1. Mechanisms of intestinal injury in polychaete Perinereis aibuhitensis caused by low-concentration fluorene pollution: Microbiome and metabonomic analyses.
- Author
-
Teng T, Yang Y, Li H, Song J, Ren J, and Liu F
- Subjects
- Animals, Geologic Sediments microbiology, Geologic Sediments chemistry, Biodegradation, Environmental, Fluorenes toxicity, Fluorenes metabolism, Polychaeta drug effects, Polychaeta metabolism, Polychaeta microbiology, Water Pollutants, Chemical toxicity, Water Pollutants, Chemical metabolism, Intestines microbiology, Intestines drug effects, Gastrointestinal Microbiome drug effects, Metabolomics
- Abstract
The polychaete Perinereis aibuhitensis is used for bioremediation; however, its ability to remove fluorene, a common environmental pollutant, from sediments remains unclear, especially at low concentrations of fluorene (10 mg/kg). In this study, we explored the mechanism of intestinal injury induced by low concentrations of fluorene and the reason intestinal injury is alleviated in high fluorene concentration groups (100 and 1000 mg/kg) using histology, ecological biomarkers, gut microbiome, and metabolic response analyses. The results show that P. aibuhitensis showed high tolerance to fluorene in sediments, with clearance rates ranging 25-50 %. However, the remediation effect at low fluorene concentrations (10 mg/kg) was poor. This is attributed to promoting the growth of harmful microorganisms such as Microvirga, which can cause metabolic disorders, intestinal flora imbalances, and the generation of harmful substances such as 2-hydroxyfluorene. These can result in severe intestinal injury in P. aibuhitensis, reducing its fluorene clearance rate. However, high fluorene concentrations (100 and 1000 mg/kg) may promote the growth of beneficial microorganisms such as Faecalibacterium, which can replace the dominant harmful microorganisms and improve metabolism to reverse the intestinal injury caused by low fluorene concentrations, ultimately restoring the fluorene-removal ability of P. aibuhitensis. This study demonstrates an effective method for evaluating the potential ecological risks of fluorene pollution in marine sediments and provides guidance for using P. aibuhitensis for remediation., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2024 Elsevier B.V. All rights reserved.)
- Published
- 2024
- Full Text
- View/download PDF