Sugar is crucial for grape berry, whether used for fresh food or wine. However, berry enlargement treatment with forchlorfenuron (N-(2-chloro4-pyridyl)-N′-phenylurea) (CPPU, a synthetic cytokinin) and gibberellin (GA) always had adverse effects on sugar accumulation in some grape varieties, especially CPPU. Therefore exploring the molecular mechanisms behind these adverse effects could provide a foundation for improving or developing technology to mitigate the effects of CPPU/GA treatments for grape growers. In the present study, invertase (INV) family, the key gene controlling sugar accumulation, was identified and characterized on the latest annotated grape genome. Their express pattern, as well as invertase activity and sugar content, were analyzed during grape berry development under CPPU and GA3 treatment to explore the potential role of INV members under berry enlargement treatment in grapes. Eighteen INV genes were identified and divided into two sub-families: 10 neutral INV genes (Vv-A/N-INV1-10) and 8 acid INV genes containing 5 CWINV (VvCWINV1-5) and 3 VIN (VvVIN1-3). At the early development stage, both CPPU and GA3 treatment decreased the hexose level in berries of 'Pinot Noir' grape, whereas the activity of three types inverstase (soluble acid INV, insoluble acid INV, and neutral INV) increased. Correspondingly, most of INV members were up-regulated by GA3 /CPPU application at least one sampling time point during early berry development, including VvCWINV1, 2, 3, 4, 5, VvVIN1, 2, 3 and Vv-A/N-INV1, 2, 5, 6, 7, 8, 10. At maturity, the sugar content in CPPU-treated berries is still lower than that in the control. Soluble acid INV and neutral INV, rather than insoluble acid INV, presented lower activity in CPPU-treated berries. Meanwhile, several corresponding genes, such as VvVIN2 and Vv-A/N-INV2, 8, 10 in ripening berries were obviously down-regulated by CPPU treatment. These results suggested that most of INV members could be triggered by berry enlargement treatment during early berry development, whereas VvVINs and Vv-A/N-INVs, but not VvCWINVs, could be the limiting factor resulting in decreased sugar accumulation in CPPU-treated berries at maturity. In conclusion, this study identified the INV family on the latest annotated grape genome and selected several potential members involving in the limit of CPPU on final sugar accumulation in grape berry. These results provide candidate genes for further study of the molecular regulation of CPPU and GA on sugar accumulation in grape. [ABSTRACT FROM AUTHOR]