A correlation between polyomavirus-induced oncogenesis and viral persistence on the one hand and/or prolonged genome replication potential on the other was established with respect to their respective organ distributions. Prolonged replication potential is defined as the capacity of a genome to replicate in a given organ from the time of infection up to the onset of oncogenesis. This conclusion was derived following intraperitoneal infection of BALB/c mice with wild-type strain A2. Viral genomes were used as parameters of persistence and replication and were detected by Southern blotting and PCR analysis. The major tumor target organs (mammary gland, skin, and bone), which have not been previously analyzed for persistence, were compared with other, non-tumor-prone organs (kidney, liver, lung, spleen, and salivary gland). A progressive loss of viral genomes was observed in all tissues as a function of time postinfection; however, genomes were shown to persist through 20 weeks postinfection in the mammary glands, skin, and bones to an extent similar to that in the previously described kidneys (D. J. McCance, J. Virol. 39:958-962, 1981; W. P. Rowe, J. W. Hartley, J. D. Estes, and R. J. Huebner, Natl. Cancer Inst. Monogr. 4:189-209, 1960). Thus, tumors arise among organs that sustain a persistent infection, but not all such organs develop tumors (e.g., the kidney). The capacity of organs to support de novo replication at various ages, including the age reached when the first tumors are detected, was also determined using a 3-day infection period for ages between 0 and 7 weeks. For all organs tested, a higher level of genomes was observed in organs of mice infected as neonates than in those infected after the age of 3 weeks. However, marked organ-specific differences were seen in the degree and timing of loss of replication. In particular, viral genome replication, although reduced, was maintained in the mammary glands, skin, and bones of adult animals, in contrast to the kidneys. We conclude that organ-specific oncogenesis correlates with two organ-specific parameters: persistence of viral genomes and prolonged viral genome replication potential. This may reflect a requirement for continued viral genome replication and/or gene expression for tumorigenesis. In turn, these parameters may be linked to the tissue-specific continued capacity for cellular division.