT, Fornadel C, Donnelly MJ, and Oxborough RM
- Subjects
- Animals, Disease Vectors, Entomology, Geography, Medical, Humans, Kenya epidemiology, Malaria epidemiology, Malaria transmission, Seasons, Insect Control methods, Insecticides administration & dosage, Malaria parasitology, Malaria prevention & control, Organothiophosphorus Compounds administration & dosage
- Abstract
Indoor residual spraying (IRS) of insecticides is a major vector control strategy for malaria prevention. We evaluated the impact of a single round of IRS with the organophosphate, pirimiphos-methyl (Actellic 300CS), on entomological and parasitological parameters of malaria in Migori County, western Kenya in 2017, in an area where primary vectors are resistant to pyrethroids but susceptible to the IRS compound. Entomological monitoring was conducted by indoor CDC light trap, pyrethrum spray catches (PSC) and human landing collection (HLC) before and after IRS. The residual effect of the insecticide was assessed monthly by exposing susceptible An. gambiae s.s. Kisumu strain to sprayed surfaces in cone assays and measuring mortality at 24 hours. Malaria case burden data were extracted from laboratory records of four health facilities within the sprayed area and two adjacent unsprayed areas. IRS was associated with reductions in An. funestus numbers in the intervention areas compared to non-intervention areas by 88% with light traps (risk ratio [RR] 0.12, 95% CI 0.07-0.21, p < 0.001) and 93% with PSC collections (RR = 0.07, 0.03-0.17, p < 0.001). The corresponding reductions in the numbers of An. arabiensis collected by PSC were 69% in the intervention compared to the non-intervention areas (RR = 0.31, 0.14-0.68, p = 0.006), but there was no significant difference with light traps (RR = 0.45, 0.21-0.96, p = 0.05). Before IRS, An. funestus accounted for over 80% of Anopheles mosquitoes collected by light trap and PSC in all sites. After IRS, An. arabiensis accounted for 86% of Anopheles collected by PSC and 66% by CDC light trap in the sprayed sites while the proportion in non-intervention sites remained unchanged. No sporozoite infections were detected in intervention areas after IRS and biting rates by An. funestus were reduced to near zero. Anopheles funestus and An. arabiensis were fully susceptible to pirimiphos-methyl and resistant to pyrethroids. The residual effect of Actellic 300CS lasted ten months on mud and concrete walls. Malaria case counts among febrile patients within IRS areas was lower post- compared to pre-IRS by 44%, 65% and 47% in Rongo, Uriri and Nyatike health facilities respectively. A single application of IRS with Actellic 300CS in Migori County provided ten months protection and resulted in the near elimination of the primary malaria vector An. funestus and a corresponding reduction of malaria case count among out-patients. The impact was less on An. arabiensis, most likely due to their exophilic nature.
- Published
- 2020
- Full Text
- View/download PDF
17. Susceptibility testing of Anopheles malaria vectors with the neonicotinoid insecticide clothianidin; results from 16 African countries, in preparation for indoor residual spraying with new insecticide formulations.
- Author
-
Oxborough RM, Seyoum A, Yihdego Y, Dabire R, Gnanguenon V, Wat'senga F, Agossa FR, Yohannes G, Coleman S, Samdi LM, Diop A, Faye O, Magesa S, Manjurano A, Okia M, Alyko E, Masendu H, Baber I, Sovi A, Rakotoson JD, Varela K, Abong'o B, Lucas B, Fornadel C, and Dengela D
- Subjects
- Africa South of the Sahara, Animals, Communicable Disease Control, Malaria transmission, Reference Values, Anopheles drug effects, Guanidines pharmacology, Insecticide Resistance, Insecticides pharmacology, Malaria prevention & control, Mosquito Control, Mosquito Vectors drug effects, Neonicotinoids pharmacology, Thiazoles pharmacology
- Abstract
Background: In 2017, more than 5 million house structures were sprayed through the U.S. President's Malaria Initiative, protecting more than 21 million people in sub-Saharan Africa. New IRS formulations, SumiShield™ 50WG and Fludora Fusion™ WP-SB, became World Health Organization (WHO) prequalified vector control products in 2017 and 2018, respectively. Both formulations contain the neonicotinoid active ingredient, clothianidin. The target site of neonicotinoids represents a novel mode of action for vector control, meaning that cross-resistance through existing mechanisms is less likely. In preparation for rollout of clothianidin formulations as part of national IRS rotation strategies, baseline susceptibility testing was conducted in 16 countries in sub-Saharan Africa., Methods: While work coordinated by the WHO is ongoing to develop a suitable bottle bioassay procedure, there was no published guidance regarding clothianidin susceptibility procedures or diagnostic concentrations. Therefore, a protocol was developed for impregnating filter papers with 2% w/v SumiShield™ 50WG dissolved in distilled water. Susceptibility tests were conducted using insectary-reared reference Anopheles and wild collected malaria vector species. All tests were conducted within 24 h of treating papers, with mortality recorded daily for 7 days, due to the slow-acting nature of clothianidin against mosquitoes. Anopheles gambiae sensu lato (s.l.) adults from wild collected larvae were tested in 14 countries, with wild collected F
0 Anopheles funestus s.l. tested in Mozambique and Zambia., Results: One-hundred percent mortality was reached with all susceptible insectary strains and with wild An. gambiae s.l. from all sites in 11 countries. However, tests in at least one location from 5 countries produced mortality below 98%. While this could potentially be a sign of clothianidin resistance, it is more likely that the diagnostic dose or protocol requires further optimization. Repeat testing in 3 sites in Ghana and Zambia, where possible resistance was detected, subsequently produced 100% mortality. Results showed susceptibility to clothianidin in 38 of the 43 sites in sub-Saharan Africa, including malaria vectors with multiple resistance mechanisms to pyrethroids, carbamates and organophosphates., Conclusions: This study provides an interim diagnostic dose of 2% w/v clothianidin on filter papers which can be utilized by National Malaria Control Programmes and research organizations until the WHO concludes multi-centre studies and provides further guidance.- Published
- 2019
- Full Text
- View/download PDF
18. Mosquito feeding behavior and how it influences residual malaria transmission across Africa.
- Author
-
Sherrard-Smith E, Skarp JE, Beale AD, Fornadel C, Norris LC, Moore SJ, Mihreteab S, Charlwood JD, Bhatt S, Winskill P, Griffin JT, and Churcher TS
- Subjects
- Africa epidemiology, Animals, Female, Insect Bites and Stings prevention & control, Insecticides, Malaria, Falciparum prevention & control, Malaria, Falciparum transmission, Male, Mosquito Control methods, Mosquito Nets supply & distribution, Photoperiod, Plasmodium falciparum pathogenicity, Plasmodium falciparum physiology, Risk, Spatio-Temporal Analysis, Anopheles physiology, Feeding Behavior physiology, Insect Bites and Stings epidemiology, Malaria, Falciparum epidemiology, Models, Statistical
- Abstract
The antimalarial efficacy of the most important vector control interventions-long-lasting insecticidal nets (LLINs) and indoor residual spraying (IRS)-primarily protect against mosquitoes' biting people when they are in bed and indoors. Mosquito bites taken outside of these times contribute to residual transmission which determines the maximum effectiveness of current malaria prevention. The likelihood mosquitoes feed outside the time of day when LLINs and IRS can protect people is poorly understood, and the proportion of bites received outdoors may be higher after prolonged vector control. A systematic review of mosquito and human behavior is used to quantify and estimate the public health impact of outdoor biting across Africa. On average 79% of bites by the major malaria vectors occur during the time when people are in bed. This estimate is substantially lower than previous predictions, with results suggesting a nearly 10% lower proportion of bites taken at the time when people are beneath LLINs since the year 2000. Across Africa, this higher outdoor transmission is predicted to result in an estimated 10.6 million additional malaria cases annually if universal LLIN and IRS coverage was achieved. Higher outdoor biting diminishes the cases of malaria averted by vector control. This reduction in LLIN effectiveness appears to be exacerbated in areas where mosquito populations are resistant to insecticides used in bed nets, but no association was found between physiological resistance and outdoor biting. Substantial spatial heterogeneity in mosquito biting behavior between communities could contribute to differences in effectiveness of malaria control across Africa., Competing Interests: The authors declare no conflict of interest., (Copyright © 2019 the Author(s). Published by PNAS.)
- Published
- 2019
- Full Text
- View/download PDF
19. Analysis-ready datasets for insecticide resistance phenotype and genotype frequency in African malaria vectors.
- Author
-
Moyes CL, Wiebe A, Gleave K, Trett A, Hancock PA, Padonou GG, Chouaïbou MS, Sovi A, Abuelmaali SA, Ochomo E, Antonio-Nkondjio C, Dengela D, Kawada H, Dabire RK, Donnelly MJ, Mbogo C, Fornadel C, and Coleman M
- Subjects
- Africa, Animals, Genetic Markers, Genotype, Geography, Insecticides, Malaria, Phenotype, Anopheles genetics, Insecticide Resistance genetics, Mosquito Vectors genetics
- Abstract
The impact of insecticide resistance in malaria vectors is poorly understood and quantified. Here a series of geospatial datasets for insecticide resistance in malaria vectors are provided, so that trends in resistance in time and space can be quantified, and the impact of resistance found in wild populations on malaria transmission in Africa can be assessed. Specifically, data have been collated and geopositioned for the prevalence of insecticide resistance, as measured by standard bioassays, in representative samples of individual species or species complexes. Data are provided for the Anopheles gambiae species complex, the Anopheles funestus subgroup, and for nine individual vector species. Data are also given for common genetic markers of resistance to support analyses of whether these markers can improve the ability to monitor resistance in low resource settings. Allele frequencies for known resistance-associated markers in the Voltage-gated sodium channel (Vgsc) are provided. In total, eight analysis-ready, standardised, geopositioned datasets encompassing over 20,000 African mosquito collections between 1957 and 2017 are released.
- Published
- 2019
- Full Text
- View/download PDF
20. Nationwide insecticide resistance status and biting behaviour of malaria vector species in the Democratic Republic of Congo.
- Author
-
Wat'senga F, Manzambi EZ, Lunkula A, Mulumbu R, Mampangulu T, Lobo N, Hendershot A, Fornadel C, Jacob D, Niang M, Ntoya F, Muyembe T, Likwela J, Irish SR, and Oxborough RM
- Subjects
- Animals, Democratic Republic of the Congo, Feeding Behavior, Insect Bites and Stings etiology, Malaria, Nitriles pharmacology, Permethrin pharmacology, Pyrethrins pharmacology, Anopheles drug effects, Anopheles physiology, Insecticide Resistance, Insecticides pharmacology, Mosquito Vectors drug effects, Mosquito Vectors physiology
- Abstract
Background: Globally, the Democratic Republic of Congo (DRC) accounted for 9% of malaria cases and 10% of malaria deaths in 2015. As part of control efforts, more than 40 million long-lasting insecticidal nets (LLINs) were distributed between 2008 and 2013, resulting in 70% of households owning one or more LLINs in 2014. To optimize vector control efforts, it is critical to monitor vector behaviour and insecticide resistance trends. Entomological data was collected from eight sentinel sites throughout DRC between 2013 and 2016 in Kingasani, Mikalayi, Lodja, Kabondo, Katana, Kapolowe, Tshikaji and Kalemie. Mosquito species present, relative densities and biting times were monitored using human landing catches (HLC) conducted in eight houses, three times per year. HLC was conducted monthly in Lodja and Kapolowe during 2016 to assess seasonal dynamics. Laboratory data included resistance mechanism frequency and sporozoite rates. Insecticide susceptibility testing was conducted with commonly used insecticides including deltamethrin and permethrin. Synergist bioassays were conducted with PBO to determine the role of oxidases in permethrin resistance., Results: In Lodja, monthly Anopheles gambiae s.l. biting rates were consistently high at > 10 bites/person/night indoors and outdoors. In Kapolowe, An. gambiae s.l. dominated during the rainy season, and Anopheles funestus s.l. during the dry season. In all sites, An. gambiae and An. funestus biting occurred mostly late at night. In Kapolowe, significant biting of both species started around 19:00, typically before householders use nets. Sporozoite rates were high, with a mean of 4.3% (95% CI 3.4-5.2) for An. gambiae and 3.3% (95% CI 1.3-5.3) for An. funestus. Anopheles gambiae were resistant to permethrin in six out of seven sites in 2016. In three sites, susceptibility to deltamethrin was observed despite high frequency permethrin resistance, indicating the presence of pyrethroid-specific resistance mechanisms. Pre-exposure to PBO increased absolute permethrin-associated mortality by 24%, indicating that resistance was partly due to metabolic mechanisms. The kdr-1014F mutation in An. gambiae was present at high frequency (> 70%) in three sites (Kabondo, Kingasani and Tshikaji), and lower frequency (< 20%) in two sites (Lodja and Kapolowe)., Conclusion: The finding of widespread resistance to permethrin in DRC is concerning and alternative insecticides should be evaluated.
- Published
- 2018
- Full Text
- View/download PDF
21. Combination of indoor residual spraying with long-lasting insecticide-treated nets for malaria control in Zambezia, Mozambique: a cluster randomised trial and cost-effectiveness study protocol.
- Author
-
Chaccour CJ, Alonso S, Zulliger R, Wagman J, Saifodine A, Candrinho B, Macete E, Brew J, Fornadel C, Kassim H, Loch L, Sacoor C, Varela K, Carty CL, Robertson M, and Saute F
- Abstract
Background: Most of the reduction in malaria prevalence seen in Africa since 2000 has been attributed to vector control interventions. Yet increases in the distribution and intensity of insecticide resistance and higher costs of newer insecticides pose a challenge to sustaining these gains. Thus, endemic countries face challenging decisions regarding the choice of vector control interventions., Methods: A cluster randomised trial is being carried out in Mopeia District in the Zambezia Province of Mozambique, where malaria prevalence in children under 5 is high (68% in 2015), despite continuous and campaign distribution of long-lasting insecticide-treated nets (LLINs). Study arm 1 will continue to use the standard, LLIN-based National Malaria Control Programme vector control strategy (LLINs only), while study arm 2 will receive indoor residual spraying (IRS) once a year for 2 years with a microencapsulated formulation of pirimiphos-methyl (Actellic 300 CS), in addition to the standard LLIN strategy (LLINs+IRS). Prior to the 2016 IRS implementation (the first of two IRS campaigns in this study), 146 clusters were defined and stratified per number of households. Clusters were then randomised 1:1 into the two study arms. The public health impact and cost-effectiveness of IRS intervention will be evaluated over 2 years using multiple methods: (1) monthly active malaria case detection in a cohort of 1548 total children aged 6-59 months; (2) enhanced passive surveillance at health facilities and with community health workers; (3) annual cross-sectional surveys; and (4) entomological surveillance. Prospective microcosting of the intervention and provider and societal costs will be conducted. Insecticide resistance status pattern and changes in local Anopheline populations will be included as important supportive outcomes., Discussion: By evaluating the public health impact and cost-effectiveness of IRS with a non-pyrethroid insecticide in a high-transmission setting with high LLIN ownership, it is expected that this study will provide programmatic and policy-relevant data to guide national and global vector control strategies., Trial Registration Number: NCT02910934., Competing Interests: Competing interests: None declared.
- Published
- 2018
- Full Text
- View/download PDF
22. A village level cluster-randomized entomological evaluation of combination long-lasting insecticidal nets containing pyrethroid plus PBO synergist in Southern Mali.
- Author
-
Cisse MBM, Sangare D, Oxborough RM, Dicko A, Dengela D, Sadou A, Mihigo J, George K, Norris L, and Fornadel C
- Subjects
- Animals, Cluster Analysis, Drug Synergism, Longevity, Mali, Nitriles, Permethrin, Piperonyl Butoxide, Pyrethrins, Rural Population, Anopheles parasitology, Anopheles physiology, Insecticide-Treated Bednets, Insecticides, Mosquito Control, Mosquito Vectors parasitology, Mosquito Vectors physiology
- Abstract
Background: There is growing concern that malaria vector resistance to pyrethroid insecticides may reduce the effectiveness of long-lasting insecticidal nets (LLINs). Combination LLINs are designed to control susceptible and pyrethroid-resistant mosquito populations through a mixture of pyrethroid with piperonyl butoxide (PBO) synergist. A cluster randomized trial with entomology outcome measures was conducted in Mali to determine the added benefit over mono-treated pyrethroid predecessors. Four LLIN treatments; permethrin + PBO, permethrin, deltamethrin + PBO, and deltamethrin, were randomly allocated to four villages each (16 villages total) and distributed to cover every sleeping place. Entomological monitoring of indoor Anopheles resting densities, host preference, vector longevity, and sporozoite rates were monitored every 2 months over 2 years in 2014 and 2015., Results: Bottle bioassays confirmed permethrin and deltamethrin resistance in Anopheles gambiae sensu lato (s.l.), (the predominant species throughout the study) with pre-exposure to PBO indicating partial involvement of oxidases. Between 2014 and 2015 the mean indoor resting density was greater in the deltamethrin + PBO LLIN arm than the deltamethrin LLIN arm at 3.05 (95% CI 3.00-3.10) An. gambiae s.l. per room per day compared with 1.9 (95% CI 1.87-1.97). There was no significant difference in sporozoite rate at 3.97% (95% CI 2.91-5.02) for the deltamethrin LLIN arm and 3.04% (95% CI 2.21-3.87) for deltamethrin + PBO LLIN arm (P = 0.17). However, when analysed by season there was some evidence that the sporozoite rate was lower in the deltamethrin + PBO LLIN arm than deltamethrin LLIN arm during the rainy/high malaria transmission seasons at 1.95% (95% CI 1.18-2.72) and 3.70% (95% CI 2.56-4.84) respectively (P = 0.01)., Conclusions: While there was some evidence that An. gambiae s.l. sporozoite rates were lower in villages with deltamethrin + PBO LLINs during the high malaria transmission seasons of 2014-2015, there was no reduction in parity rates or indoor resting densities. There was also no evidence that permethrin + PBO LLINs provided any improved control when compared with permethrin LLINs. Combination nets may have a greater impact in areas where mixed function oxidases play a more important role in pyrethroid resistance.
- Published
- 2017
- Full Text
- View/download PDF
23. Insecticide resistance in Anopheles arabiensis from Ethiopia (2012-2016): a nationwide study for insecticide resistance monitoring.
- Author
-
Messenger LA, Shililu J, Irish SR, Anshebo GY, Tesfaye AG, Ye-Ebiyo Y, Chibsa S, Dengela D, Dissanayake G, Kebede E, Zemene E, Asale A, Yohannes M, Taffese HS, George K, Fornadel C, Seyoum A, Wirtz RA, and Yewhalaw D
- Subjects
- Animals, Ethiopia, Female, Seasons, Spatial Analysis, Anopheles drug effects, Insecticide Resistance, Insecticides pharmacology
- Abstract
Background: Indoor residual spraying (IRS) and long-lasting insecticidal nets (LLINs) remain the cornerstones of malaria vector control. However, the development of insecticide resistance and its implications for operational failure of preventative strategies are of concern. The aim of this study was to characterize insecticide resistance among Anopheles arabiensis populations in Ethiopia and describe temporal and spatial patterns of resistance between 2012 and 2016., Methods: Between 2012 and 2016, resistance status of An. arabiensis was assessed annually during the long rainy seasons in study sites from seven of the nine regions in Ethiopia. Insecticide resistance levels were measured with WHO susceptibility tests and CDC bottle bioassays using insecticides from four chemical classes (organochlorines, pyrethroids, organophosphates and carbamates), with minor variations in insecticides tested and assays conducted between years. In selected sites, CDC synergist assays were performed by pre-exposing mosquitoes to piperonyl butoxide (PBO). In 2015 and 2016, mosquitoes from DDT and deltamethrin bioassays were randomly selected, identified to species-level and screened for knockdown resistance (kdr) by PCR., Results: Intense resistance to DDT and pyrethroids was pervasive across Ethiopia, consistent with historic use of DDT for IRS and concomitant increases in insecticide-treated net coverage over the last 15 years. Longitudinal resistance trends to malathion, bendiocarb, propoxur and pirimiphos-methyl corresponded to shifts in the national insecticide policy. By 2016, resistance to the latter two insecticides had emerged, with the potential to jeopardize future long-term effectiveness of vector control activities in these areas. Between 2015 and 2016, the West African (L1014F) kdr allele was detected in 74.1% (n = 686/926) of specimens, with frequencies ranging from 31 to 100% and 33 to 100% in survivors from DDT and deltamethrin bioassays, respectively. Restoration of mosquito susceptibility, following pre-exposure to PBO, along with a lack of association between kdr allele frequency and An. arabiensis mortality rate, both indicate metabolic and target-site mutation mechanisms are contributing to insecticide resistance., Conclusions: Data generated by this study will strengthen the National Malaria Control Programme's insecticide resistance management strategy to safeguard continued efficacy of IRS and other malaria control methods in Ethiopia.
- Published
- 2017
- Full Text
- View/download PDF
24. A reduction in malaria transmission intensity in Northern Ghana after 7 years of indoor residual spraying.
- Author
-
Coleman S, Dadzie SK, Seyoum A, Yihdego Y, Mumba P, Dengela D, Ricks P, George K, Fornadel C, Szumlas D, Psychas P, Williams J, Appawu MA, and Boakye DA
- Subjects
- Animals, Ghana, Humans, Anopheles, Housing, Insect Vectors, Insecticides, Malaria transmission, Mosquito Control standards
- Abstract
Background: Indoor residual spraying (IRS) is being implemented as one of the malaria prevention methods in the Northern Region of Ghana. Changes in longevity, sporozoite and entomological inoculation rates (EIRs) of major malaria vectors were monitored to assess the impact of IRS in selected districts., Methods: Monthly human landing catches (HLCs) were used to collect mosquitoes from sentinel sites in three adjacent districts between July 2009 and December 2014: Savelugu Nanton (SND) where IRS had been implemented from 2008 to 2014; Tolon Kumbungu (TKD) where IRS had been implemented between 2008 and 2012 and Tamale Metropolis (TML) with no history of IRS. Mosquitoes were morphologically identified to species level and into sibling species, using PCR. Samples of Anopheles gambiae sensu lato (s.l.) were examined for parity and infectivity. EIR was calculated from biting and infectivity rates of malaria vectors., Results: Parity rates of An. gambiae s.l. decreased significantly (p < 0.0001) in SND from 44.8% in 2011 to 28.1% by 2014, and in TKD from 53.3% in 2011 to 46.6% in 2012 (p = 0.001). However 2 years after IRS was discontinued in TKD, the proportion of parous An. gambiae s.l. increased significantly to 68.5% in 2014 (p < 0.0001). Parity rates in the unsprayed district remained high throughout the study period, ranging between 68.6% in 2011 and 72.3% in 2014. The sum of monthly EIRs post-IRS season (July-December) in SND ranged between 2.1 and 6.3 infective bites/person/season (ib/p/s) during the 3 years that the district was sprayed with alphacypermethrin. EIR in SND was reduced to undetectable levels when the insecticide was switched to pirimiphos methyl CS in 2013 and 2014. Two years after IRS was withdrawn from TKD the sum of monthly EIRs (July-December) increased by about fourfold from 41.8 ib/p/s in 2012 to 154.4 ib/p/s in 2014. The EIR in the control area, TML, ranged between 35 ib/p/s in 2009 to 104.71 ib/p/s by 2014., Conclusions: This study demonstrates that IRS application did have a significant impact on entomological indicators of malaria transmission in the IRS project districts of Northern Ghana. Transmission indicators increased following the withdrawal of IRS from Tolon Kumbungu District.
- Published
- 2017
- Full Text
- View/download PDF
25. Mobile soak pits improve spray team mobility, productivity and safety of PMI malaria control programs.
- Author
-
Mitchell DF, Brown AS, Bouare SI, Belemvire A, George K, Fornadel C, Norris L, Longhany R, and Chandonait PJ
- Subjects
- Animals, Environmental Exposure prevention & control, Ethiopia, Humans, Insecticides, Madagascar, Mali, Occupational Exposure prevention & control, Organothiophosphorus Compounds, Phenylcarbamates, Senegal, Water Pollutants, Chemical, Decontamination methods, Malaria prevention & control, Mosquito Control
- Abstract
In the President's Malaria Initiative (PMI)-funded Africa Indoor Residual Spraying Project (AIRS), end-of-day clean-up operations require the safe disposal of wash water resulting from washing the exterior of spray tanks and spray operators' personal protective equipment. Indoor residual spraying (IRS) programs typically use soak pits - large, in-ground filters - to adsorb, filter and then safely degrade the traces of insecticide found in the wash water. Usually these soak pits are permanent installations serving 30 or more operators, located in a central area that is accessible to multiple spray teams at the end of their workday. However, in remote areas, it is often impractical for teams to return to a central soak pit location for cleanup. To increase operational efficiency and improve environmental compliance, the PMI AIRS Project developed and tested mobile soak pits (MSP) in the laboratory and in field applications in Madagascar, Mali, Senegal, and Ethiopia where the distance between villages can be substantial and the road conditions poor. Laboratory testing confirmed the ability of the easily-assembled MSP to reduce effluent concentrations of two insecticides (Actellic 300-CS and Ficam VC) used by the PMI AIRS Project, and to generate the minimal practicable environmental "footprint" in these remote areas. Field testing in the Mali 2014 IRS campaign demonstrated ease of installation and use, resulted in improved and more consistent standards of clean-up, decreased transportation requirements, improved spray team working conditions, and reduced potential for operator exposure to insecticide., (Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.)
- Published
- 2016
- Full Text
- View/download PDF
26. Feasibility and Effectiveness of mHealth for Mobilizing Households for Indoor Residual Spraying to Prevent Malaria: A Case Study in Mali.
- Author
-
Mangam K, Fiekowsky E, Bagayoko M, Norris L, Belemvire A, Longhany R, Fornadel C, and George K
- Subjects
- Comprehension, Cost-Benefit Analysis, Government Programs, Humans, Information Literacy, Insecticides, Interpersonal Relations, Pilot Projects, Program Evaluation, Trust, Cell Phone, Communication, Family Characteristics, Malaria prevention & control, Mosquito Control, Telemedicine, Text Messaging
- Abstract
Components of mHealth are increasingly being added to development interventions worldwide. A particular case of interest is in Mali where the U.S. President's Malaria Initiative (PMI) Africa Indoor Residual Spraying (AIRS) Project piloted a mobile mass-messaging service in Koulikoro District in August 2014 to determine whether voice and/or text messages received on cell phones could effectively replace door-to-door mobilization for an indoor residual spraying (IRS) campaign. To measure the pilot's effectiveness, we evaluated structure preparedness (all household and food items removed) in 3 pilot intervention villages compared with 3 villages prepared for spray through door-to-door mobilization that was modified by incorporating town hall meetings and radio spots. Structure preparedness was significantly lower in households mobilized through the mobile-messaging approach compared with the door-to-door approach (49% vs. 75%, respectively; P = .03). Spray coverage of targeted households also was significantly lower among the mobile-messaging villages than the door-to-door mobilization villages (86% vs. 96%, respectively; P = .02). The mobile-messaging approach, at US$8.62 per structure prepared, was both more costly and less effective than the door-to-door approach at US$1.08 per structure prepared. While literacy and familiarity with technology were major obstacles, it also became clear that by removing the face-to-face interactions between mobilizers and household residents, individuals were not as trusting or understanding of the mobilization messages. These residents felt it was easier to ignore a text or voice message than to ignore a mobilizer who could provide reassurances and preparation support. In addition, men often received the mobile messages, as they typically owned the mobile phones, while women-who were more likely to be at home at the time of spray-usually interacted with the door-to-door mobilizers. Future attempts at using mHealth approaches for similar IRS mobilization efforts in Mali should be done in a way that combines mHealth tools with more common human-based interventions, rather than as a stand-alone approach, and should be designed with a gender lens in mind. The choice of software used for mass messaging should also be considered to find a local option that is both less expensive and perhaps more attuned to the local context than a U.S.-based software solution., (© Mangam et al.)
- Published
- 2016
- Full Text
- View/download PDF
27. Short persistence of bendiocarb sprayed on pervious walls and its implication for the indoor residual spray program in Ethiopia.
- Author
-
Yeebiyo Y, Dengela D, Tesfaye AG, Anshebo GY, Kolyada L, Wirtz R, Chibsa S, Fornadel C, George K, Belemvire A, Taffese HS, and Lucas B
- Subjects
- Animals, Anopheles drug effects, Ethiopia, Feces, Housing, Pesticide Residues chemistry, Propoxur chemistry, Soil chemistry, Surface Properties, Time Factors, Water chemistry, Insecticides chemistry, Phenylcarbamates chemistry
- Abstract
Background: With the emergence and spread of vector resistance to pyrethroids and DDT in Africa, several countries have recently switched or are considering switching to carbamates and/or organophosphates for indoor residual spraying (IRS). However, data collected on the residual life of bendiocarb used for IRS in some areas indicate shorter than expected bio-efficacy. This study evaluated the effect of pH and wall type on the residual life of the carbamates bendiocarb and propoxur as measured by the standard World Health Organization (WHO) cone bioassay test., Methods: In phase I of this study, bendiocarb and propoxur were mixed with buffered low pH (pH 4.3) local water and non-buffered high pH (pH 8.0) local water and sprayed on two types of wall surface, mud and dung, in experimental huts. In the six month phase II study, the two insecticides were mixed with high pH local water and sprayed on four different surfaces: painted, dung, mud and mud pre-wetted with water. The residual bio-efficacy of the insecticides was assessed monthly using standard WHO cone bioassay tests., Results: In phase I, bendiocarb mixed with high pH water killed more than 80% of susceptible Anopheles arabiensis mosquitoes for two months on both dung and mud surfaces. On dung surfaces, the 80% mortality threshold was achieved for three months when the bendiocarb was mixed with low pH water and four months when it was mixed with high pH water. Propoxur lasted longer than bendiocarb on dung surfaces, staying above the 80% mortality threshold for four and five months when mixed with high and low pH water, respectively. Phase II results also showed that the type of surface sprayed has a significant impact on the bio-efficacy of bendiocarb. Keeping the spray water constant at the same high pH of 8.0, bendiocarb killed 100% of exposed mosquitoes on impervious painted surfaces for the six months of the study period compared with less than one month on mud surfaces., Conclusions: Mixing the insecticides in alkaline water did not reduce the residual bio-efficacy of bendiocarb. However, bendiocarb performed much better on impervious (painted) surfaces than on porous dung or mud ones. Propoxur was less affected by wall type than was bendiocarb. Studies on the interaction between wall materials, soil, humidity, temperature and pH and the residual bio-efficacy of new and existing insecticides are recommended prior to their wide use in IRS.
- Published
- 2016
- Full Text
- View/download PDF
28. Averting a malaria disaster: will insecticide resistance derail malaria control?
- Author
-
Hemingway J, Ranson H, Magill A, Kolaczinski J, Fornadel C, Gimnig J, Coetzee M, Simard F, Roch DK, Hinzoumbe CK, Pickett J, Schellenberg D, Gething P, Hoppé M, and Hamon N
- Subjects
- Africa South of the Sahara, Animals, Humans, Anopheles physiology, Communicable Disease Control, Insect Vectors, Insecticide Resistance, Insecticide-Treated Bednets, Malaria prevention & control, Mosquito Control, Pyrethrins
- Abstract
World Malaria Day 2015 highlighted the progress made in the development of new methods of prevention (vaccines and insecticides) and treatment (single dose drugs) of the disease. However, increasing drug and insecticide resistance threatens the successes made with existing methods. Insecticide resistance has decreased the efficacy of the most commonly used insecticide class of pyrethroids. This decreased efficacy has increased mosquito survival, which is a prelude to rising incidence of malaria and fatalities. Despite intensive research efforts, new insecticides will not reach the market for at least 5 years. Elimination of malaria is not possible without effective mosquito control. Therefore, to combat the threat of resistance, key stakeholders need to rapidly embrace a multifaceted approach including a reduction in the cost of bringing new resistance management methods to market and the streamlining of associated development, policy, and implementation pathways to counter this looming public health catastrophe., (Copyright © 2016 Elsevier Ltd. All rights reserved.)
- Published
- 2016
- Full Text
- View/download PDF
29. Targeting indoor residual spraying for malaria using epidemiological data: a case study of the Zambia experience.
- Author
-
Pinchoff J, Larsen DA, Renn S, Pollard D, Fornadel C, Maire M, Sikaala C, Sinyangwe C, Winters B, Bridges DJ, and Winters AM
- Subjects
- Animals, Anopheles drug effects, Anopheles pathogenicity, Geographic Information Systems, Humans, Insect Vectors drug effects, Insect Vectors pathogenicity, Insecticide-Treated Bednets, Zambia, Insecticides administration & dosage, Malaria prevention & control, Mosquito Control methods
- Abstract
Background: In Zambia and other sub-Saharan African countries affected by ongoing malaria transmission, indoor residual spraying (IRS) for malaria prevention has typically been implemented over large areas, e.g., district-wide, and targeted to peri-urban areas. However, there is a recent shift in some countries, including Zambia, towards the adoption of a more strategic and targeted IRS approach, in coordination with increased emphasis on universal coverage of long-lasting insecticidal nets (LLINs) and effective insecticide resistance management. A true targeted approach would deliver IRS to sub-district areas identified as high-risk, with the goal of maximizing the prevention of malaria cases and deaths., Results: Together with the Government of the Republic of Zambia, a new methodology was developed applying geographic information systems and satellite imagery to support a targeted IRS campaign during the 2014 spray season using health management information system data., Discussion/conclusion: This case study focuses on the developed methodology while also highlighting the significant research gaps which must be filled to guide countries on the most effective strategy for IRS targeting in the context of universal LLIN coverage and evolving insecticide resistance.
- Published
- 2016
- Full Text
- View/download PDF
30. Characterizing the insecticide resistance of Anopheles gambiae in Mali.
- Author
-
Cisse MB, Keita C, Dicko A, Dengela D, Coleman J, Lucas B, Mihigo J, Sadou A, Belemvire A, George K, Fornadel C, and Beach R
- Subjects
- Animals, Anopheles enzymology, Anopheles genetics, Biological Assay, Carbamates pharmacology, DDT pharmacology, Female, Genotype, Hydrocarbons, Chlorinated pharmacology, Insect Vectors enzymology, Insect Vectors genetics, Mali, Mutation, Organophosphates pharmacology, Public Health Surveillance, Pyrethrins pharmacology, Anopheles drug effects, Insect Vectors drug effects, Insecticide Resistance genetics, Insecticide Resistance physiology, Insecticides pharmacology
- Abstract
Background: The impact of indoor residual spraying (IRS) and long-lasting insecticide nets (LLINs), key components of the national malaria control strategy of Mali, is threatened by vector insecticide resistance. The objective of this study was to assess the level of insecticide resistance in Anopheles gambiae sensu lato populations from Mali against four classes of insecticide recommended for IRS: organochlorines (OCs), pyrethroids (PYs), carbamates (CAs) and organophosphates (OPs). Characterization of resistance was done in 13 sites across southern Mali and assessed presence and distribution of physiological mechanisms that included target-site modifications: knockdown resistance (kdr) and altered acetycholinesterase (AChE), and/or metabolic mechanisms: elevated esterases, glutathione S-transferases (GSTs), and monooxygenases., Methods: The World Health Organization (WHO) tube test was used to determine phenotypic resistance of An. gambiae s.l. to: dichlorodiphenyltrichloroethane (DDT) (OC), deltamethrin (PY), lambda-cyhalothrin (PY), bendiocarb (CA), and fenitrothion (OP). Identification of sibling species and presence of the ace-1 (R) and Leu-Phe kdr, resistance-associated mutations, were determined using polymerase chain reaction (PCR) technology. Biochemical assays were conducted to detect increased activity of GSTs, oxidases and esterases., Results: Populations tested showed high levels of resistance to DDT in all 13 sites, as well as increased resistance to deltamethrin and lambda-cyhalothrin in 12 out of 13 sites. Resistance to fenitrothion and bendiocarb was detected in 1 and 4 out of 13 sites, respectively. Anopheles coluzzii, An. gambiae sensu stricto and Anopheles arabiensis were identified with high allelic frequencies of kdr in all sites where each of the species were found (13, 12 and 10 sites, respectively). Relatively low allelic frequencies of ace-1 (R) were detected in four sites where this assessment was conducted. Evidence of elevated insecticide metabolism, based on oxidase, GSTs and esterase detoxification, was also documented., Conclusion: Multiple insecticide-resistance mechanisms have evolved in An. coluzzii, An. gambiae s.s. and An. arabiensis in Mali. These include at least two target site modifications: kdr, and ace-1 (R) , as well as elevated metabolic detoxification systems (monooxygenases and esterases). The selection pressure for resistance could have risen from the use of these insecticides in agriculture, as well as in public health. Resistance management strategies, based on routine resistance monitoring to inform insecticide-based malaria vector control in Mali, are recommended.
- Published
- 2015
- Full Text
- View/download PDF
31. Implementation of the global plan for insecticide resistance management in malaria vectors: progress, challenges and the way forward.
- Author
-
Mnzava AP, Knox TB, Temu EA, Trett A, Fornadel C, Hemingway J, and Renshaw M
- Subjects
- Animals, Culicidae, Insect Vectors, Insecticide Resistance drug effects, Insecticides pharmacology, Malaria prevention & control, Mosquito Control
- Abstract
In recent years, there has been an increase in resistance of malaria vectors to insecticides, particularly to pyrethroids which are widely used in insecticide-treated nets. The Global Plan for Insecticide Resistance Management in malaria vectors (GPIRM), released in May 2012, is a collective strategy for the malaria community to tackle this challenge. This review outlines progress made to date and the challenges experienced in the implementation of GPIRM, and outlines focus areas requiring urgent attention. Whilst there has been some advancement, uptake of GPIRM at the national level has generally been poor for various reasons, including limited availability of vector control tools with new mechanisms of action as well as critical financial, human and infrastructural resource deficiencies. There is an urgent need for a global response plan to address these deficits and ensure the correct and efficient use of available tools in order to maintain the effectiveness of current vector control efforts whilst novel vector control tools are under development. Emphasis must be placed on enhancing national capacities (such as human and infrastructural resources) to enable efficient monitoring and management of insecticide resistance, and to support availability and accessibility of appropriate new vector control products. Lack of action by the global community to address the threat of insecticide resistance is unacceptable and deprives affected communities of their basic right of universal access to effective malaria prevention. Aligning efforts and assigning the needed resources will ensure the optimal implementation of GPIRM with the ultimate goal of maintaining effective malaria vector control.
- Published
- 2015
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.